
LECTURE 3

Sub-universe, the alternating group

PAVEL RŮŽIČKA

Abstract. We define notions of a sub-universe and a sub-algebra of

an algebra. We discuss these notions in the particular case of groups.

Then we go back to study of permutations. We define the signum of a

permutation by means of the number of its cycles and we prove that the

signum can be computed from any decomposition of the permutation

into a product of transpositions.

Finally we introduce the 15 puzzle and we prove that standard posi-

tions corresponding to odd permutations are unsolvable.

3.1. Sub-universes and sub-algebras. Recall that an algebra A of a

signature I = 〈I0, I1, . . . 〉 is a set A equipped with j-ary operations f
j
i ,

i ∈ Ij , j = 0, 1, 2, . . . . A sub-universe of an algebra A is a subset B of its
underlying set A that is closed under all the operations of A. Let C be a
class of algebras of a fixed signature (typically algebras whose operations
satisfy certain properties), and A an algebra from C. A C-sub-algebra, say
B, of the algebra A consists of a sub-universe B of A together with the
restrictions of the operations of A to B and it belongs to C.

Definition 3.1. A subgroup of a group G is a G-sub-algebra of G, where G
denotes the class of all groups.

Each group G has a subgroup consisting of its unit element and a sub-
group corresponding to G itself. These two subgroups are called trivial .
Other subgroups are non-trivial .

We have defined a group as an algebra with a cancellative and divisible
binary operation. Observe that not all sub-universes of a group correspond
to its subgroups. For example, positive integers form a sub-universe but not
a subgroup of the group of all integers with the operation of addition.

On the other hand, we proved that every group has a unique unit ele-
ment and each element g of a group has a unique inverse g−1 such that
g · g−1 = g−1 · g = u. Moreover the existence of these elements characterizes
semigroups that are groups (cf. Proposition 2.7). Therefore we can define
groups as algebras with an associative binary operation and two additional
operations of a unit and an inverse. It is easy to see that any sub-universe
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(i.e., a subset of closed under all the three operations) of a group is a sub-
group. In particular, positive integers are not a sub-universe of the group
of all integers when adopting this definition.

Remark 3.2. The binary operation of a group is usually denoted as ·, ◦,×, ∗,
the unit element as u or 1, and the inverse of an element g of the group as
g−1. Such a notation is called multiplicative and it is used for groups in
general.

The binary operation of the group of all integers is denoted by +, the
unit element by 0 (and it is called the zero element), and the inverse of
an integer z is denoted by −z and it is called the opposite element of z.
This notation is called additive. Historically, the additive notation is used
to emphasize that the group is commutative, i.e., that a+ b = b+ a for all
a, b. Let us note that commutative groups are usually called Abelian after
the Norwegian mathematician Niels Henrik Abel (1802-1829).

3.2. The signum of a permutation.

Definition 3.3. Let π be a permutation on an n-element set. The signum

of π is defined as sgnπ = (−1)n−m, where m is the number of blocks of π
(both singleton and non-singleton). A permutation π is even if sgnπ = 1
and odd if sgnπ = −1.

A unit permutation on an n-element set υ has exactly n blocks, and so
sgn υ = (−1)n−n = 1. Observe that if π is a product π = σ1 · · · · · σk of
permutations σ1, . . . , σk, then π−1 = σ−1

k ·· · ··σ−1
1 and that If γ = (a1, . . . , ak)

is a cycle, then γ−1 = (ak, . . . , a1). It follows that the permutations π and
π−1 have the same blocks. We conclude that

Lemma 3.4. The unit permutation is even and sgnπ = sgnπ−1, for every

permutation π. In particular, the inverse of an even permutation is even.

We will call 2-cycles transpositions.

Lemma 3.5. Let π be a permuation an τ a transposition. Then

(3.1) sgn τ · π = − sgnπ.

Proof. Let B1, . . . , Bm be blocks of π corresponding to the decomposition
π = γ1 · · · γm of π into a product of independent cycles (including the sin-
gleton ones). According to the definition sgnπ = (−1)n−m. The proof splits
into two cases:

Case 1: supp τ is contained in a block of π. Since the cycles are indepen-
dent, and so they commute, we can without loss of generality assume that
supp τ ⊆ B1, τ = (a1, ai), and γ1 = (a1, . . . , ak). We compute that

τ · γ1 = (a1, ai) · (a1, . . . , ai−1, ai, . . . , ak) = (a1, . . . , ai−1) · (ai, . . . , ak),

hence

τ · π = τ · γ1 · γ2 · · · γm = (a1, . . . , ai−1) · (ai, . . . , ak) · γ2 · · · γm,
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and this is the decomposition of the composition τ · π into a product of
independent cycles. It follows that the permutation τ · π has m+ 1 blocks.
We conclude that sgn τ · π = (−1)n−(m+1) = − sgnπ.

Case 2: supp τ meets two different blocks of π. By suitably permuting
the cycles γ1 · · · γm, we can assume that supp τ ⊆ B1 ∪ B2, τ = (a1, b1),
γ1 = (a1, . . . , ak), and γ2 = (b1, . . . , bl). We compute that

τ · γ1 · γ2 = (a1, b1) · (a1, . . . , ak) · (b1, . . . , bl) = (a1, . . . , ak, b1, . . . , bl),

hence

τ · π = τ · γ1 · γ2 · γ3 · · · γm = (a1, . . . , ak, b1, . . . , bl) · γ3 · · · γm.

It follows that the permutation τ ·π is a product of m−1 independent cycles,
and so it has m − 1 blocks. We conclude that sgn τ · π = (−1)n−(m−1) =
− sgnπ.

�

Lemma 3.6. Every permutation is a product of transpositions.

Proof. Let n be a positive integer. The identity is the product of an empty
set of transpositions. Since every permutation is a product of cycles due to
Theorem 2.9, it suffices to prove that every cyclic permutation is a product
of transpositions. It is straightforward, indeed, we have that

(a1, . . . , ak) = (a1, ak) · (a1, ak−1) · · · (a1, a2),

for every cycle (a1, . . . , ak). �

Lemma 3.7. If a permutation π = τ1 · · · τk is a product of transpositions

τ1, . . . , τk, then sgnπ = (−1)k.

Proof. By induction on k applying Lemma 3.5. �

There are many ways how to express a permutation as a product o trans-
positions but the signum is invariant on the expression.

Lemma 3.8. Let π, ρ be permutations on at least two element set. Then

sgn(π · ρ) = sgnπ · sgn ρ.

Proof. Let π = τ1 · · · τk and ρ = σ1 · · ·σl be expressions of the permutations
π and σ as products of transpositions. Then π · ρ = τ1 · · · τm · σ1 · · ·σk, and
Lemma 3.7 gives that

sgn(π · ρ) = (−1)m+k = (−1)m(−1)k = sgnπ · sgn ρ.

�

Corollary 3.9. The product of even permutations is an even permutation,

two odd permutations is an even permutation, and the product of even and

odd permutation is an odd permutation.
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Case 1. supp τ = {a1, ai} is contained in a block of π.
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π : τ ◦ π :

Case 2. supp τ = {a1, b1} meets two blocks of π.

3.3. The symmetric and the alternating group. We denote by Sn the
set of all permutations of the n-element set {1, 2, . . . , n}. The set Sn is
equipped with an operation of multiplication of permutation. Since the
identity permutation υ plays the rôle of an unit element and each permuta-
tion has an inverse, Sn is the underlying set of a group that will be denoted
by Sn and called the symmetric group (on the n-elements set {1, 2, . . . , n}).

Let An denote the set of all even permutations from Sn. It follows from
Lemma 3.4 and Corollary 3.9 that An iis an underlying set of a subgroup of
Sn. We will called the subgroup the alternating group and denote by An.

3.4. The 15 puzzle. The 15 puzzle is a game invented by invented by
Noyes Palmer Chapman, a postmaster in Canastota, NY, around the year
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1875. In 1880, the game spread from USA to Canada and Europe and later
to Asia and it gained a world-wide popularity.

The puzzle is often credited to Sam Loyd, who falsely claimed its author-
ship. He is known for offering a $ 1000 prize to a solver of the advertising

position (see Figure:1). We will see that the advertising position is unsolv-
able.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Figure 1. The advertising position

The game consists of a box containing fifteen numbered squared tiles and
one empty square. You can slide neighboring tiles to the empty square, and
so change the position. The aim of the game is to transform a given starting
position to the final position in which the tiles are numbered gradually from
the top left corner to the right bottom corner, where the empty square is
positioned (see Figure 2).

5 2 7 8

3 13 1 4

15 12 9 6

14 10 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

?

Figure 2. The 15 puzzle

We can assign the number 16 to the empty space, and so we can write
down each position as a permutation of the set {1, 2, . . . , 16}, where the final
position corresponds to the unit permutation. For example, the starting
position on Figure 2 is written as

(1, 7, 3, 5) · (4, 8) · (6, 12, 15, 9, 11, 10, 14, 13).

We call a position standard if the empty square is in the right bootom corner
(the position 16). We claim that



6 P. RŮŽIČKA

Proposition 3.10. Standard positions corresponding to odd permutations

are unsolvable.

Proof. We will use the chessboard trick. Lets call one slide of a tile to the
empty square a move. Color the box as in Figure 3 making it a small chess-
board, and observe that one-move changes the color of the empty square,
from black to white and conversely.

Let the starting position correspond to an odd permutation, say σ. A
sequence of moves corresponds to a permutation, say π, and the resulting
position corresponds to the product π · σ. Since the starting position is
standard, and so the empty square is black, the color of the empty space in
the resulting position is black if and only if π is even. Since the product of
an even and an odd permutation is odd, the empty space in the resulting
position is black if and only if the corresponding permutation is odd. How-
ever, the final position corresponds to the unit permutation, which is even.
It follows that the starting position is unsolvable.

Figure 3. The small chessboard

�

Exercises

Exercise 3.1. Let G = (G, ·) be a group. Define a binary operation ∗ on

the set G by

g ∗ h = g · h−1, for all g, h ∈ G.

Prove that all sub-universes of the group G are underlying sets of subgroups

of G.

Exercise 3.2. According to Proposition 2.4 we can define a group G, as an

algebra with an underlying set G and

• an associative binary operation, say ·,
• a nulary operation u satisfying g · u = u · g = g, for all g ∈ G,

• a binary operation −1 such that g · g−1 = g−1 · g = u, for all g ∈ G.
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Prove that when we apply this definition, all sub-universes of a group are

underlying sets of subgroups.

Exercise 3.3. Prove that whatever of the two definitions of a group we

apply, sub-universes of a finite group are underlying sets of subgroups of the

group.

Exercise 3.4. Let π ∈ Sn. Prove that sgnπ = (−1)k where k is the number

of blocks of π of even size.

Exercise 3.5. Prove that a cycle of the length k is not a product of less

than k − 1 transpositions.

Exercise 3.6. Decide whether the area on Figure 4 can be covered by domino

tiles. [Hint: Use the chessboard trick.]

The area A domino tile

Figure 4. Covering by domino tiles


