
LECTURE 1

Relations on a set

PAVEL RŮŽIČKA

Abstract. We define the Cartesian products and the n
th Cartesian

powers of sets. An n-ary relation on a set is a subset of its n
th Carte-

sian power. We study the most common properties of binary relations

as reflexivity, transitivity and various kinds of symmetries and anti-

symmetries. Via these properties we define equivalences, partial orders

and pre-orders. Finally we describe the connection between equivalences

and partitions of a given set.

1.1. Cartesian product and relations. A Cartesian product M1 × · · · ×
Mn of sets M1, . . . ,Mn is the set of all n-tuples 〈m1, . . . ,mn〉 satisfying
mi ∈ Mi, for all i = {1, 2, . . . , n}. The Cartesian product of n-copies of a
single set M is called an nth-Cartesian power . We denote the nth-Cartesian
power of M by Mn. In particular, M1 = M and M0 is the one-element set
{∅}.

An n-ary relation on a set M is a subset of Mn. Thus unary relations
correspond to subsets of M , binary relations to subsets of M2 = M × M ,
etc.

1.2. Binary relations. As defined above, a binary relation on a set M is
a subset of the Cartesian power M2 = M ×M . Given such a relation, say
R ⊂ M ×M , we will usually use the notation aR b for 〈a, b〉 ∈ R, a, b ∈ M .

Let us list the some important properties of binary relations. By means
of them we define the most common classes of binary relations, namely
equivalences, partial orders and quasi-orders.

Definition 1.1. A binary relation R on a set M is said to be

• reflexive if aR a, for all a ∈ M ;
• transitive if (aR b and bR c) =⇒ aR c for all a, b, c ∈ M ;
• symmetric if aR b =⇒ bR a for all a, b ∈ M ;
• anti-symmetric if (aR b and bR a) =⇒ a = b, for all a, b ∈ M ;
• asymmetric if aR b =⇒ ¬(bR a), for all a, b ∈ M .

Now we are ready to define the above mentioned important classes of
binary relations.
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Definition 1.2. An equivalence on a set M is a binary relation on M that
is reflexive, transitive and symmetric. A partial order on M is a reflexive,
transitive, anti-symmetric relation on M while a strict (partial) order is a
transitive and asymmetric relation on M .

Another important class of binary relations is the smallest class containing
all equivalences and orders: By definition, a quasi-order is a reflexive and
transitive binary relation.

1.3. Equivalences and partitions. Let E be an equivalence relation on a
set M . The block of an element a ∈ M is the set

[ a ] := {b ∈ M | aE b}.

Before understanding the structure of blocks of an equivalence relation,
we define a partition of a set M to be a collection P of pairwise disjoint
subsets of M such that

⋃
P = M .

Lemma 1.3. Let E be an equivalence on a set M . For ever a, b ∈ M ,

[ a ] = [ b ] ⇐⇒ [ a ] ∩ [ b ] 6= ∅.

Proof. It is clear that [ a ] = [ b ] =⇒ [ a ] ∩ [ b ] 6= ∅. In order to prove
the opposite implication, assume that [ a ] ∩ [ b ] 6= ∅. Then we can pick
c ∈ [ a ] ∩ [ b ]. For every d ∈ [ a ], we have dE a, aE c, and cE b, due to
symmetry. Applying transitivity of E, we conclude that dE b, which says
that d ∈ [ b ]. Thus [ a ] ⊆ [ b ]. The opposite inclusion is proved similarly. �

It readily follows from Lemma ?? that the blocks of an equivalence relation
on a set M form a partition of M . Indeed, it follows that the blocks are
pairwise disjoint and as a ∈ [ a ] due to the reflexivity, their union is the entire
M . Such a partition will be called the partition induced by the equivalence
E. On the other hand, a partition P of a set M gives rise to a relation, say
E, defined by aE b if and only if a and b belong to the same block of P .
It is straightforward to verify that E is reflexive, transitive and symmetric.
Moreover the partition P consists of the blocks of E. The outcome of this
discussion shall be the observation that equivalence relations on a set M

correspond to partitions of M .

1.4. Orders and quasi-orders. First observe that every partial order on
a set M correspond to a unique strict order on M . Indeed, given an order
R on a set M , the binary relation

S := {〈a, b〉 | aR b and ¬(bR a)}

is a strict order. Conversely, given a strict order S on the set M , the relation
R defined by

aR b ⇐⇒ a S b or b S a

is the corresponding partial order.
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Let us show that a quasi-order on a set M decomposes into an equivalence
relation on M and an order relation on the corresponding partition. Let Q
be a quasi-order on M . We denote by E the binary relation defined by

aE b ⇐⇒ aQ b and bQ a.

Lemma 1.4. The relation E is an equivalence on M .

Proof. Since Q is reflexive (by the definition), E is reflexive as well. Suppose
that aE b and bE c for some a, b, c ∈ M . Then aQ b and bQ c, whence aQ c,
due to the transitivity of Q. The symmetry of Q implies that bQ a and cQ b,
and so cQ a. Since both aQ c and cQ a, we conclude that aE c. This proves
that E is transitive. Symmetry of E is seen readily from its definition. These
guarantee that E is an equivalence on M . �

Let PE denote the partition of the set M induced by the equivalence
relation E.

Lemma 1.5. Let aE a′ and bE b′ for some a, a′, b, b′ ∈ M . Then aQ b if
and only if a′Q b′.

Proof. Suppose that aQ b. From aE a′ we have that a′Q a and from bE b′

we infer that bQ b′. The transitivity of Q implies that a′Q b′. The opposite
implication is proven similarly. �

Lemma ?? allow us to define a relation R on P by [ a ] R[ b ] iff aQ b, for
all a, b ∈ M .

Lemma 1.6. The relation R on P is reflexive, transitive and anti-symmetric,
that is, it is a partial order on P .

Proof. The reflexivity and the transitivity of R follows readily from the re-
flexivity and the transitivity of Q. In order to prove that R is anti-symmetric,
suppose that, for some a, b ∈ M , [ a ] R[ b ] and [ b ] R[ a ]. It follows from the
definition of R that aQ b and bQ a, which means that aE b. Therefore
[ a ] = [ b ]. This proves that the relation R is anti-symmetric. �

Exercises

We define the diagonal relation, the transpose of a binary relation, and
thecomposition of binary relations as follows:

• The diagonal relation (on M) is the relation

∆ := {〈a, a〉 | a ∈ M},

• The transpose of a relation R on M is defined as

RT := {〈b, a〉 | 〈a, b〉 ∈ R},
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• The composition of relations R and S on M is the relation

R ◦ S := {〈a, c〉 | (∃b ∈ M)(aR b and b S c}.

Exercise 1.1. Prove that given binary relations R, S and T on a set M , the
following holds true:

(i) (R ◦ S) ◦ T = R ◦ (S ◦ T);
(ii) R ◦ ST = ST ◦ RT ;
(iii) RT ⊆ R ⇐⇒ R ⊆ RT ⇐⇒ R = RT .

Exercise 1.2. Prove that a binary relation R on set M is

(i) reflexive if and only if ∆ ⊆ R,
(ii) transitive if and only if R ◦ R ⊆ R,
(iii) symmetric if and only if R = RT ,
(iv) anti-symmetric if and only if R ∩ RT ⊆ ∆,
(v) asymmetric if and only if R ∩ RT = ∅.

Exercise 1.3. Prove that a binary relation R on set M is

(i) a quasi-order if and only if ∆ ⊆ R = R ◦ R;
(ii) an equivalence if and only if ∆ ⊆ RT = R ◦ R;
(iii) a partial order if and only if R ◦ R ⊆ R and R ∩ RT = ∆;
(iv) a strict order if and only if R ◦ R ⊆ R and R ∩ RT = ∅.

Exercise 1.4. A total order on a set M is a partial order on M such that
any two elements of M are comparable. Prove that a binary relation R on
the set M is a total order if and only if R ◦ R ⊆ R, R ∩ RT = ∆, and
R ∪ RT = M ×M .

Exercise 1.5. Let R be a binary relation on a set M . For each natural
number n put

R(n) = R ◦ · · · ◦ R
︸ ︷︷ ︸

n×

.

Prove that ⋃

n∈N

R(n)

is the least transitive relation containing R.

Exercise 1.6. Prove that the composition E ◦ F of equivalence relations E
and F on a set M is an equivalence on M if and only if E ◦ F = F ◦ E.


