TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 5 / MAY 52023

Problem 5.1. The diagonal functor $\Delta: \mathbf{A} \rightarrow \mathbf{A} \times \mathbf{A}$ assigns

- to an object a of the category \mathbf{A} the pair $\Delta(a)=\langle a, a\rangle$;
- to a morphism f in the category \mathbf{A} the morphism $\Delta(f)=\langle f, f\rangle$.

Let $\eta=\langle i, j\rangle:\langle a, b\rangle \rightarrow \Delta(c)=\langle c, c\rangle$ be a universal morphism from the object $\langle a, b\rangle$ to the diagonal functor Δ. Prove that $\langle c \mid i, j\rangle$ is a co-product of objects a, b in the category \mathbf{A}.

Problem 5.2. Let \mathbf{J} and \mathbf{A} be categories. Let $\mathbf{A}^{\mathbf{J}}$ denote the category of all functors $\mathbf{J} \rightarrow \mathbf{A}$. The diagonal functor $\Delta: \mathbf{A} \rightarrow \mathbf{A}^{\mathbf{J}}$ assigns

- to an object a of category \mathbf{A} the constant functor that maps every object of category \mathbf{J} to a and every morphism of category \mathbf{J} to the identity morphism 1_{a};
- to a morphism $f: a \rightarrow b$ in \mathbf{A} the natural transformation $\Delta(f): \Delta(a) \rightarrow \Delta(b)$ given by $\Delta(f)_{j}=f$ for each $j \in \mathbf{o b} \mathbf{J}$.
Let $F \in \mathbf{A}^{\mathbf{J}}$ be a diagram in the category \mathbf{A} indexed by the category \mathbf{J} and $\langle c, \eta\rangle$ be a universal morphism from F to Δ. Prove that $\left\langle c \mid \eta_{j}, j \in \mathbf{o b} \mathbf{J}\right\rangle$ is a colimit of the diagram F.
Problem 5.3. Let \mathbf{J}, \mathbf{A} be the categories and $\Delta: \mathbf{A} \rightarrow \mathbf{A}^{\mathbf{J}}$ be the functor as in the previous problem. Let $F \in \mathbf{A}^{\mathbf{J}}$ be a \mathbf{J}-indexed diagram in \mathbf{A}. Let $\langle d, \pi\rangle$ be a universal morphism from Δ to F. Prove that $\left\langle d \mid \pi_{j}, j \in \mathbf{o b} \mathbf{J}\right\rangle$ is a limit of the diagram F.
Problem 5.4. By a representation of a functor $F: \mathbf{A} \rightarrow$ Set we mean the pair $\langle a, \varphi\rangle$, where $a \in \mathbf{o b} \mathbf{A}$ and $\varphi: A(a,-) \rightarrow F$ is a natural isomorphism. Let $F, G: \mathbf{A} \rightarrow$ Set be functors with representations $\langle a, \varphi\rangle$, of the functor F, and $\langle b, \psi\rangle$, of the functor G. Prove that for every natural transformation $\tau: F \rightarrow G$ there exists a unique morphism $h: b \rightarrow a$ in the category \mathbf{A} such that

$$
\tau \circ \varphi=\psi \circ \mathbf{A}(h,-): \mathbf{A}(a,-) \rightarrow G
$$

Problem 5.5. Let \mathbf{A} be a complete subcategory of the category \mathbf{B}. Let $J: \mathbf{A} \rightarrow \mathbf{B}$ denote the inclusion functor. Prove that for every pair of functors $F, G: \mathbf{C} \rightarrow \mathbf{A}$:

$$
\mathbf{N a t}(F, G) \simeq \mathbf{N a t}(J F, J G)
$$

Problem 5.6. Prove that there exists a coproduct of objects a, b of a category \mathbf{A} if and only if the functor

$$
\begin{aligned}
\mathbf{A}(a,-) \times \mathbf{A}(b,-): \mathbf{A} & \rightarrow \mathbf{S e t} \\
c & \mapsto \mathbf{A}(a, c) \times \mathbf{A}(b, c) \\
f & \mapsto \mathbf{A}(a, f) \times \mathbf{A}(b, f)
\end{aligned}
$$

is representable.

