LECTURE 1
Relations on a set

PAVEL RUZICKA

ABSTRACT. We define the Cartesian products and the n'® Cartesian
powers of sets. An n-ary relation on a set is a subset of its n*® Carte-
sian power. We study the most common properties of binary relations
as reflexivity, transitivity and various kinds of symmetries and anti-
symmetries. Via these properties we define equivalences, partial orders
and pre-orders. Finally we describe the connection between equivalences
and partitions of a given set.

1.1. Cartesian product and relations. A Cartesian product My X - -- X
M,, of sets Mj,..., M, is the set of all n-tuples (mq,..., m,) satisfying
m; € M;, for all i = {1,2,...,n}. The Cartesian product of n-copies of a
single set M is called an n'"-Cartesian power. We denote the n'-Cartesian
power of M by M™. In particular, M!' = M and M? is the one-element set
(0.

An n-ary relation on a set M is a subset of M™. Thus unary relations
correspond to subsets of M, binary relations to subsets of M? = M x M,
etc.

1.2. Binary relations. As defined above, a binary relation on a set M is
a subset of the Cartesian power M? = M x M. Given such a relation, say
R C M x M, we will usually use the notation a R b for (a,b) € R, a,b € M.

Let us list the some important properties of binary relations. By means
of them we define the most common classes of binary relations, namely
equivalences, partial orders and quasi-orders.

Definition 1.1. A binary relation R on a set M is said to be

reflexive if a Ra, for all a € M;

transitive if (aRband bR¢) = aRc for all a,b,c € M;
symmetric if aRb = bRa for all a,b € M,

anti-symmetric if (aRband bRa) = a =b, for all a,b € M;
asymmetric if aRb = —(bRa), for all a,b € M.

Now we are ready to define the above mentioned important classes of
binary relations.
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Definition 1.2. An equivalence on a set M is a binary relation on M that
is reflexive, transitive and symmetric. A partial order on M is a reflexive,
transitive, anti-symmetric relation on M while a strict (partial) order is a
transitive and asymmetric relation on M.

Another important class of binary relations is the smallest class containing
all equivalences and orders: By definition, a quasi-order is a reflexive and
transitive binary relation.

1.3. Equivalences and partitions. Let E be an equivalence relation on a
set M. The block of an element a € M is the set

[a] :={be M |aEb}.

Before understanding the structure of blocks of an equivalence relation,
we define a partition of a set M to be a collection P of pairwise disjoint
subsets of M such that |J P = M.

Lemma 1.3. Let E be an equivalence on a set M. For ever a,b € M,
[a] =[b] <= [a]N[b] #0.

Proof. 1t is clear that [a] = [b] = [a]N[b] # 0. In order to prove
the opposite implication, assume that [a] N [b] # 0. Then we can pick
c € [a]N[b]. For every d € [a], we have dEa, aEc, and cEb, due to
symmetry. Applying transitivity of E, we conclude that d E b, which says
that d € [b]. Thus [a] C [b]. The opposite inclusion is proved similarly. [J

It readily follows from Lemma 77 that the blocks of an equivalence relation
on a set M form a partition of M. Indeed, it follows that the blocks are
pairwise disjoint and as a € [a] due to the reflexivity, their union is the entire
M. Such a partition will be called the partition induced by the equivalence
E. On the other hand, a partition P of a set M gives rise to a relation, say
E, defined by a Eb if and only if @ and b belong to the same block of P.
It is straightforward to verify that E is reflexive, transitive and symmetric.
Moreover the partition P consists of the blocks of E. The outcome of this
discussion shall be the observation that equivalence relations on a set M
correspond to partitions of M.

1.4. Orders and quasi-orders. First observe that every partial order on
a set M correspond to a unique strict order on M. Indeed, given an order
R on a set M, the binary relation

S:={{(a,b) |aRband ~(bRa)}

is a strict order. Conversely, given a strict order S on the set M, the relation
R defined by

aRb < aSborbSa

is the corresponding partial order.
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Let us show that a quasi-order on a set M decomposes into an equivalence
relation on M and an order relation on the corresponding partition. Let Q
be a quasi-order on M. We denote by E the binary relation defined by

aBEb < aQband bQa.
Lemma 1.4. The relation E is an equivalence on M.

Proof. Since Q is reflexive (by the definition), E is reflexive as well. Suppose
that a Eb and b E ¢ for some a,b,c € M. Then a Qb and bQ ¢, whence a Qc,
due to the transitivity of Q. The symmetry of (Q implies that bQa and ¢ Q b,
and so cQa. Since both a Q ¢ and ¢ Q a, we conclude that a E ¢. This proves
that E is transitive. Symmetry of E is seen readily from its definition. These
guarantee that E is an equivalence on M. ([

Let Pg denote the partition of the set M induced by the equivalence
relation E.

Lemma 1.5. Let aEd’ and bEV for some a,a’,b,b/ € M. Then aQb if
and only if a’ Qb'.

Proof. Suppose that a Qb. From a Ea’ we have that ¢’ Qa and from bE ¥
we infer that b Q¥’. The transitivity of Q implies that o’ Q’. The opposite
implication is proven similarly. U

Lemma ?? allow us to define a relation R on P by [a|R[b] iff a Qb, for
all a,b € M.

Lemma 1.6. The relation R on P is reflexive, transitive and anti-symmetric,
that is, it is a partial order on P.

Proof. The reflexivity and the transitivity of R follows readily from the re-
flexivity and the transitivity of Q. In order to prove that R is anti-symmetric,
suppose that, for some a,b € M, [a]R[b] and [b]R[a]. It follows from the
definition of R that a Qb and bQa, which means that a Eb. Therefore
[a] = [b]. This proves that the relation R is anti-symmetric. O

EXERCISES

We define the diagonal relation, the transpose of a binary relation, and
thecomposition of binary relations as follows:

e The diagonal relation (on M) is the relation
A :={{a,a) |a € M},
e The transpose of a relation R on M is defined as

RT := {(b,a) | (a,b) € R},
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e The composition of relations R and S on M is the relation
RoS:={{(a,c) | (3be M)(aRb and bSc}.

Exercise 1.1. Prove that given binary relations R,S and T on a set M, the
following holds true:
(i) RoS)oT=Ro(SoT);
(ii) RoST = 8T o RT;
(iii) RT CR <= RCR!T <= R=R".
Exercise 1.2. Prove that a binary relation R on set M 1is
(i) reflexive if and only if A C R,
(i) transitive if and only if RoR C R,
(iii) symmetric if and only if R = RT,
(iv) anti-symmetric if and only if RNRT C A,
(v) asymmetric if and only if RNRT = ().

Exercise 1.3. Prove that a binary relation R on set M 1is
(i) a quasi-order if and only if A C R =RoR;
(ii) an equivalence if and only if A C RT = RoR;
(iii) a partial order if and only if RoR C R and RNRT = A;
(iv) a strict order if and only if RoR C R and RNRT = 0.

Exercise 1.4. A total order on a set M is a partial order on M such that
any two elements of M are comparable. Prove that a binary relation R on
the set M is a total order if and only if RoR C R, RNRT = A, and
RURT =M x M.

Exercise 1.5. Let R be a binary relation on a set M. For each natural
number n put

R™ =Ro..-oR.
—_—

nx

U R™
neN
is the least transitive relation containing R.

Prove that

Exercise 1.6. Prove that the composition E o F of equivalence relations E
and F on a set M is an equivalence on M if and only if EoF = F o E.



