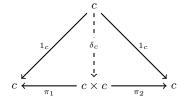
TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 6 / MAY 19 2023

Problem 6.1. Let \mathbf{P} and \mathbf{Q} be ordered sets considered as categories. Let $F: \mathbf{P} \to \mathbf{Q}$ and $G: \mathbf{Q} \to \mathbf{P}$ be monotone (ie, order-preserving) mappings. Show that the mapping F is left adjoint to G if and only if

$$p \le G(q) \iff F(p) \le q$$


for all $p \in \mathbf{P}$ and $q \in \mathbf{Q}$.

Problem 6.2. Let \mathbf{P} and \mathbf{Q} be ordered sets considered as categories. Suppose that there are arbitrary suprema and infima in \mathbf{P} and \mathbf{Q} . Let $F: \mathbf{P} \to \mathbf{Q}$ be a suprema-preserving mapping. Show that there is a left adjoint to F and find it.

Problem 6.3. Let us have the situation as in Problem 6.1 and put $H = GF \colon \mathbf{P} \to \mathbf{P}$. Show that the mapping H is monotone, idempotent (ie, that H = HH), and that $p \leq H(p)$ for all $p \in \mathbf{P}$. What properties does the mapping $K = FG \colon \mathbf{Q} \to \mathbf{Q}$ satisfy?

Problem 6.4. Show that the product \times : $\mathbf{C} \times \mathbf{C} \to \mathbf{C}$ is a right adjoint to the diagonal functor Δ : $\mathbf{C} \to \mathbf{C} \times \mathbf{C}$.

Problem 6.5. Show that the unit $\langle \Delta, \times, \varphi \rangle$ of the above adjunction is a natural transformation $\delta: I_{\mathbf{C}} \to \times \circ \Delta$ such that for each object c of the category \mathbf{C} there is $\delta_c: c \to c \times c$, a (uniquely determined) morphism, such that the diagram

commutes.

Problem 6.6. Find a left adjoint to the diagonal functor $\Delta : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$

Problem 6.7. Let R be a ring. Find left and right adjoints to the forgetful functor $U: R-Mod \rightarrow Ab$.

Problem 6.8. Prove that torsion-free abelian groups form a reflexive subcategory of the category of all abelian groups.