
LECTURE 12

Unique factorization domains

PAVEL RŮŽIČKA

Abstract. We define Gaussian monoids as commutative cancellative
monoids with unique decomposition into products of irreducibles and
we characterize them via the existence of greatest common divisors and
decreasing chain conditions of the relation of divisibility. We apply
this characterization to prove that principal ideal domains are unique
factorization domains. Finally we characterize primes in the ring Z[i]
of Gaussian integers and show some applications.

12.1. Gaussian monoids. Let M be a commutative monoid. We say that
factorizations a = b1 · b2 · · · bm and a = c1 · c2 · · · cn of an element a ∈ M as a
product of elements of M are associated if m = n and there is a permutation
σ of the set {1, 2, . . . , n} such that bi ∼ cσ(i) for all i ∈ {1, 2, . . . , n}.

A commutative cancellative monoidM is Gaussian if every non-invertible
element a ∈ M has a factorization a = q1 ·q2 · · · qn as a product of irreducible
elements and all such factorizations of the element a are associated.

Lemma 12.1. Let M be a Gaussian monoid. Let a | b in M and

b = qβ1

1 · qβ2

2 · · · qβn

n ,

where q1, q2, . . . , qn are pairwise non-associated irreducible elements and 0 ≤
αi, for all i = 1, 2, . . . , n. Then

a = u · qα1

1 · qα2

2 · · · qαn

n ,

where u is invertible and 0 ≤ αi ≤ βi, for all i = 1, 2, . . . , n.

Proof. Since a | b, there is c ∈ M such that b = a ·c. We prove the statement
by induction on the sum β1+β2+ · · ·+βn. If β1+β2+ · · ·+βn = 0, then b is
invertible and since a | b, a is invertible as well, and the statement holds true.
Suppose that a is not invertible and let q be an irreducible element dividing
a; let a = q·a′. Then b = q·a′ ·c. SinceM is a Gaussian monoid, a′ ·c is either
invertible or it has a unique, up to being associated, factorization into the
product of irreducible elements p1 · p2 · · · pm. Compering the factorizations

b = qβ1

1 · qβ2

2 · · · qβn

n = q · p1 · p2 · · · pm,
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we infer that there is i ∈ {1, 2, . . . , n} such that q ∼ qi. Therefore there is
an invertible v ∈ M such that q = qi · v. We can without loss of generality
assume that i = 1. Then, applying the cancellativity of the monoid M , we
get that

v · a′ · c = qβ1−1
1 · qβ2

2 · · · qβn

n .

From the induction hypothesis, we get that

(12.1) v · a′ = u · qα1−1
1 · qα2

2 · · · qαn

n ,

for some 0 ≤ αi ≤ βi, i = 1, 2, . . . , n, and some invertible u ∈ M . .
Multiplying both sides of equation (12.1) by q1, we conclude that

a = u · qα1

1 · qα2

2 · · · qαn

n .

�

Corollary 12.2. Let M be a Gaussian monoid, a, b ∈ M and

b ∼ qβ1

1 · qβ2

2 · · · qβn

n ,

where q1, q2, . . . , qn are pairwise non-associated irreducible elements and 0 ≤
αi, for all i = 1, 2, . . . , n. Then a | b if and only if

a ∼ qα1

1 · qα2

2 · · · qαn

n ,

for some 0 ≤ αi ≤ βi, i = 1, 2, . . . , n.

Lemma 12.3. Let M be a Gaussian monoid. Then the greatest common
divisor exits for every pair of elements of M .

Proof. Let a, b ∈ M . Since M is a Gaussian monoid, there are pairwise non-
associated irreducible elements q1, q2, . . . , qn in M and integers 0 ≤ αi, βi,
i = 1, 2, . . . , n, such that

a ∼ qα1

1 · qα2

2 · · · qαn

n and b ∼ qβ1

1 · qβ2

2 · · · qβn

n .

It follows readily from Corollary 12.2 that

(a, b) = [ qγ11 · qγ22 · · · qγnn ]∼,

where γi = min{αi, βi}, for all i ∈ {1, 2, . . . , n}. �

Let M be a Gaussian monoid and a ∈ M . Let a = qα1

1 · qα2

2 · · · qαn

n ,
where qi are pairwise non-associated irreducible elements. We set h(a) :=
α1 + α2 + · · ·+ αn. It follows readily from Corollary 12.2 that

(12.2) a | b and b ∤ a =⇒ h(a) < h(b).

Theorem 12.4. Let M be a commutative cancellative monoid. The monoid
M is Gaussian if an only if it satisfies the following two properties:

(i) There is no infinite sequence a1, a2, . . . of elements of M such that
aj | ai if and only if i ≤ j;

(ii) Every irreducible element of M is prime.
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Proof. (⇒) Suppose that the monoid M is Gaussian. An infinite sequence
a1, a2, a3, . . . such that aj | ai if and only if i ≤ j would induce an infinite
strictly decreasing sequence h(a1) > h(a2) > · · · of non-negative integers
due to (12.2). Such a sequence does not exist. Therefore (i) holds true.
Item (ii) follows from Theorem 11.12 and Lemma 12.3.

(⇐) Suppose that properties (i) and (ii) hold true. First we show that
every non-invertible element of the monoid M is a product of irreducible
elements.

Claim 1. Let U be a non-empty subset of M . Then there is a ∈ U such
that

(12.3) b | a =⇒ a ∼ b,

for all b ∈ U .
Proof of Claim 1. Suppose otherwise, that is, there is a non-empty U ⊆ M
such that for every a ∈ U , there is b ∈ U such that b | a and a ∤ b. We
can pick any a1 ∈ U and then construct inductively an infinite sequence
a1, a2, . . . such that ai+1 | ai and ai ∤ ai+1 for all i ∈ N. It follows readily
that aj | ai if and only if i ≤ j, which violates (i). � Claim 1.

Let us denote by U the set of all non-invertible a ∈ M that are not
products of irreducible elements, and suppose that U 6= ∅. It follows from
Claim 1 that there is a ∈ U satisfying (12.3). Clearly none of the elements of
U is irreducible. It follows that a = b·c for some b, c ∈ M with a ∤ b and a ∤ c.
Since a satisfies (12.3), both b, c /∈ U . It follows that there are irreducible
elements q1, . . . , qn and p1, . . . , pm such that b = q1 · · · qn and c = p1 · · · pm.
From a = b · c, we get that a = p1 · · · pm · q1 · · · qn, which contradicts a ∈ U .

Let a ∈ M and let a = p1 · · · pn ∼ q1 · · · qm be two factorizations of a into
a product of irreducible elements. We prove by induction on m that the two
factorizations are associated. If m = 0, a is invertible, necessarily n = 0,
and we are done. Since qm is irreducible and therefore prime due to (ii),
qm | pi for some i ∈ 1, 2, . . . , n. Since pi is irreducible, we infer that qm ∼ pi.
Since the monoid M is cancellative, we get that p1 · · · pi−1 · pi+1 · · · pn ∼
q1 · · · qm−1. These two factorizations are associated due to the induction
hypothesis. �

12.2. Unique factorization domains. Let R be an integral domain. We
say that R is a unique factorization domain1 if the multiplicative monoid
(R \ {0}, ·) of non-zero elements of R is a Gaussian monoid. This means,
by the definition, that every non-invertible element of a unique factoriza-
tion domain is a product of irreducible elements in a unique way up to the
associated factorizations. It follows from Theorem 12.4 that unique factor-
ization domains are characterized by the satisfaction of conditions (i) and
(ii). Observe, applying equivalence (12.1), that property (i) is equivalent to

(i’) There is no infinite strictly increasing chain of principal ideals.

1Alterantively Gaussian domain
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Theorem 12.5. Every principal ideal domain is a unique factorization do-
main.

Proof. Let R be a principal ideal domain. Suppose that there is an infinite
sequence a1, a2, . . . of elements of R such that (a1) ( (a2) ( · · · and put
I =

⋃
i∈N (ai). It is straightforward to see that a union of an increasing

chain of ideal is an ideal, in particular I is an ideal of R. Since R is a
principal ideal domain, the ideal I is principal, generated by, say b ∈ R.
Since b ∈ I, there is n ∈ N such that b ∈ (an). It follows that I ⊆ (an) (
(an+1) ⊆ I, which is a contradiction. Therefore I satisfies (i’), hence (i).
Property (ii) is due to Corollary 12.2. �

Example 12.6. It is straightforward to verify that

Z[i
√
3] := {a+ i

√
3b | a, b ∈ Z}

is an integral domain, indeed,

(a+ i
√
3b) · (c+ i

√
3d) = (a · c− 3 · b · d) + i

√
3(b · c+ a · d).

Let N(x + iy) = (x + iy) · (x − iy) = x2 + y2 be a square of the complex
norm. By (12.3) we have that N(ξ · η) = N(ξ) ·N(η). It follows that

(12.1) α | β =⇒ N(α) | N(β), for all α, β ∈ Z[i
√
3].

It follows, that N(α) = 1, for all invertible α ∈ Z[i
√
3]. On the other hand,

if N(α) = 1, we have that 1 = α · α, and so α is invertible. Therefore there
are exactly two invertible elements in the domain, namely 1 and −1 and an
element of Z[i

√
3] is invertible if and only if its norm is 1. Observe that

there is no α = a+ i
√
3b ∈ Z[i

√
3] with N(α) = 2. This is because we would

have 2 = a2+3b2, which is impossible. It follows that if α ∈ Z[i
√
3] satisfies

N(α) = 4, then α is irreducible. We have that

(1 + i
√
3) · (1− i

√
3) = 4 = 2.2,

and N(1 + i
√
3) = N(2) = 4. The only elements of Z[i

√
3] associated

with 2 are its multiples by invertible elements, that is, 2 and −2. It follows
that 1 + i

√
3 | 2 · 2 but 1 + i

√
3 ∤ 2, and so 1 + i

√
3 is irreducible (since

N(1+ i
√
3) = 4) but not prime. Note also, that the elements 2+ i

√
3 · 2 and

4 have no greatest common divisor in Z[i
√
3].

There is geometric reason, while we cannot prove that Z[i
√
3] is an Eu-

clidean domain in a similar way as we did for the domain Z[i] of Gaussian
integers. Elements of Z[i

√
3] form a rectangular lattice in the complex plane

consisting of rectangles with sides of length 1 and
√
3 (see Figure 1). The

distance of the center C of such a rectangle from each of the vertices is
exactly 1. This is where the geometric argument successfully used for the
Gaussian integers fails in case of the domain Z[i

√
3].
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√
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√
3i

a+ (b+ 1)
√
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C

Figure 1. The critical point C

12.3. Primes in Gaussian integers. In the ring Z[i] is a unique factor-
ization domain, in particular all irreducible elements of the ring are primes.
We will describe all the primes in Z[i].

Similarly as in the case of Z[i
√
3], it follows from (12.3) that

(12.1) α | β =⇒ N(α) | N(β), for all α, β ∈ Z[i].

Lemma 12.7. An element α ∈ Z[i] is invertible if and only if N(α) = 1.
Here are four invertible elements in Z[i], namely 1,−1, i,−i.

Proof. If α = a + ib ∈ Z[i] is invertible, then α | 1, hence N(α) | 1, due
to (12.1). Since N(α) = a2 + b2 is a positive integer, we conclude that
N(α) = 1. On the other hand, if N(α) = α · α = 1, we readily see that α is
invertible (with the inverse α).

From N(α) = N(a+ ib) = a2 + b2, we infer that N(α) = 1 if and only if
either a ∈ {−1, 1} and b = 0 or a = 0 and b ∈ {−1, 1}. The four possible
case give the four invertible elements listed in the lemma. �

Corollary 12.8. Let a, b be positive integers. If a ∼ b in Z[i], then a = b.

Proof. It follows from Lemma 11.4 that if a ∼ b, then b = a · α for some
invertible α ∈ Z[i]. Since both a, b are positive intgeres, we get that α =
1. �

Lemma 12.9. If α = a + ib ∈ Z[i] is a prime, then α = a − ib is a prime
as well.

Proof. It suffices to verify that α is irreducible. If α had a factorization
α = β · γ into the product of its proper divisors, then α = β · γ = β · γ
violate the irreducibility of α, since β, γ would be proper divisors of α. �
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Remark 12.10. The map given by α 7→ α is easily seen to be an automor-
phism of Z[i]. Any automorphism of an integral domain maps primes to
primes.

Lemma 12.11. Let α ∈ Z[i] be a prime. Then N(α) is either prime integer
or a square of a prime integer.

Proof. Since Z[i] is an Euklidean domain due to Lemma 12.6, it is a unique
factorization domain due to Lemma 12.4 and Theorem 12.5. Let p be a
prime positive integer such that p | α ·α. Since Z[i] is a unique factorization
domain, either p = N(α) or p is associated to one of α and α. In the latter
case, since p is an integer, we infer that p ∼ α, hence N(α) = p2. �

Lemma 12.12. Let p be a positive integer. If p = a2+b2, for some integers
a, b, then p 6≡ 3 (mod 4).

Proof. It follows from a2 ≡ 0 (mod 4) or a2 ≡ 1 (mod 4), for every a ∈
Z. �

Theorem 12.13. Let α = a + ib be a prime in Z[i]. Then one of the
following cases holds true.

(i) N(α) = 2 and α ∼ 1 + i.
(ii) N(α) = p, where p is a positive prime integer such that p ≡ 1

(mod 4). In this case α is associated to no integer in Z[i].
(iii) N(α) = p2, where p is a positive prime integer such that p ≡ 3

(mod 4) and α ∼ p.

Proof. Since 2 = (1+ i) · (1− i) and (1− i) = (−i) · (1 + i) ∼ (1 + i), we get
(i) in case that 2 | N(α).

Suppose that N(α) = a2 + b2 = p is an odd prime. It follows from
Lemma 12.12 that p ≡ 1 (mod 4), that is, p = 4k + 1 for some positive
integer k.

On the other hand, let p = 4k + 1 be such a positive prime. Applying
Wilson’s theorem (Lemma 8.18), we get that

(p− 1)! ≡ −1 (mod p),

hence

(−1)2k((2k)!)2 ≡ 1 · 2 · · · 2k · (p− 2k) · · · (p− 1) ≡ −1 (mod p),

whence p | ((2k)!)2 + 1 = ((2k)! + i)((2k)! − i). If p was prime in Z[i], we
would get that either p | (2k)! + i or (2k)!− i. But none of these is the case.
Therefore p decomposes in Z[i], say p = α · β. It follows that

p2 = α · β · α · β = (α · α) · (β · β).
Since p is a positive prime integer, we conclude that p = α · α = N(α).

Finally, let p be a positive prime integer such that p ≡ 3 (mod 4). There
is no α ∈ Z[i] with N(α) = p. Since N(p) = p2, p has no a proper non-
invertible divisor in Z[i]. It follows that p is a prime both in Z and Z[i].
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Since Z[i] is a unique factorization domain, p2 = p · p is the unique factor-
ization of p2 as a product of irreducible elements. It follows that here are
no other primes in Z[i]. �

The theorem has a surprising corollary:

Corollary 12.14. Every positive prime integer p such that p ≡ 1 (mod 4)
is uniquely written as a sum of two squares.

We show some applications of Gaussian integers.

Example 12.15. Prove that there not positive integers a, b, k such that

(12.2) a2 =
b

103k − b
.

Solution. By a simple computation we derive from (12.2) that

(12.3) (a2 + 1) · b = 103k · a2

Since a2 and a2 +1 are relatively prime, we infer from (12.3) that (a2 +1) |
103k. Since 103 is a prime, a2 + 1 = 103l for some l ≤ k. Decomposing in
Z[i], we get that 103l = (a + i) · (a − i) which is not the case, for Z[i] is a
unique factorization domain and 103 ≡ 3 (mod 4). �

Example 12.16. Find all integer solutions of the Diophantine equation

(12.4) a2 + 4 = b3.

Solution. In the ring Z[i], we can decompose

(12.5) b3 = a2 + 4 = (a+ 2i) · (a− 2i).

Claim 2. It follows from (12.4) that a+ 2i is a cube in Z[i].

Proof of Claim 2. Since (a + 2i, a − 2i) = (a + 2i,−4i) = (a + 2i, 4) and
4 ∼ (1 + i)4, the greatest common divisor of a + 2i and a − 2i is a power
of 1 + i. Observe that 1 + i ∼ 1 − i, indeed, 1 − i = (−i) · (1 + i). Since
(1+ i)k | a+2i if and only if (1− i)k | a− 2i, for all k ∈ N, we conclude that
(1 + i)k | a+ 2i if and only if (1 + i)k | a− 2i if and only if 2k | a2 + 4 = b3.
It follows that the maximal k such that (1 + i)k | a = 2i is divisible by 3,
say k = 3m. Therefore a + 2i = (1 + i)3m · α, a − 2i = (1 + i)3m · β and
(α, β) = 1. It follows that α ∼ γ3 in Z[i], and so α = γ3 · ν, where ν is
invertible. Obserev that all invertible elements of Z[i] are cubes, indeed,
1 = 13, −1 = (−1)3, i = (−i)3, and (−i) = i3. It follows that α is a cube in
Z[i] and so is a+ 2i. � Claim 2.

Applying binomial expansion we infer from Claim 2 that

a+ 2i = (x+ iy)3 = x · (x2 − 3y2) + iy · (3x2 − y2),

hence

(12.6) a = x · (x2 − 3y2) and 2 = y · (3x2 − y2).
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Since x, y are integers, we conclude that y ∈ {−2,−1, 1, 2}. From this we get,
by case checking, that the only integer solutions of (12.6) are y ∈ {1,−2}
and x = ±1. These correspond to the only integer solutions a = ±2, b = 2
and a = ±11, b = 5 of (12.4). �

Exercises

Exercise 12.1. Prove that Z[
√
5] := {a+

√
5b | a, b ∈ Z} is not a unique

factorization domain.

Exercise 12.2. Find all integer solutions of the Diophantine equation

a2 + 49 = b3.

Exercise 12.3. Prove that the Diophantine equation

a2 + 1 = b3.

has no integer solution.

Exercise 12.4. Find all integer solutions of the Diophantine equation

(12.7) a2 + 2 = b3.

[Hint: Show that Z[i
√
2] := {a+ i

√
2b | a, b ∈ Z} is an Euklidean domain

and decompose (12.7) in Z[i
√
2].]


