
LECTURE 5

Conjugacy

PAVEL RŮŽIČKA

Abstract. We study the conjugacy relation on a group. We prove

that the conjugacy classes form a partition of the group. We show

that a subgroup is normal if and only if it is a union of conjugacy

classes. We will study some examples. we prove that permutations in a

symmetric group are conjugated if and only if they have the same type.

Finally we study sets of generators of a group. Understanding some

sets of generators of an alternating group will help us to prove that all

standard positions of the 15 puzzle corresponding to even permutations

are solvable.

5.1. Conjugacy. Elements g, h of a group G are said to be conjugate
(which we denote by g ∼ h) if there is f ∈ G such that

g = f · h · f−1.

In this case we say the g is conjugate to h by f .
Clearly g is conjugate to g by the unit of G and if g is conjugate to h by

f then h is conjugate to g by f−1. It follows that the relation ∼ is reflexive
and symmetric. If g is conjugate with h by f and h is conjugate with k
by e, then g is conjugate with k by f · e, indeed, (f · e) · k · (f · e)−1 =
f · e · k · e−1 · f−1 = f · h · f−1 = g. Thus we have the transitivity of ∼. We
conclude that the conjugacy form an equivalence relation on G. The blocks
of ∼ are called the conjugacy classe (of conjugacy blocks) of G.

It follows from Lemma 4.11 that

Lemma 5.1. A subgroup N of a group G is normal if and only if it is an
union of conjugacy classes of G, that is, if f · n · f−1 ∈ N , for all n ∈ N
and all f ∈ G.

Corollary 5.2. A subgroup N of a group G is normal if and only if f ·g ∈ N
implies that g · f ∈ N for all f, g ∈ G.

Proof. (⇒) Observe that g ·f = g ·(f ·g)·g−1, i.e, f ·g and g ·f are conjugated.
(⇐) Note that n = f−1 · (f · n), hence if n ∈ N , then (f · n) · f−1 ∈ N . �
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For a group G let

(5.1) Z(G) := {g ∈ G | g · f = f · g for all f ∈ G}.

The set Z(G) is called the center of the group G. Observe that g ∈ Z(G)
if and only if g = f · g · f−1 for all f ∈ G. This happens if and only if the
conjugacy class of g equals to {g}. It follows that Z(G) is a union of all
singleton conjugacy classes of G.

Proposition 5.3. The center of a group G forms a normal subgroup of G.

Proof. Let g, h ∈ Z(G) and f ∈ G. Then

g−1 · f = g−1 · f · g · g−1 = g−1 · g · f · g−1 = f · g−1,

and
g · h · f = g · f · h = f · g · h,

for all f ∈ G, hence both g−1 and g ·h belong to Z(G). It follows that Z(G)
forms a subgroup of G. Furthermore, we have that

f · Z(G) = {f · g | g ∈ Z(G)} = {g · f | g ∈ Z(G)} = Z(G) · f

for all f ∈ G. It follows that the subgroup Z(G) is normal in G. �

Conjugated elements in a group usually share the same properties. Recall
from linear algebra that complex matrices AAA,BBB are called similar if there is
a regular matrix CCC such that AAA = CCC ·BBB ·CCC−1. In our terminology, regular
matrices are similar provided that they are conjugated by a regular matrix.
Similar complex matrices have the same characteristic polynomial and the
similarity classes (corresponding to the conjugacy classes) are characterized
by the Jordan canonical form. Notice that complex matrices are similar
if and only if they are matrices of the same endomorphism, possibly with
respect to distinct bases.

All regular complex matrices of a given size n form a group, usually
denoted by GLn(C) or GL(n,C) and called the general linear group. It
follows from the definitions that regular complex matrices are conjugated
if and only if they are similar if and only if they have the same Jordan
canonical form.

Let n be a positive integer. A type of a permutation π ∈ Sn is a map
tπ : {1, 2, . . . , n} → N0, where tπ(k) is the number of cycles of length k in the
decomposition of π into the product of independent cycles, for all k ∈ N0.
For example, if

π := (1, 6, 3, 14) · (2, 8, 4, 20, 19) · (7, 11) · (9, 17, 10, 18) · (12, 13)

is a permutation from the group S20, then tπ(1) = 3, tπ(2) = 2, tπ(3) = 0,
tπ(4) = 2, tπ(5) = 1, and tπ(k) = 0 for all k ≥ 6.

We will use the following notation. Given a group G and elements g, f ∈
G, we set

fg := f · g · f−1,

that is, fg is the element of G which is conjugated to g by f .
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Theorem 5.4. Two permutations π, ρ ∈ Sn are conjugated if and only if
they have the same type.

Proof. Let π, σ ∈ Sn be permutations and a, b ∈ {1, 2, . . . , n} are such that
π(a) = b. Then σπ(σ(a)) = σ(b). Indeed,

(5.2) σπ(σ(a)) = σ · π · σ−1(σ(a)) = σ(π(a)) = σ(b).

Informally saying π maps a to b if and only if σπ maps σ(a) to σ(b).

a b

σ(a) σ(b)

σ σ

π

σπ

It follows that if γ = (c1, . . . , ck) is a cycle, then σγ = (σ(c1), . . . , σ(ck)) is a
cycle of the same length and if

π = γ1 · γ2 · · · γm

is a decomposition of the permutation π into the product of independent
cycles, then

σπ = σγ1 ·
σγ2 · · ·

σγm

is a decomposition of its conjugate σπ into the product of independent cycles.
In particular, the permutations π and σπ have the same type.

Suppose that permutations π and ρ have the same type. Let π = γ1 ·
γ2 · · · γm and ρ = δ1 · δ2 · · · δm be decompositions of the permutations into
products of independent cycles. Since π and ρ have the same types, we can
suppose without loss of generality that the cycles γi = (ci,1, . . . , ci,ki) and
δi = (di,1, . . . , di,ki) have the same length ki, for all i ∈ {1, 2, . . . ,m}. Let
σ ∈ Sn be a permutation such that σ(ci,j) = di,j for all i ∈ {1, 2, . . . ,m}
and j ∈ {1, 2, . . . , ki}. We infer from (5.2) that ρ = σπ, in particular, the
permutations π and ρ are conjugated. �
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Figure 1. ρ is conjugated to π by σ.
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Example 5.5. Permutations

π : (2, 13, 8, 5, 12) · (4, 6, 10, 9) · (1, 3) · (7, 11)

and

ρ : (1, 9, 3, 7, 12) · (13, 11, 6, 8) · (2, 5) · (4, 10)

on a 13-elements set have the same type. They are conjugated by a (not
unique) permutation σ which can be seen from their decompositions into the
products of independent cycles. We can depict the situation as on Figure 1.

The table of σ is

1 2 3 4 5 6 7 8 9 10 11 12 13

2 1 5 13 7 11 4 3 8 6 10 12 9

Example 5.6. Let R denote the group of all rotations of a cube. Each
rotation of the cube is determined by the front faces and the vertex of the
front face in the upper left corner after executing the rotation. Since a cube
has six faces and each face has four vertices there are exactly 6 · 4 = 24
rotations of the cube. We can color vertices and diagonals of the cube as in
the Figure 2. Observe that colorings of vertices of the front face correspond

Figure 2. The cube with colored vertices and diagonals

to permutations of diagonals of the cube. Rotating each of the six faces of
the cube so that the blue vertex is in the upper left corner, we observe that we
get six different colorings. They correspond to all six possible permutations
of the remaining three vertices green, red, and yellow (see Figure 3).

Front Top Right

Back Bottom Left

Figure 3. The colorings of the faces
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By rotating the faces we get all 24 permutations of the four colors. The
colorings correspond to permutations of diagonals of the cube. The composi-
tion of rotations coincides with the the product of their permutations, and so
the group R coincides with the group S4 of permutations of a four element
set (we will say that the groups are isomorphic).

The table below lists the conjugacy classes of the group S4 and the types
of corresponding rotations of the cube. In the first column we write the type
of a permutation characterizing a conjugacy class (we write a tuple instead
a map). The second column we write the size of the conjugacy class. In the
last column we identify the corresponding rotations of the cube.

Type

〈4, 0, 0, 0〉

〈2, 1, 0, 0〉

〈0, 2, 0, 0〉

〈1, 0, 1, 0〉

〈0, 0, 0, 1〉

Size

1
(

4
2

)

= 6

3
(

4
3

)

· 2 = 8

3! = 6

The corresponding rotation of the cube

The identity

A flip over centers of opposite edges; 180o

A flip over centers of opposite faces; 180o

A rotation over a diagonal; angle = 120o

A rotation over centers of opposite faces; 90o

Often groups are employed to study behaviors of symmetries of some ob-
jects (as the cube here). The outcome of this example should be the intuition
that conjugate elements represent same symmetries of the studied object only
placed differently.

5.2. Generating sets and the 15-puzzle. Let A be an algebra from a
given class of algebras, say A. If the sub-algebras of A from Aare closed
under intersections, each subset S ofA is contained in a smallest sub-algebra
from the class A. This sub-algebra is called an A-sub-algebra generated by
the set S and it is denoted by 〈S〉A. Clearly,

〈S〉A :=
⋂

{B | B is an A-sub-algebra of A and S ⊆ B}.

In particular, if A-sub-algebras of A correspond to sub-universes of A,
they are closed under intersections and the above applies. We will drop the
index writing 〈S〉 in this case. We obtain the A-sub-algebra generated by a
subset S of A by repeatedly applying operations of A. Formally

〈S〉A =
∞
⋃

n=0

Si,

where the sets S0 ⊆ S1 ⊆ S2 ⊆ . . . are defined inductively as S0 := S and

Sn+1 := {f(sss) | sss ∈ Sk
n and f is a k-ary operation of A, k ∈ N0}.



6 P. RŮŽIČKA

Viewing groups as algebras with a binary operation, an unary operation
of the inverse, and a nulary operation corresponding to the unit element,
the sub-universes of a group correspond to its subgroups. Therefe given a
subset S of a group G, the subgroup 〈S〉 generated by the subset S is the
the intersection of all subgroups of G containing S. It is easy to see that 〈S〉
is the set of all products of sequences of elements of S and their inverses.

A subset S of a group G is a generating set of G (we also say that S
generates G) provided that 〈S〉 = G. We proved in Lemma 3.6 that every
permutation is a product of transpositions. It follows that all transpositions
on the set {1, 2, . . . , n} form a generating set of Sn.

Lemma 5.7. Let 3 ≤ n. The group An is generated by the set of all 3-
cycles.

Proof. Since every even permutation is a product of even number of trans-
positions, it suffices to prove that a product of two transpositions, say
(a, b) · (c, d) is a product of 3-cycles. If {a, b} = {c, d}, the transpositions
is equal and their product is the identity permutation. It is a product of a
3-cycle and its inverse. Otherwise we can without loss of generality suppose
that b /∈ {c, d} and c /∈ {a, b}. Then

(a, b) · (c, d) = (a, b) · (b, c) · (b, c) · (c, d) = (a, b, c) · (b, c, d).

�

In Proposition 3.10 we proved that standard positions of the 15 puzzle
corresponding to odd permutations are unsolvable. We complete our analy-
sis of the puzzle proving that the other standard positions can be solved.

Proposition 5.8. Standard positions of the 15 puzzle corresponding to even
permutations are solvable.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 4. The solution of the 15 puzzle

Proof. Let {b, a1, a2 . . . , ak} be a k + 1-element subset of {1, 2, . . . , n}. It is
straightforward to see that

(a1, a2, . . . , ak) = (b, a1) · (a1, a2) · (a2, a3) · · · (ak−1, ak) · (ak, b).
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It follows that the sequences of moves depicted in the Figure 4 result in the
permutations

(15, 14, 13, 9, 10, 6, 5, 1, 2, 3, 4, 8, 7, 11, 12) and (15, 11, 12).

According to Exercise 5.7 these two cycles generate A15. This proves the
solubility of every standard position corresponding to an even permutation.

�

With help of Exercise 5.8 we give another proof of the solubility of all
even standard positions. Since every even permutation is a product of 3
cycles, it suffices to prove that all standard positions corresponding to 3-
cycles are solvable. However, the standard position corresponding to the 3-
cycle (a, b, c) is solved by the sequence of moves leading to the permutation
π−1
a,b,c ·(15, 11, 12)·πa,b,c. The inverse π

−1
a,b,c is obtained by reversing the moves

giving πa,b,c. Various puzzles (the Rubik cube among them) can be solved
employing the conjugacy of permutations.

Exercises

Exercise 5.1. Find all conjugacy classes and their sizes of the symmetric
groups S3 and S5.

Exercise 5.2. Find all conjugacy classes and their sizes of the alternating
groups A3 and A4.

Exercise 5.3. Describe the group of all rotations of a regular tetrahedron.
List its conjugacy classes.

Exercise 5.4. Describe the group of all symmetries of a regular pentagon.
List its conjugacy classes.

Exercise 5.5. Let n be a positive integer.

(i) Prove that the transpositions (1, 2), (2, 3), . . . , (n−1, n) generate the
group Sn.

(ii) Prove that Sn is generated by the cycles (1, 2) and (1, 2, . . . , n).
(iii) Decide whether the cycles (1, 3) and (1, 2, 3, 4) generate S4.

Exercise 5.6. Let n be a positive integer and X a subset of An such that
for every c ∈ {3, 4, . . . , n} there is a 3-cycle (a, b, c) ∈ X with a, b < c. Then
X is a generating set of An.

Exercise 5.7. Let n be an odd positive integer. Prove that an n-cycle
(a1, a2, . . . , an) and a 3-cycle (a1, an−1, an) generate the group An.

Exercise 5.8. Prove that for all distinct a, b, c ∈ {1, 2, . . . , 15} there is a
sequence, say πa,b,c, of moves starting and ending in a lower left corner (i.e,
transforming a standard position to another standard position) that moves
a to 15, b to 11, and c to 12.
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Exercise 5.9. Consider a version of the 15 puzzle on a tube, so that we can
move around in the horizontal direction (see Figure 5). Find all solvable
positions.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 5. The 15 puzzle on a tube.


