TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 5 / MAY 5 2023

Problem 5.1. The diagonal functor $\Delta : \mathbf{A} \to \mathbf{A} \times \mathbf{A}$ assigns

- to an object a of the category **A** the pair $\Delta(a) = \langle a, a \rangle$;
- to a morphism f in the category **A** the morphism $\Delta(f) = \langle f, f \rangle$.

Let $\eta = \langle i, j \rangle : \langle a, b \rangle \rightarrow \Delta(c) = \langle c, c \rangle$ be a universal morphism from the object $\langle a, b \rangle$ to the diagonal functor Δ . Prove that $\langle c \mid i, j \rangle$ is a co-product of objects a, b in the category **A**.

Problem 5.2. Let **J** and **A** be categories. Let $\mathbf{A}^{\mathbf{J}}$ denote the category of all functors $\mathbf{J} \to \mathbf{A}$. The diagonal functor $\Delta \colon \mathbf{A} \to \mathbf{A}^{\mathbf{J}}$ assigns

- to an object a of category A the constant functor that maps every object of category J to a and every morphism of category J to the identity morphism 1_a;
- to a morphism $f: a \to b$ in **A** the natural transformation $\Delta(f): \Delta(a) \to \Delta(b)$ given by $\Delta(f)_j = f$ for each $j \in \mathbf{ob J}$.

Let $F \in \mathbf{A}^{\mathbf{J}}$ be a diagram in the category \mathbf{A} indexed by the category \mathbf{J} and $\langle c, \eta \rangle$ be a universal morphism from F to Δ . Prove that $\langle c \mid \eta_j, j \in \mathbf{ob} \mathbf{J} \rangle$ is a colimit of the diagram F.

Problem 5.3. Let **J**, **A** be the categories and $\Delta: \mathbf{A} \to \mathbf{A}^{\mathbf{J}}$ be the functor as in the previous problem. Let $F \in \mathbf{A}^{\mathbf{J}}$ be a **J**-indexed diagram in **A**. Let $\langle d, \pi \rangle$ be a universal morphism from Δ to F. Prove that $\langle d | \pi_i, j \in \mathbf{ob} \mathbf{J} \rangle$ is a limit of the diagram F.

Problem 5.4. By a representation of a functor $F: \mathbf{A} \to \mathbf{Set}$ we mean the pair $\langle a, \varphi \rangle$, where $a \in \mathbf{ob} \mathbf{A}$ and $\varphi: A(a, -) \to F$ is a natural isomorphism. Let $F, G: \mathbf{A} \to \mathbf{Set}$ be functors with representations $\langle a, \varphi \rangle$, of the functor F, and $\langle b, \psi \rangle$, of the functor G. Prove that for every natural transformation $\tau: F \to G$ there exists a unique morphism $h: b \to a$ in the category \mathbf{A} such that

$$\tau \circ \varphi = \psi \circ \mathbf{A}(h, -) \colon \mathbf{A}(a, -) \to G.$$

Problem 5.5. Let \mathbf{A} be a complete subcategory of the category \mathbf{B} . Let $J: \mathbf{A} \to \mathbf{B}$ denote the inclusion functor. Prove that for every pair of functors $F, G: \mathbf{C} \to \mathbf{A}$:

$$\operatorname{Nat}(F,G) \simeq \operatorname{Nat}(JF,JG).$$

Problem 5.6. Prove that there exists a coproduct of objects a, b of a category \mathbf{A} if and only if the functor

$$\begin{aligned} \mathbf{A}(a,-) \times \mathbf{A}(b,-) \colon \mathbf{A} &\to \mathbf{Set} \\ c &\mapsto \mathbf{A}(a,c) \times \mathbf{A}(b,c) \end{aligned}$$

$$f\mapsto \mathbf{A}(a,f)\times \mathbf{A}(b,f)$$

is representable.