
LECTURE 2

Operations on sets

PAVEL RŮŽIČKA

Abstract. We define an n-ary operation on a set M as a map from
its n

th Cartesian power M
n
→ M . An algebra is a set equipped with

operations (possibly of various arities) subject to some relations. We
focus on algebras with a single binary operation. We define grupoids,
semigroups, monoids, loops, and groups.

We recall some basic properties of permutations. We proved that each
permutation of a finite set decomposes uniquely (up to an ordering) as
a product of independent cycles.

2.1. Operations. Recall that the nth-Cartesian power of a set M is the set

Mn = M × · · · ×M
︸ ︷︷ ︸

n×

.

of all n-tuples of elements of the set M . We define the 0th Cartesian power
of M to be the one-element set: M0 := {∅}. For every positive integer n,
an n-ary operation on the set M is a map f : Mn →M .

We will be interested mainly in nulary, unary and binary operations. A
nulary operation is determined by its image, f(∅), and so it can be un-
derstood as “picking an element from the set M”. An unary operation
corresponds to a map M →M . Binary operations are maps M ×M →M .
Normally we denote binary operations by symbols as +, ·, ∗, ◦,∧,∨, etc. and
write, for example, a+ b instead of +(a, b).

A set equipped with some operations is called an algebra. A signature
(or a similarity type) is an infinite sequence I = 〈I0, I1, . . .〉 of sets and an
algebra AAA of a given signature I (or a given similarity type I) consists of a
set A and a bunch of operations

{f j
i : A

j → A | j = 0, 1, . . . and i ∈ Ij}.

In particular, f j
i is an operation of arity j for all i ∈ Ij . The operations are

often subject to certain conditions, called axioms. This allow us to define
algebraic structures as groups, rings, vector spaces, etc.

We denote algebras by bold letters A,B, . . . while their underlying sets
by capital letters A,B, . . . We start studying algebras with one binary op-
eration.
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2.2. Grupoids. An algebra AAA with a single binary operation is called a
grupoid . We usually write the grupoid as pair AAA := (A, ·) of a set and
the binary operation, here denoted by ·. Grupoids are far too general, but
interesting classe of algebras are obtained by imposing additional axioms.

A binary operation · is associative provided that

(a · b) · c = a · (b · c),

for all a, b, c ∈ A. A grupoid whose operation is associative is called a
semigroup.

Example 2.1. Let M be a set. We denote by F the set of all maps M →M .
We denote by ◦ the composition of maps from F . Then the pair FFF := (F, ◦)
forms a grupoid. It is easy to see that the composition of maps is associative,
indeed,

[(f ◦ g) ◦ h](m) = f(g(h(m)) = [f ◦ (g ◦ h)](m),

for all m ∈M . Therefore FFF is a semigroup.

There is something more, namely the identity map 1M : M → M , in the
example. Observe that 1M ◦ f = f ◦ 1M = f , for all f ∈ F . Such an element
is called a unit . Precisely, elements l and r of a grupoid G := (G, ·) are
called a left unit and a right unit if l · a = a and a · r = a, for all a ∈ G,
respectively. An element u ∈ G is a unit provided that

a · u = a = u · a,

for all a ∈ G, i.e., if it is both left and right unit.

Lemma 2.2. Let G = (G, ·) be a grupoid. If l is a left unit and r is a right
unit of G then l = r. In particular, a unit element of a grupoid is unique.

Proof. The statement follows readily from the equalities

l = l · r = r.

�

Despite of the lemma, a monoid can have many distinct left (or right)
units. For example, in a monoid G = (G, ∗) such that g ∗ h = h, for all
g, h ∈ G, every element a left unit. Note that such a monoid has no right
unit unless it has only one element.

A semigroup AAA = (A, ·) with a unit element u is called a monoid. Note
that the unit element can be viewed as a nulary operation on A and a
monoid as an algebra of the signature (1, 0, 1, 0, 0, . . . ) (i.e, with a nulary
and a binary operation).

Example 2.3. Let R2(M) denote the set of all binary relations on a set M .
The R2(M) := (R2(M), ◦,∆) is a monoid.

Definition 2.4. Let AAA = (A, ·) be a grupoid. The operation · is called

• left cancellative if a · b = a · c =⇒ b = c, for all a, b, c ∈ A,
• right cancellative if a · c = b · c =⇒ a = b, for all a, b, c ∈ A,
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• left divisible if an equation a · y = b in a variable y has a solution
in A, for all a, b ∈ A,
• right divisible if an equation x · a = b in a variable x has a solution
in A, for all a, b ∈ A.

A binary operation is cancellative, divisible, if it is both left and right can-
cellative, divisible, respectively.

A grupoid whose operation is both cancellative and divisible is called a
loop.

Each binary operation (especially on a finite set) can be represented by a
table. For instance, the following table represents a binary operation ∗ on a
set {a, b, c, d}.

∗ a b c d

a b d a c

b a c b d

c d b a a

d c a d d

∗

a

b

c

d

Let L = (L, ∗) be loop on a set L. By the definition, the operation ∗ is
both cancellative and divisible, hence each row and each column of the table
of ∗ contains each element of L exactly once (cf. Exercise 2.1). That is, all
rows and columns of the table are permutations of L. Such tables are called
latin squares. Here is an example of a latin square:

d a c b

b c a d

a b d c

c d b a

A grupoid whose operation is associative, cancellative, and divisible is
called a group. Thus groups are loops whose operation is associative, i.e,
loops which are at the same time semigroups. While cancellativity and
divisibility of a binary operation is easily seen from its table, it is not the
case of associativity.

Let us explore some basic properties of groups.

Lemma 2.5. A group has a (unique) unit element.
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Proof. Let G = (G, ·) be a group. It follows from the divisibility of · that
for each g ∈ G, there are elements lg and rg such that

lg · g = g = g · rg.

Given a couple g, h of (not necessarily distinct) elements of G we get that

(g · rg) · h = g · h = g · (lh · h).

Since the operation · is associative, we get that

(g · rg) · h = (g · lh) · h,

hence,

g · rg = g · lh,

due to the right cancellativity. The left cancellativity gives rg = lh. There-
fore u = rg = lh is the unique unit element of G. �

Note that neither a semigroup nor a loop has to have a unit element.
For example, the set of all positive integers with addition form a semigroup
without a unit and the lattin square depicted above determines a loop with
no unit element.

Lemma 2.6. Let G = (G, ·) be a group with an unit element u. Then for
each g ∈ G there is a unique element g−1 such that

g−1 · g = u = g · g−1.

Proof. From the divisibility of · there are elements gl and gr ∈ G such that
gl · g = u and g · gr = u. It suffices to show that they are equal. This follows
from the following computation:

gl = gl · u = gl · (g · gr) = (gl · g) · gr = u · gr = gr.

We set g−1 := gl = gr. �

The element g−1 is called an inverse of g.

Proposition 2.7. A semigroup G = (G, ·) is a group if and only if it has a
unit element and each element of G has an inverse.

Proof. It follows from Lemmas 2.5 and 2.6, repectively, that each group has
a unit element and each element of a group has a unique invers. Therefore
it suffices to verify the (⇐) implication. Suppose that the semigroup G has
a unit element u, and an inverse element g−1 for every g ∈ G. We show that
the operation · is cancellative and divisible. Suppose that g · h = g · k, for
some g, h, and k from G. Multiplying by g−1 on the left we get that

h = u · h = (g−1 · g) · h = g−1 · (g · h) = g−1 · (g · k) = (g−1 · g) · k = u · k = k,

which proves that · is left cancellative. The right cancellativity is proved
similarly. It is straightforward to verify that the equations g · x = h (resp.
x · g = h) have a solution g−1 · h (resp. h · g−1). That is why the operation
· is divisible. �
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Recall that were defined as algebras of the signature (0, 0, 1, 0, . . . ). It
follows from Proposition 2.7 that groups can be viewed as algebras with
an associative binary operation, a nulary operation (the unit) and a unary
operation (the inverse map), i.e, as algebras of the signature (1, 1, 1, 0, . . . ) .

Here is the hierarchy of the defined algebras with a binary operation:

Grupoids

Semigroups

Monoids Loops

Groups

associativity

divisibility & cancellativity

existence of unit

divisibility & cancellativity

inverses associativity

Permutations

A permutation of a finite set is a one-to-one map from the set onto itself.
Observe that the permutations correspond to total orderings of the set.

Similarly as in the case of the composition of maps, we multiply permu-
tations from left to right. That is, given permutations π and σ ∈ Sn and
a ∈ {1, 2, . . . , n}, we have that

(σ · π)(a) = σ(π(a)).

We can write down permutations in several ways. The simplest one
is to write a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} as the sequence
〈π(1), . . . , π(n)〉. Another familiar way is to decompose a permutation into
a product of independent cycles.

A block of a permutation π is the smallest non-empty subset of {1, 2, . . . , n},
say B, such that π(B) ⊆ B. We will us use the notation

πk := π · · · · · π
︸ ︷︷ ︸

k×

.

It follows from the minimality of B (with respect to inclusion) that

(2.1) B = {a, π(a), π2(a), . . . },

for any a ∈ B. Since the blocks B are finite, starting with some positive
integer ≤ n, the elements in the list (2.1) will periodically repeat. Let k
be the smallest positive integer such that there is 0 ≤ l < k with πl(a) =
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πk(a). Then l = 0, indeed, otherwise πl−1(a) = πk−1 due to π being one-
to-one. This would contradict the minimality of k. Therefore πk(a) = a,
B = {a, π(a), . . . , πk−1(a)}, and |B| = k.

Lemma 2.8. Let π be a permutation of the set {1, 2, . . . , n}. The blocks of
π form a partition of {1, 2, . . . , n}.

Proof. If a ∈ {1, 2, . . . , n}, then {a, π(a), π2(a), . . . } is a block of π. There-
fore {1, 2, . . . , n} is the union of all blocks of π.

Let A and B be blocks of π and suppose that a ∈ A ∩ B. Then both A
and B are given by (2.1), and so A = B. Therefore the blocks A and B are
either disjoint or equal. The lemma readily follows. �

Let π ∈ Sn be a permutation. The support of π is the set

suppπ := {a ∈ {1, 2, . . . , n} | π(a) 6= a}.

Permutations π, σ ∈ Sn are called independent if suppπ ∩ suppσ = ∅.
We say that permutations π and σ commute if π ◦ σ = σ ◦ π. Observe
that independent permutations commute. Indeed, since π is one-to-one,
π(a) 6= a, implies that π2(a) 6= π(a). Therefore π(suppπ) = suppπ. We
infer that if π, σ ∈ Sn are independent and a ∈ {1, 2, . . . , n}, then

π(σ(a)) = σ(π(a)) =







π(a) if a ∈ suppπ;

a if a /∈ suppπ ∪ suppσ;

σ(a) if a ∈ suppσ.

A cycle is a permutation with at most one non-singleton block. More
precisely, a k-cycle (for 2 ≥ k) is a cycle with the non-singleton block of size
k. A 1-cycle or a trivial cycle corresponds to the identity. Given a k-cycle
γ with 2 ≥ k, we will use the notation

γ = (a, γ(a), γ2(a), . . . , γk−1(a)),

where a is an element of supp γ. By (a), where a ∈ {1, 2, . . . , n} is arbitrary,
we denote a trivial cycle.

Let π ∈ Sn be a permutation and B1, . . . , Bm all non-trivial blocks of π.
For each j ∈ {1, 2, . . . ,m} we pick an element bj ∈ Bj and we set

γj := (bj , π(bj), . . . , π
|Bj |−1(bj)).

Since the blocks of π form a partition of the set {1, 2, . . . , n} due to Lemma 2.8,
the cycles γ1, . . . , γm are independent. It follows that

(2.2) π = γ1 · γ2 · · · · · γm.

The expression (2.2) is called the decomposition of the permutation π into
the product of independent cycles. Since the cycles γ1, γ2, . . . , γm are inde-
pendent, we can freely change their order in (2.2). On the other hand, the
set {γ1, γ2, . . . , γm} is determined by the permutation π. It follows that

Theorem 2.9. Every permutation has a unique (up to the order of cycles)
decomposition into the product of independent cycles.
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Example 2.10. For example the permutation

〈6, 8, 14, 20, 5, 3, 11, 4, 17, 18, 7, 13, 12, 1, 16, 15, 10, 9, 2, 19〉

decomposes as

(1, 6, 3, 14) · (2, 8, 4, 20, 19) · (7, 11) · (9, 17, 10, 18) · (12, 13) · (15, 16).

The decomposition can be depicted as follows:

2

8

4

20

19
6 3

141

17 10

189

7

11

12

13

15

16

Let us write a pseudo-code of an algorithm that decomposes a permu-
tation, say π, on a set {1, 2, . . . , n} into a product of independent cyclic
permutations:

Algorithm: Decomposition into cyclic permutations

1: procedure Decompose
input a permutation π ∈ Sn

2: R← {1, 2, . . . , n}
3: loop A:
4: until R = ∅ do
5: j ← minR
6: R← R \ {j}
7: start a new cycle with j
8: loop B:
9: if π(j) ∈ R do

10: R← R \ {j}
11: j ← π(j)
12: add j to the cycle
13: goto loop B

14: close the cycle
15: goto loop A

16: remove all cycles of length 1
17: close;
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Exercises

Exercise 2.1. Let ∗ be a binary operation on a set M . Prove that, given a
table of ∗, the following holds true:

(i) The operation ∗ is left cancellative if and only if each element of M
appears in each row of the table at most once;

(ii) The operation ∗ is right cancellative if and only if each element of
M appears in each column of the table at most once;

(iii) The operation ∗ is left divisible if and only if each element of M
appears in each row of the table at least once;

(iv) The operation ∗ is right divisible if and only if each element of M
appears in each column of the table at least once.

Exercise 2.2. Let ∗ be a binary operation on a finite set M . Prove that
the operation is left, right cancellative respectively if and only if it is left,
right divisible. Show that this may not be true for an infinite M .

Exercise 2.3 (A. G. Kuroš). A semigroup G = (G, ·) is a group if and only
it has a right unit u and every element of g ∈ G has a right inverse, (i.e,
an element g−1 such that g · g−1 = u).

Exercise 2.4. A semigroup G = (G, ·) is a group if and only if it has a
right unit u and its operation is left cancellative and left divisible.

Exercise 2.5. Prove that there are exactly n! permutations on an n-element
set.

Exercise 2.6. Let π be a permutation of the set {1, 2, . . . , n}. Write a ∼π b
if there is k ∈ N0 such that πk(a) = b. Prove that ∼π is an equivalence on
the set {1, 2, . . . , n} and that blocks of ∼π correspond to blocks of π.

Exercise 2.7. Recall that we compose permutations from right to left. Write
a pseudo-code of an algorithm whose input is a sequence of (not necessarily
independent) cycles and whose output is the decomposition of their product
(in the given order) into a product of independent cycles.


