
LECTURE 4

The Lagrange theorem, normal subgroups

PAVEL RŮŽIČKA

Abstract. We define right and left cosets of a subgroup, say H, of
a group, say G. We prove that all the left cosets of H have the size
equal to the size of H. We call the number of left cosets the index of
the subgroup H and we denote the index by [G : H]. We prove the
Lagrange theorem that |G| = [G : H] · |H|. Finally we define a normal
subgroup of a group and we show various equivalent characterizations
of normal subgroups.

4.1. The Lagrange theorem. Given a grupoid G = (G, ·), we set

(4.1) A ·B := {a · b | a, b ∈ G},

for all A,B ⊆ G. When one of the sets A, B is a singleton set, say A = {a}
or B = {b}, we will abuse our notation writing a ·B or A ·b instead of {a}·B
or A · {b}, respectively.

Given a set G, we will use the notation P(G) := {A | A ⊆ G} for the set
of all subsets of G. Observe that if G = (G, ·) is a semigroup, the operation
· defined by (4.1) on the set P(G) is associative, and so P(G) = (P(G), ·)
is a semigroup as well. Moreover, if G has a unit, say u, then {u} is a unit
of P(G).

Definition 4.1. Let H be a subgroup of a group G = (G, ·). Sets g ·H and
H · g, g ∈ G, will be called a left cosets and a right cosets of H, repectively.

Lemma 4.2. Let G := (G, ·) be a group and H a sub-universe of G con-

taining the unit. For each f, g ∈ G, the following are equivalent:

(i) g−1 · f ∈ H,

(ii) f ∈ g ·H,

(iii) f ·H ⊆ g ·H.

Proof. (i) ⇒ (ii) If g−1 · f ∈ H, then g = g · (g−1 · f) ∈ g ·H. (ii) ⇒ (iii)
Since H is a sub-universe of G, h · H ⊆ H, for all h ∈ H. If f ∈ g · H,
then f = g · h, for some h ∈ H. It follows that f · H = g · h · H ⊆ g · H.
(iii) ⇒ (i) Assume that f · H ⊆ g · H. Left multiplying by g−1 gives
that g−1 · f · H ⊆ H. Since the unit u belongs to H, we conclude that
g−1 · f = g−1 · f · u ∈ g−1 · f ·H ⊆ H. �
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Let G := (G, ·) be a group. Given a subset H ⊆ G, we define a binary
relation ≡H on G by f ≡H g if g−1 · f ∈ H, for all f, g ∈ G.

Lemma 4.3. Let H be a subgroup of a group G = (G, ·). Then the binary

relation ≡H is an equivalence on G.

Proof. Since H is a subgroup, the set H is closed under inverses. It follows
that g−1 · f ∈ H if and only if f−1 · g = (g−1 · f)−1 ∈ H, for all f, g ∈ G.
We conclude that the relation ≡H is symmetric. Since H contains a unit
element, say u, we have that g−1 ·g = u ∈ H for every g ∈ G. It follows that
≡H is reflexive. Finally, it follows from Lemma 4.2(i) ⇒ (iii) that if e ≡H f

and f ≡H g, for some e, f, g ∈ G, then e · H ⊆ f · H ⊆ g · H. Applying
Lemma 4.2(iii) ⇒ (i), we conclude that e ≡H g, and so the relation ≡H is
transitive. We conclude that ≡H is an equivalence relation. �

Lemma 4.4. If H is a subgroup of a group G = (G, ·), then blocks of the

equivalence ≡H correspond to left cosets of H.

Proof. If f ∈ g · H, then f ≡H g due to Lemma 4.2(ii) ⇒ (i) and the
definition of ≡H . It follows that each left coset of H is contained in a block
of ≡H .

Conversely, if g ∈ e ·H and f ≡H g, for some e, f, g,∈ G, then f ∈ g ·H ⊆
e ·H, due to Lemma 4.2 (i) ⇒ (ii) ⇒ (iii). It follows that each left coset of
H is a union of blocks of ≡H . We conclude that a left coset of H equals to
a single block of ≡H . �

Lemma 4.5. Let G := (G, ·) be a group and H a subgroup of G. Then

|g ·H| = |H|

for all g ∈ G. In particular, all left cosets of H have the same size.

Proof. It suffices to verify that the map h 7→ g · h form H to g · H is a
bijection, for all g ∈ G. The map clearly maps H onto g ·H. If g ·h = g ·h′,
for some h, h′ ∈ H, then h = h′ due to left cancellativity of the group
operation. Therefore the map is one-to-one. �

Definition 4.6. Let H be a subgroup of a group G. The number of left
cosets of H, denoted by [G : H], is called the index of H in G.

Since left cosets of H form a partition of G and all have the same size,
we get that

Theorem 4.7 (Lagrange). Let H be a subgroup of a group G. Then

|G| = [G : H] · |H|.

In particular, if G is finite, then |H| divides |G|.

Example 4.8. Let 2 ≤ n be an integer. If π and ρ are odd permutations

from Sn, then the permutation ρ−1 ·π is even, due to Lemmas 3.6 and 3.10.

Therefore π ≡An
ρ, and so all odd permutations form a left coset of An. We

see that there are exactly two left cosets of An, the left coset of all odd and
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the left coset of all even permutations; the latter corresponds to An. Hence

[Sn : An] = 2, whence

|An| =
|Sn|

2
=

n!

2
,

due to the Lagrange theorem.

4.2. The left-right symmetry and normal subgroups. Let H be a
subgroup of a group G. Similarly as left cosets the right cosets of H form
a partition of G and all of them are of the same size equal to the size of H.
In particular, H itself is both a left and a right coset of H.

Let ≡r
H

be a binary relation on G defined by f ≡r
H

g if g · f−1 ∈ H. As
in the proofs of Lemmas 4.3 and 4.4 we show that ≡r

H
is an equivalence

relation and that blocks of ≡r
H

correspond to right cosets of H.

Lemma 4.9. Let H be a subgroup of a group G. The map g ·H 7→ H · g−1

is a bijection from the set of all left cosets of H to the set of right cosets of

H.

Proof. Let g ∈ G. SinceH is closed under inverses, we infer from Lemma 4.2
that

f ∈ g ·H ⇐⇒ g−1 · f ∈ H ⇐⇒ f−1 · (g−1)−1 ∈ H ⇐⇒ g−1 ∈ H · f−1,

for all f ∈ G. Indeed, (g−1·f)−1 = f−1·(g−1)−1. This proves the lemma. �

It follows from Lemma 4.9 that the size of the set of all left cosets of H
(which is by the definition the index of H in G) equals the size of the set
of all right cosets of H.

However left and right cosets of a subgroup might not coincide. This
is the case of a two-element subgroup of the symmetric group S3 due to
Exercise 4.2.

Definition 4.10. A subgroup N of a group algebra G is normal , (which we
denote by N E G) provided that each right coset of N is also a left coset
of N .

Observe that every subgroup of an abelian group is normal.

Lemma 4.11. Let N be a subgroup of a group G. The following are equiv-

alent:

(i) N is a normal subgroup of G;

(ii) g ·N · g−1 ⊆ N , for all g ∈ G.

(iii) g ·N · g−1 = N , for all g ∈ G.

(iv) g ·N = N · g, for all g ∈ G;

Proof. (i) ⇒ (ii) Let u denote the unit of G. If N E G, the left coset
g · N is a right coset, that is, g · N = N · f , for some f ∈ G. It follows
that g = g · u = n · f , hence n−1 = f · g−1, for some n ∈ N . In particular,
f · g−1 ∈ N . Therefore g ·N · g−1 = N · f · g−1 ⊆ N ·N ⊆ N . (ii) ⇒ (iii)
Let g ∈ G. Then (ii) implies that g−1 · N · g ⊆ N . Multiplying by g from
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the left and by g−1 from the right we get that N ⊆ g ·N · g−1. The opposite
inclusion g ·N · g−1 ⊆ N follows from (ii). Implication (iii) ⇒ (iv) is proved
by multiplying by g from the right. Implication (iv) ⇒ (i) is trivial. �

Given a normal subgroup N of a group G we will call left (right) cosets
of N simply cosets of N .

Lemma 4.12. Let N be a normal subgroup of a group G. The product of

cosets of N is a coset of N .

Proof. Let u denote the unit element of G. Because N is a subgroup of G,
we have that N = u ·N ⊆ N ·N ⊆ N . Let f, g ∈ G. Since N is a normal
subgroup of G, we have that g ·N = N · g, due to Lemma 4.11. It follows
that f ·N · g ·N = f · g ·N ·N = (f · g) ·N , which is a coset. �

The multiplication of cosets of a normal subgroupN is clearly associative,
N plays rôle of a unit, and (g · N)−1 = g−1 · N . Therefore the set of all
cosets of N together with their multiplication forms a group. We denote
this group by G/N and call the factor group of G over N . The size of the
factor group G/N clearly equals [G : N ], the size of the set of all cosets of
N . In particular, if G is finite, we infer from the Lagrange theorem that

(4.1) |G/N | =
|G|

|N |
.

Exercises

Exercise 4.1. Let G = (G, ·) be a finite group and A,B subsets of G.

(i) Prove that if |A|+ |B| > |G|, then A ·B = G.

(ii) Use (i) to prove that every element of a finite field is a sum of two

squares.

Exercise 4.2. Let T denote the two-element subgroup of the symmetric

group S3 consisting of the transposition (1, 2) and the identity permutation.

Compute and compare all left and right cosets of T .

Exercise 4.3. Let N be a subgroup of a group G. If [G : N ] = 2, then
N E G, i.e, a subgroup of the index 2 is normal.

Exercise 4.4. Prove that An is a normal subgroup of Sn, for each 2 ≤ n.

Exercise 4.5. Let G be a finite group and p the least prime such that p | |G|.
Prove that a subgroup N of G of the index p is normal.


