
DIVISIBILITY IN COMMUTATIVE MONOIDS

PAVEL RŮŽIČKA

Abstract. We recall some properties of quasi-ordered sets and we de-

fine suprema, infima, and the order quotient of an quasi-ordered set.

We will study the relation of divisibility in commutative cancellative

monoids, focusing on the existence and the uniqueness of decomposi-

tions into products of irreducible elements. We apply our results to

characterize unique factorization monoids.

1.1. Quasi-order, induced equivalence, suprema and infima. Recall
that a quasi-order on a set M is a reflexive and transitive binary relation
on M . A quasi-order | on M induces an equivalence relation ∼ defined by

a ∼ b ⇐⇒ a | b and b | a.

We denote by a the block of the equivalence relation ∼ containing a and we
set

M/∼ := {a | a ∈ M}.

Observe that if a ∼ a′ and b ∼ b′, then a ∼ b ⇐⇒ a′ ∼ b′. Therefore we
can define a binary relation | on the set M/∼ so that

a | b ⇐⇒ a | b.

It is straightforward that | forms a partial order on M/∼. We will call the set
M/∼ the order-quotient of the quasi-ordered set M . A canonical projection
is the map

p∼ : M → M/∼

a 7→ a.

A lower bound of a subset X of a quasi-ordered set M is an element l ∈ M
such that l | x for all x ∈ X. An infimum of the set X is i ∈ M such that

• i is a lower bound of X,
• l | i for all lower bounds l of X.

The infimum of the set X is not unique, but if j is another infimum of X,
then i | j (since i is a lower bound of X and j is an infimum of X) and,
similarly, j | i (since j is a lower bound and i is an infimum). Therefore
j ∼ i. On the other hand, if i is an infimum of X and j ∼ i, then it is
readily seen from the transitivity of | that j is an infimum of X as well.
Therefore all infima of the set X form a block of ∼. In the order-quotient
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M/∼ the block of all infima of X corresponds to a least lower bound of the
set {x | x ∈ X}. Dually we define greatest upper bounds and suprema of
subsets of M .

1.2. Divisibility. Let M = (M, ·, 1) be a commutative monoid and a, b ∈
M . We say that a divides b (and we write a | b) if there is c ∈ M such that
b = a · c. It is straightforward that the binary relation | of divisibility is
reflexive and transitive. Therefore | is a quasi-order on M .

The quasi-order of divisibility induces an equivalence relation ∼ on M
(given by a ∼ b if a | b and b | a). When a ∼ b, we say that the elements a
and b are associated . We say that a properly divides b if a | b and b ∤ a (or,
equivalently, if a | b and a ≁ b).

Observe that if a | a′ and b | b′, then a · b | a′ · b′ and, consequently, a ∼ a′

and b ∼ b′ implies that a · b ∼ a′ · b′. It follows that the multiplication on
M induces an associative operation on M/∼ and 1 is a unit element. We
will call the monoid M/

∼
= (M∼, ·,1) the order-quotient of M . Clearly,

the monoid M/
∼

is partially ordered by the relation of divisibility.

Example 1.1. Let Z∗ denote the multiplicative monoid of all non-zero in-
tegers. Observe that a = {a,−a} for every non-zero integer a. The map

[a]∼ 7→ |a| defines an izomorphism (Z∗/∼, ·)
≃
→ (N, ·) onto the monoid N of

all positive integers.

Lemma 1.2. Let M be a commutative cancellative monoid, let a, b ∈ M .
Then a ∼ b if and only if there is an invertible element u ∈ M such that
b = a · u.

Proof. (⇒) Suppose that a ∼ b. Then a | b and b | a, that is, there are
u, v ∈ M satisfying b = a · u and a = b · v. It follows that a = a · u · v
and from the cancellativity we get that 1 = u · v. Since M is commutative,
we conclude that u is invertible. (⇐) Suppose that there is an invertible
element u ∈ M such that b = a · u. Let v be an inverse of u. Then 1 = u · v,
and so a = a · 1 = a · u · v = b · v. Therefore a | b and b | a, hence a ∼ b. �

Corollary 1.3. Let M be a commutative cancellative monoid. Then

a = a · 1 = {a · u | u ∼ 1},

for all a ∈ M .

Definition 1.4. Let M be a commutative monoid. We say that an element
p ∈ M is prime provided that p is not invertible and

p | a · b =⇒ p | a or p | b,

for all a, b ∈ M .
An element q ∈ M is irreducible provided that q is not invertible and

q ∼ a · b =⇒ q ∼ a or q ∼ b,

for all a, b ∈ M .
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By induction we prove that

Lemma 1.5. Let M be a commutative monoid. An element p ∈ M is prime
if and only if

p | a1 · · · an =⇒ p | ai for some i ∈ {1, 2, . . . , n},

for all n ∈ N and all a1, . . . , an ∈ M .
An element q ∈ M is irreducible if and only if

q ∼ a1 · · · an =⇒ q ∼ ai for some i ∈ {1, 2, . . . , n},

for all n ∈ N and all a1, . . . , an ∈ M .

Lemma 1.6. Every prime element of a commutative monoid M is irre-
ducible.

Proof. Let p ∈ M be a prime element and p ∼ a · b for some a, b ∈ M . Then
either p | a or p | b. Since both a | p and b | p, we conclude that either p ∼ a
or p ∼ b. It follows that p is irreducible. �

In general not every irreducible element is prime. We will have a closer
look at this phenomenon later.

1.3. The uniqueness of decompositions.

Lemma 1.7. Let M be a commutative cancellative monoid. If

(1.1) p1 · p2 · · · pm | q1 · q2 · · · qn,

where all p1, . . . , pm are primes and all q1, . . . , qn are irreducible. Then m ≤
n and there is a permutation σ of the set {1, 2, . . . , n} such that pi ∼ qσ(i)
for all i = 1, 2, . . . ,m.

Proof. We proceed by induction on m. The statement holds trivially when
m = 0. Suppose that 0 < m and the statement holds whenever we have less
than m primes on the left hand side of (1.2). Since p1 | q1 · q2 · · · qn and p1
is a prime, p1 | qj for some 1 ≤ j ≤ n. After suitably permuting the indices
1, 2, . . . , n we get that p1 | q1. Since q1 is irreducible, we infer that p1 ∼ q1.
Finally, since the monoid M is cancellative, we have that

p2 · · · pm | q2 · · · qn,

and we can apply the induction hypothesis. �

Since every prime element of a commutative cancellative monoid is irre-
ducible, we get that

Corollary 1.8. Let M be a commutative cancellative monoid. If

p1 · p2 · · · pm ∼ q1 · q2 · · · qn,

where all p1, . . . , pm, q1, . . . , qn are primes, then m = n, and there is a per-
mutation σ of the set {1, 2, . . . ,m} such that pi ∼ qσ(i) for all i = 1, 2, . . . ,m.

In particular, if an element of an order quotient M/
∼

decomposes into
a product of primes, then the decomposition is unique up a permutation of
the primes.
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1.4. The minimal property and the existence of decompositions.

Let (Q,≤) be a quasi-ordered set. For elements a, b ∈ Q we denote by a < b
that a ≤ b and a ≁ b. A minimal element of a non-empty subset X of Q is
x ∈ X such that y 6< x for all y ∈ X (i.e., there is no strictly smaller element
than x in X). Dually we define maximal elements of non-empty subsets of
quasi-ordered sets.

Definition 1.9. We say that a quasi-ordered set Q satisfies the minimal
property (resp. themaximal property) provided that every non-empty subset
of Q has a minimal (resp. maximal) element.

Lemma 1.10. A quasi-oredered set Q has the minimal property if and only
if Q does not contain an infinite strictly decreasing chain a1 > a2 > . . . .

Proof. (⇒) The elements of a strictly decreasing chain a1 > a2 > . . . form
a subset {a1, a2, . . . } without a minimal element. (⇐) Suppose that there
is a non-empty subset X of Q without a minimal element. We construct
inductively a strictly decreasing chain from its elements. We pick a1 ∈ X
arbitrary and having constructed a finite chain a1 > a2 > · · · > an we pick
an+1 ∈ X so that an > an+1. Such an+1 exists since otherwise an would be
a minimal element of X. �

Lemma 1.11. In a commutative cancellative monoid, if

a | p1 · p2 · · · pn,

where p1, p2, . . . , pn are primes, then there are 1 ≤ i1 < i2 < · · · < im ≤ n
such that

a ∼ pi1 · pi2 · · · pim .

Proof. We will prove the lemma by induction on the number of primes n. If
n = 0, then a is invertible and the statement trivially holds true. Suppose
that it holds whenever the number of primes is less than n. Let b be such
that a · b = p1 · p2 · · · pn.

If pn | b, there is b′ such that b = b′ · pn. Canceling pn, we get that
a · b′ = p1 · p2 · · · pn−1. By the induction hypothesis , there are 1 ≤ i1 <
· · · < im ≤ n− 1 such that a ∼ pi1 · pi2 · · · pim .

If pn | a, there is a′ such that a = a′ · pn. Canceling pn, we get that
a′ · b = p1 · p2 · · · pn−1. By the induction hypothesis , there are 1 ≤ i1 <
· · · < im−1 ≤ n − 1 such that a′ ∼ pi1 · pi2 · · · pim−1

. With im := n, we get
that im−1 < im ≤ n and a ∼ pi1 · pi2 · · · pim . �

Clearly, in the previous lemma, m = n if and only if a ∼ p1 · p2 · · · pn. We
conclude that

Corollary 1.12. Let a, b be elements of a commutative cancellative monoid.
If b is a product of n primes and a properly divides b, then a is a product of
less than n primes.

Lemma 1.13. Let M be a commutative cancellative monoid.
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(1) If every element of M is a product of primes, then (M, |) satisfies
the minimal property.

(2) If (M, |) satisfies the minimal property, then every element of M is
a product of irreducible elements.

Proof. (1) It follows from Corollary 1.12 that if a ∈ M is a product of n
primes, then the sequence a = a1, a2, . . . such that ai+1 properly divides ai
for all 1 ≤ i has length at most n + 1. Therefore, if every element of M is
a product of primes, then there is not an infinite sequence a1, a2, . . . such
that ai+1 properly divides ai for all 1 ≤ i. According to Lemma 1.10, (M, |)
satisfies the minimal property. (2) Suppose that the quasi-ordered set (M, |)
satisfies the minimal property. Let us denote by I the set of all elements
of M that are not product of irreducible elements. Suppose that the set
I is non-empty. Then it contains a minimal element, say a. The element
a is clearly neither irreducible nor invertible, and so it decomposes into a
product a = b · c of proper divisors. It follows from the minimality of a that
none of the elements b, c belongs to I, hence they are product of primes.
But then a is a product of primes as well, which contradicts that a ∈ I. �

1.5. Greates common divisors.

Definition 1.14. A greatest common divisor of elements a1, . . . , an ∈ M is
an infimum of the set {a1, . . . , an} with respect to the quasi-order |. The
greatest common divisor is unique up to associativity. In fact, all the greatest
common divisors of the given elements form a block of ∼. We will denote
this block by (a1, . . . , an). Similarly we define a least common multiple of
elements a1, . . . , an ∈ M as a supremum of the set {a1, . . . , an}.

Remark 1.15. We will slightly abuse our notation denoting by

(a1, . . . , an, X1, . . . , Xm)

the greatest common divisor of the union a1, . . . , an ∪X1 ∪ · · · ∪Xm.

Lemma 1.16. Let M be a commutative monoid, a, b, c ∈ M . Then

(1.1) (a, (b, c)) = ((a, b), c).

Proof. Let d = (a, (b, c)) and e = ((a, b), c). We prove that d ∼ e. Further-
more, let f := (b, c) and g := (a, b). Then d | a and d | f . Since d | f , we
have that d | b and d | c. From d | a and d | b we infer that d | g and, since
d | c, we conclude that d | e. Similarly we prove that e | d. �

Corollary 1.17. Let M be a commutative monoid. If a greatest common
divisor exists for each pair of elements of M , then a greatest common divisor
exists for every non-empty finite subset {a1, . . . , an} of M and it can be
computed inductively as

(a1, a2, . . . , an) = ((a1, . . . , an−1), an).
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Lemma 1.18. Let M be a commutative cancellative monoid. Let a, b, c ∈ M
be such that both (a, b) and (a · c, b · c) exist. Then

(a · c, b · c) = (a, b) · c.

Proof. Let d = (a, b) and e = (a · c, b · c). From d | a we get that d · c | a · c.
Similarly, d | b implies that d · c | a · c. We conclude that d · c | e. It follows
that there is x ∈ M such that

e = d · c · x.

Since e | a · c and e | b · c, there are y, z ∈ M such that

a · c = e · y = d · c · x · y,

b · c = e · z = d · c · x · z.

Since the monoid M is cancellative, we infer that

a = d · x · y and b = d · x · z.

Therefore d · x is a common divisor of a, b, and so d · x | d. It follows that x
is invertible, hence e ∼ d · c, whence e = d. �

We say that a, b ∈ M are relatively prime if (a, b) = 1.

Lemma 1.19. Let M be a commutative cancellative monoid such that the
greatest common divisor exists for each pair of elements of M . Let a, b, c ∈
M . If (a, b) = 1 and (a, c) = 1, then (a, b · c) = 1.

Proof. Applying Lemma 1.18, we get from (a, b) =∼ 1, that (a · c, b · c) =
1 · c = c. Similarly, we infer from (1, c) = 1, that (a, a · c) = a. It follows
from Lemma 1.16 that

(a, b · c) = ((a, a · c), b · c) = (a, (a · c, b · c)) = (a, c) = 1.

�

Observe that from Lemma 1.19 it follows that

Corollary 1.20. Let M be a commutative cancellative monoid such that
the greatest common divisor exists for each pair of elements of M , a ∈ M .
Then the set of all elements of M that are relatively prime to the element
a forms a submonoid of M .

Theorem 1.21. Let M be a commutative cancellative monoid. If every
pair of elements of M has a greatest common divisor, then every irreducible
element of M is prime.

Proof. Suppose that the assumptions of the theorem hold true and let q be
an irreducible element of M . Let a, b ∈ M . Since q is irreducible either
q | a, in which case (q, a) = a or (q, a) = 1. It follows that if q ∤ a and q ∤ b,
then (q, a) = (q, b) = 1. From Lemma 1.19 we infer that (q, a · b) = 1, hence
q ∤ a · b. Therefore q is a prime element of M . �
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Corollary 1.22. Let M be a commutative cancellative monoid such that
every pair of elements of M has a greatest common divisor. If

(1.2) p1 · p2 · · · pm ∼ q1 · q2 · · · qn,

where all p1, . . . , pm and q1, . . . , qn are irreducible elements, then m = n and
there is a permutation σ of the set {1, 2, . . . , n} such that pi ∼ qσ(i) for all
i = 1, 2, . . . , n.

In particular, if an element of the order quotient M/
∼

decomposes into a
product of irreducible elements, then the elements are determined uniquelly
up to permutation.

Proof. Apply Lemma 1.7, Corollary 1.8, and the previous theorem. �

1.6. Unique factorization monoids.

Definition 1.23. A commutative cancellative monoid M is said to be
unique factorization provided that every non-invertible element a ∈ M has
a factorization a = q1 · · · qn into a product of irreducible elements and the
elements q1, . . . , qn are uniquely determined up to permutation.

The height of an element a = qα1

1 · · · qαn

n of a unique factorization monoid
is the number h(a) := n of irreducible elements in its decomposition. Note
that elements of height 0 are exactly irreducible ones. Observe also that

(1.1) c = a · b =⇒ h(c) = h(a) + h(b).

Indeed, if a := q1 · q2 · · · qn and b = r1 · r2 · · · rm are decompositions of the
elements a and b, respectively, into products of irreducible elements, then
c := q1 · · · qn · r1 · · · rm is the unique decomposition of c. From (1.1) we infer
that

Lemma 1.24. Let a, b be elements of a unique factorization monoid. If
a | b, then h(a) ≤ h(b). Moreover a | b and h(a) = h(b) if and only if a ∼ b.

Lemma 1.25. Let M be a unique factorization monoid. Let a, b in M and

b = qβ1

1 · · · qβn

n ,

where q1, . . . , qn are pairwise non-associated irreducible elements and β1, . . . , βn
are non-negative integers. Then a | b if and only if

(1.2) a = qα1

1 · · · qαn

n ,

where 0 ≤ αi ≤ βi, for all i = 1, . . . , n.

Proof. (⇐) There is an invertible u such that a = u · qα1

1 · · · qαn

n . Therefore

b = qβn−αn

n · · · qβ1−α1

1 · u−1 · a,

and so a | b. (⇒) Since a | b, there is c ∈ M such that b = a · c. We prove
that a is of the form (1.2) by induction on the height of a. If h(a) = 0, then
a is invertible and the statement trivially holds true. Suppose that a is not
invertible and let q be an irreducible element dividing a; with a′ such that
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a = q · a′. Clearly a′ | b and h(a′) = h(a) − 1. By the induction hypothesis

aaa′ = qqq
α′

1

1 · · ·qqq
α′

n

n for some 0 ≤ α′
i ≤ βi, i = 1, . . . , n.

Let the decomposition of c into a product of irreducible elements be
r1 · · · rm. From b = a · c = q · a′ · c we infer that

bbb = qqq · qqq
α′

1

1 · · ·qqqα
′

n

n · rrr1 · · ·rrrm = qqqα1

1 · · ·qqqαn

n

From the uniqueness of such a decomposition we get that q ∼ qi for some
i = 1, . . . , n. Without loss of generality we can assume that i = 1. Canceling

q1we get that a′ | qβ1−1
1 · · · qβn

n . Therefore 0 ≤ α′
1 ≤ β1 − 1 and 0 ≤ α′

i ≤ β
for all i = 2, . . . , n. From a = q · a′, q ∼ q1 and the uniqueness of the
decomposition in unique factorization monoids we conclude that

aaa = qqqα1

1 · · ·qqqαn

n ,

where 0 ≤ α1 = α′
1 + 1 ≤ β and 0 ≤ αi = α′

i ≤ β, for all 2 ≤ i ≤ n. �

Lemma 1.26. Every pair of elements of a unique factorization monoid has
a greatest common divisor.

Proof. Let M be a unique factorization monoid, and a, b ∈ M . There are
pairwise non-associated irreducible elements q1, q2, . . . , qn in M and integers
0 ≤ αi, βi, i = 1, 2, . . . , n, such that

a ∼ qα1

1 · qα2

2 · · · qαn

n and b ∼ qβ1

1 · qβ2

2 · · · qβn

n .

It follows readily from Lemma 1.25 that

(a, b) = q
min{α1,β1}
1 · q

min{α2,β2}
2 · · · qmin{αn,βn}

n .

�

Theorem 1.27. Let M be a commutative cancellative monoid. The monoid
M is a unique factorization monoid if and only if the quasi-ordered set (M, |)
satisfies the minimal property and every irreducible element of M is prime.

Proof. (⇒) It follows from Lemma 1.26 that every pair of elements of a
unique factorization monoid M has a greatest common divisor. According
to Theorem 1.21 all irreducible elements of the monoid M are prime. It
follows that every element of M is a product of primes, hence the quasi-
ordered set (M, |) satisfies the minimal property due to Lemma 1.13(1). (⇐)
If the quasi-ordered set (M, |) satisfies the minimal property, then every
element a ∈ M is a product of irreducible elements, say a = q1 ·q2 · · · qn, due
to Lemma 1.13(1). If, moreover, every irreducible element of M is prime,
then the elements q1, q2, . . . , qn are unique up to permutations. Therefore
M is a unique factorization domain. �

Applying Lemma 1.6, Corollary 1.8, and Lemma 1.13 we conclude that

Corollary 1.28. Let M be a commutative cancellative monoid. Then M
is a unique factorization monoid if and only if every element of M is a
product of primes.
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It follow from Lemma 1.10 that the quasi-ordered set (M, |) satisfies the
minimal property if and only if there is not an infinite sequence a1, a2, . . .
of elements of M such that ai+1 | ai and ai ∤ ai+1 for all i. Applying
Theorem 1.21 and Lemma 1.26, we get that

Proposition 1.29. Let M be a commutative cancellative monoid such that
(M, |) satisfies the minimal property. Then the following are equivalent:

(i) Every pair of elements of M has a greatest common divisor.
(ii) Every irreducible element of M is prime.
(iii) M is a unique factorization monoid.

Exercises

Exercise 1.1. Let Z∗ := Z \ {0} denote the set of all non-zero integers.
Prove that (Z∗, ·, 1) is a unique factorization monoid. Compute the order
quotient of (Z∗, |).

Exercise 1.2. Let M denote the monoid of all maps N → (N, ·, 1) from
the set of all positive integers to the set of all positive integers with the
multiplication defined by f · g(n) = f(n) · g(n), for all f, g ∈ M and all
n ∈ N.

(i) Prove that the monoid M is equal to its order quotient.
(ii) Prove that every irreducible element of M is prime.
(iii) Decide whether M is a unique factorization monoid.

Exercise 1.3. Let M be the monoid from Exercise 1.2. Put

(1.3) N := {f : N → N | f(n) = 1 for all but finitely many n}.

Prove that N is a submonoid of M . Prove that N is a unique factorization
monoid.

Exercise 1.4. Let (N0,+, 0) denote the monoid of all non-negative integers
with the operation of addition. Show that a | b if and only if a ≤ b. Prove that
the monoid is a unique factorization monoid and find its prime elements.

Exercise 1.5. Let (Q+
0 ,+, 0) denote the monoid of all non-negative ra-

tional numbers with the operation of addition. Prove that the divisibility
corresponds to the order relation. From this infer that the monoid does not
satisfy the minimality property and that it has no irreducible elements.

Exercise 1.6. Let A be a group of all pairs (a, b) ∈ Z2 with the binary
operation of addition computed coordinate-wise:

(a, b) + (a′, b′) = (a+ a′, b+ b′).

Observe that
B := {(2a,−2a) | a ∈ Z}
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is a sub-group of A and put C := A/B and for every a ∈ A let [ a ]B := a+B
denote the coset of B containing a. Finally let

M := {[ (a, b) ]B | 0 ≤ a, b}

denote the subset of C of blocks of “positive tuples”.

(i) Show that (M ,+,0) is a sub-monoid of the factor group C. From
this infer that M is commutative and cancellative.

(ii) Prove that (M, |) satisfies the minimality property.
(iii) Find all irreducible elements of the monoid M .
(iv) Prove that the monoid M has no primes.
(v) Find a pair of non-zero elements in M without a greatest common

divisor.


