
LECTURE 6

Group homomorphisms and their kernels

PAVEL RŮŽIČKA

Abstract. We define and study the notions of a group homomorphism
and the kernel of a group homomorphism. We prove that the kernels
correspond to normal subgroups. We examine some examples of group
homomorphisms that are based on geometric intuition.

6.1. Group homomorphisms. Let G = (G, ·) and H = (H, ·) be groups.
A (group) homomorphism ϕ : G → H is a map ϕ from the set G to H such
that ϕ(f · g) = ϕ(f) · ϕ(g), for all f, g ∈ G.

Lemma 6.1. Let ϕ : G → H be a group homomorphism, uG and uH re-
spectively the units of G and H. Then ϕ(uG) = uH and ϕ(g−1) = ϕ(g)−1,
for all g ∈ G.

Proof. We have from the definition that

uH · ϕ(uG) = ϕ(uG) = ϕ(uG · uG) = ϕ(uG) · ϕ(uG)

Since the group operation is right cancellative, we infer that uH = ϕ(uG).
For an element g ∈ G we have that

ϕ(g) · ϕ(g−1) = ϕ(g · g−1) = ϕ(uG) = uH = ϕ(g) · ϕ(g)−1.

Since H is left-cancellative we infer that ϕ(g−1) = ϕ(g)−1. �

A (group) embedding is an one-to-one group homomorphism. We say that
a group G can be embedded into a group H if there is a group embedding
G → H.

A (group) isomorphism is a group homomorphism that is both one-to-one
and onto. Groups G and H are called isomorphic provided that there is a
group isomorphism G → H.

For each group G let us denote by 1G the identity map G→ G. The map
is clearly a (group) homomorphism and we will call the identity isomorphism
of G.

Lemma 6.2. A group homomorphism ϕ : G → H is an isomorphism if and
if there is a group homomorphism ψ : H → G such that ψ ◦ φ = 1G and
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φ ◦ψ = 1H . That is, a group homomorphism is an isomorphism if and only
if it has an inverse.

Proof. (⇐) It follows from ψ◦φ = 1G that φ is one-to-one. From φ◦ψ = 1H
we infer that φ maps G onto H. (⇒) Since ϕ is a one-to-one map from G

onto H, each h ∈ H has a unique g ∈ G with ϕ(g) = h. We define ψ(h) = g.
From ϕ(ψ(h)) = ϕ(g) = h we get that ϕ ◦ ψ = 1H . From the choice of
ψ(ϕ(g)) as the unique ϕ-preimage ϕ(g), we see that ψ(ϕ(g)) = g, for all
g ∈ G. Therefore ψ ◦ ϕ = 1G. Let f and h be arbitrary elements of H.
Since ϕ is a homomorphism, we have that

ψ(f · h) = ψ((ϕ ◦ ψ)(f) · (ϕ ◦ ψ)(h)) = ψ(ϕ(ψ(f)) · ϕ(ψ(h))))

= ψ(ϕ(ψ(f) · ψ(h))) = (ψ ◦ ϕ)(ψ(f) · ψ(h)) = ψ(f) · ψ(h).

It follows that ψ : H → G is a group homomorphism. �

We say that groupsG andH are isomorphic, which we denote byG ≃ H,
if there is an isomorphism G → H. Observe that the inverse to an isomor-
phism is again an isomorphism and a composition of isomorphisms gives an
isomorphism. It follows that the binary relation ≃ defined on the class of
all groups is symmetric and transitive. Since each group is isomorphic to
itself via the identity isomorphism, ≃ is an equivalence relation.

Obviously, a group isomorphism G → H transfers properties of the group
G to properties of H. Thus saying that some (group) property is unique
up to isomorphism means that the property determines a group up to its
isomorphism class (i.e, the block of ≃).

Given a set X we denote by SX the set of all one-to-one maps from X

onto X. The set is equipped with the binary operation ◦ of composition of
maps and thus it forms a group called the symmetric group of the set X and
denote by SX . Clearly, for finite sets X and Y the groups SX and SY are
isomorphic if and only if the sets X and Y have the same size. In particular,
if X is an n-element set, then SX ≃ Sn.

Theorem 6.3 (Cayley). Every group can be embedded into a symmetric
group of its underlying set.

Proof. Let G = (G, ·) be a group. For each f, g ∈ G we set λ(f)(g) =
f · g. Thus we have defined a map λ(f) : G → G for all f ∈ G. From the
left cancellativity of the group operation it follows that λ(f)(g) 6= λ(f)(h)
whenever g 6= h, hence the mat λ(f) is one-to-one. The left divisibility of
the group operation implies that λ(f) maps G onto G. Therefore λ can be
regarded as a map from G to SG. Since

λ(f · g)(h) = (f · g) · h = f · (g · h) = λ(f)(λ(g)(h)) = (λ(f) ◦ λ(g))(h),

for all f, g, h ∈ G, and so λ(f · g) = λ(f) ◦ λ(g), the map is a group ho-
momorphism λ : G → SG. Let u denote the unit of G. If f 6= g in G,
then

(6.1) λ(f)(u) = f · u = f 6= g = g · u = λ(g)(u),
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in particular λ(f) 6= λ(g). We conclude that λ is a group embedding. �

Corollary 6.4. A finite group embeds into Sn, where n is the size of the
group.

Remark 6.5. The map λ : G → SG is called a left translation in G. Simi-
larly we can define a right translation, say ρ, by ρ(f)(g) = g · f−1 (we need
the inverse of f to make ρ an homomorphism) and prove that it induces
another embedding ρ : G → SG. Observe that in the proof of Theorem 6.3
we only needed the left cancellativity, the left divisibility, and the existence
of a right unit (respectively the right cancellativity, the right divisibility,
and the existence of a left unit if we argue using ρ instead of λ). This leads
to an elegant solution of Exercies 2.4.

Lemma 6.6. Let ϕ : G → H be a group homomorphism. The following
hold true:

(a) Let K be a subgroup of the group G. Then

ϕ(K) := {ϕ(k) | k ∈ K}

is the universe of a subgroup of H. Moreover if ϕ is an epimorphism
and the subgroup K is normal in G, the image ϕ(K) is a normal
subgroup of H.

(b) Let L be a subgroup of the group H. Then

ϕ−1(L) := {g ∈ G | ϕ(g) ∈ L}

is a universe of a subgroup of G. Moreover if L is a normal subgroup
of the group H, then ϕ−1(L) is a normal subgroup of G.

Proof. We prove the two parts (a) and (b) separately.

(a) Let g, h ∈ ϕ(K). There are k, l ∈ K such that g = ϕ(k) and
h = ϕ(l). Computing that g · h−1 = ϕ(k · l−1) ∈ ϕ(K), we prove
that ϕ(K) is the universe of a subgroup of H.

Suppose that K is a normal subgroup of G and that ϕ is an
epimorphism. Then for every h ∈ H there is g ∈ G with ϕ(g) = h.
Applying the normality of K in G we get that

h · ϕ(k) · h−1 = ϕ(g) · ϕ(k) · ϕ(g)−1 = ϕ(g · k · g−1) ∈ ϕ(K),

for all k ∈ K. Therefore ϕ(K) E H.
(b) Let g, h ∈ ϕ−1(L). From

ϕ(g · h−1) = ϕ(g) · ϕ(h)−1 ∈ L,

we infer that g · h−1 ∈ ϕ−1(L), hence ϕ−1(L) is a subgroup of the
group G.

Suppose that L is a normal subgroup of H. Let k ∈ ϕ−1(L) and
g ∈ G. We compute that

ϕ(g · k · g−1) = ϕ(g) · ϕ(k) · ϕ(g)−1 ∈ ϕ(g) · L · ϕ(g)−1 ⊆ L,
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since L E H. We conclude that ϕ−1(L) is a normal subgroup of
G.

�

Lemma 6.7. lemma:podgrupy homomorfismus Let ϕ : G → H be a group
homomorphism. The mapping K 7→ ϕ(K) is a bijection between the set of
all subgroups K of G such that kerϕ ⊆ K and the set of all subgroups of
ϕ(G).

Proof. Observe that K ⊆ ϕ−1(ϕ(K)) for every subset K ⊆ G. Let K be
a subgroup containing kerϕ. Let g ∈ ϕ−1(ϕ(K)). Then ϕ(g) ∈ ϕ(K), and
so there is k ∈ K such that ϕ(g) = ϕ(k). It follows that ϕ(k−1 · g) = uH ,
hence k−1 · g ∈ kerϕ, hence g ∈ k · kerϕ. Since k ∈ K and kerϕ ⊆ K, we
conclude that g ∈ K. Therefore K = ϕ−1(ϕ(K)).

Clearly ϕ(ϕ−1(L)) = L for every L ⊆ ϕ(G). According to Lemma 6.6 the
maps

K 7→ ϕ(K) and L 7→ ϕ−1(L)

are mutually inverse bijections between the set of all subgroups of G con-
taining kerϕ and the set of all subgroups of ϕ(g). �

6.2. Kernels of group homomorphisms.

Definition 6.8. Let ϕ : G → H be a group homomorphism. A kernel of
the homomorphism ϕ is the set

kerϕ := {g ∈ G | ϕ(g) = uH},

where uH denotes the unit of H.

Observe that the kernel of a homomorphism contains the unit of G, and
so it is non-empty. However, even more holds true:

Lemma 6.9. The kernel of a group homomorphism ϕ : G → H is a normal
subgroup of G.

Proof. If g, h ∈ kerϕ, then

ϕ(g · h−1) = ϕ(g) · ϕ(h)−1 = uH · u−1
H = uH ,

and so g · h−1 ∈ kerϕ. Therefore kerϕ is a subgroup of G.
Let k ∈ kerϕ and g ∈ G. Then

ϕ(g · k · g−1) = ϕ(g) · ϕ(k) · ϕ(g−1) = ϕ(g) · uH · ϕ(g)−1 = uH .

Therefore g · k · g−1 ∈ kerϕ, and so the subgroup kerϕ is normal due to
Lemma 5.1. �

Let N be a normal subgroup of a group G. The map πG/N : G → G/N

defined by g 7→ N · g = g ·N is a group homomorphism1, indeed

πG/N (g · h−1) = N · g · h−1 = N · g ·N · h−1 = (N · g) · (N · h)−1,

1Note that since N E G, we have that N · g = g ·N , for all g ∈ G.
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for all g, h ∈ G. By the definition,

kerπG/N = {g ∈ G | πG/N = N} = {g ∈ G | N · g = N} = N.

Therefore

Corollary 6.10. Normal subgroups correspond to kernels of group homo-
morphisms.

Example 6.11. As in Example 5.6 let R denote the group of all rotations
of a cube. We showed that R is isomorphic to the group of permutations
S4. A numbering of vertices of the cube induces an embedding α : R → S8.
Similarly a numbering of edges and a numbering of faces of the cube induce
embeddings β : R → S12 and γ : R → S6, respectively.

H G

CD

E F

BA

H G

CD

E F

BA

Figure 1. Cubes with tetrahedrons

Observe that we can inscribe two regular tetrahedrons into the cube as in
Figure 1. Each rotation either maps each of the tetrahedrons onto itself or
exchange them. This induces a homomorphism from R to the two-element
group of permutations of the two tetrahedrons. Up to an isomorphism, this
map corresponds to a homomorphism S4 → S2. The kernel of this homo-
morphism consists of the rotations mapping each of the tetrahedrons onto
itself. On one hand, if we restrict to one of the tetrahedrons, say the blue
one ACFH, these are exactly the rotations of the tetrahedron. On the other
hand these are the exactly the rotations of the cube corresponding to even
permutations of its diagonals. We conclude that the kernel of this homo-
morphism is isomorphic to the alternating group of permutations A4.

Color axes of faces of the cube as in Figure 2. Each rotation of the cube
induces a permutation of these axes. Since a rotation over one of them
induces a transposition of the remaining two, each permutation of the axes
is induced by a rotation of the cube. Thus we get a homomorphism from the
group R onto the group of all permutations of the three-element set of the
axes, up to an isomorphism, corresponding to an epimorphism S4 → S3.
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Figure 2. Axis of faces of the cube

The kernel of the homomorphism consists of the rotations that map all three
axes onto themselves. These are the identity rotation and the flips over the
exes. Each of the flips exchange two pairs of diagonals of the cube. Therefore
the flips correspond to permutations of the type 〈0, 2, 0, 0〉. It follows that
the kernel of the corresponding homomorphism S4 → S3 is the four-element
group2 V = {υ4, (1, 2) · (3, 4), (1, 3) · (2, 4), (1, 4) · (2, 3)}. The group V is
indeed a normal subgroup of S4. Let us note that V is the only non-trivial
normal subgroup of A4 and V and A4 are only non-trivial normal subgroups
of S4.

(0,0,-1)
(-1,0,0)

(0,1,0)

(0,-1,0)

(1,0,0)
(0,0,1)

(0,0,0)

Figure 3. The cube in a coordinate system

Finally, let us insert the cube into the 3-dimensional real vector space so
that the center of the cube corresponds do the zero vector and the centers of
faces to the vectors of a canonical basis of R3 and their inverses, as depicted

2The group in question was named Vierergruppe (= four-group) by Felix Klein. That
is why it is often denoted by V .
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in Figure 3. We can view the rotations of the cube as restrictions of one-to-
one linear maps R

3 → R
3. The matrices of these linear maps with respect

to the canonical basis have one non-zero entry in each line and each column
and the non-zero entries are 1 or -1. Moreover the determinant of each
of these matrices is equal to 1. On the other hand every matrix with the
properties corresponds to some rotation of the cube. In this way we have
defined an embedding R → GL(3,R).

There are 48 matrices in GL(3,R) that have one non-zero entry in each
line and each column and the non-zero entries are 1 or -1 and these ma-
trices form a group (with an operation of the matrix multiplication). They
matrices correspond to linear maps R

3 → R
3 whose restriction to the cube

map bijectively vertices to vertices and edges to edges. Let us call such maps
symmetries of the cube and let us denote by S the 48-element group they
form. Associating to each symmetry its matrix with respect to a canonical
basis of R3, we extend the embedding R → GL(3,R) above to an embedding
µ : S → GL(3,R).

Observe that all non-zero real numbers with the operation of multiplication
form a group. We denote the group by (R∗, ·). The subset {1,−1} is a
universe of a two-element subgroup, say C2, of (R

∗, ·). The multiplication
table of the group C2 is

· 1 -1

1 -1

-1 1

1

-1

Since the derminant of a product of square matrices is a product of their
determinants, the map det : GL(3,R) → (R∗, ·) that assigns to a regular
matrix its non-zero determinant is a group homomorphism. Let us denote
δ := det ◦ µ. Note that the image of δ is the subgroup C2 of (R∗, ·), and so
we have a group epimorphism δ : S → C2. We can sketch the situation as
follows:

S GL(3,R)

C2 (R∗, ·).

µ

δ det

⊆

The matrices in the image of µ corresponding to rotations are exactly
those with determinant equal to 1. We conclude that R is the kernel of δ.
This corresponds to R being a normal subgroup of S, which follow also from
[S : R] = 2 (cf. Exercise 4.3). Finally let us note that symmetries that are
not rotations are called reflections. They form a coset of R in S and the
determinants of matrices corresponding to reflections are all equal to −1.
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Exercises

Exercise 6.1. Decide whether all 3-cycles are conjugated in A4.

Exercise 6.2. Let α : R → S8, β : R → S12, γ : R → S6, be as in Exam-
ple 6.11.

(i) Prove that α(R) ⊆ A8.
(ii) Decide whether β(R) ⊆ A12, γ(R) ⊆ A6.

Exercise 6.3. Let δ : R → S2 and ε : R → S3 be as in Example 6.11.

(i) Find kernels of the group homomorphisms δ and ε.
(ii) Show that ε(R) = S3.

Exercise 6.4. Describe all conjugacy classes of the group S of all symme-
tries of a cube. Compute characteristic polynomials and Jordan canonical
forms of corresponding matrices.

Exercise 6.5. Analyze the group of all rotations and the group of all sym-
metries of

(i) a square.
(ii) a regular tetrahedron.

Exercise 6.6. Let G be a group. Let us define a map γ : G → SG by
g 7→ [h 7→ gh = g · h · g−1].

• Prove that γ(g) is a permutation of G for every g ∈ G.
• Prove that γ : G → SG is a group homomorphism.
• Prove that ker γ = Z(G); the centrum of the group G.


