TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 4 / APRIL 21 2023

Problem 4.1. Let A, resp., B, be the product of two copies of the abelian group \mathbb{Z}_2 in the category **Ab** of abelian groups, resp., in the category **Grp** of groups. Show that $A \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and that the group B is infinite.

Problem 4.2. Find the equalizer and coequalizer of homomorphisms

$$f: \mathbb{Z} \to \mathbb{Z}_{60}$$
$$a \mapsto 6a \mod 60$$

and

$$g \colon \mathbb{Z} \to \mathbb{Z}_{60}$$
$$a \mapsto 10a \mod 60$$

in the category Ab.

Problem 4.3. Let p be a prime number and

$$f_{m,n} \colon \mathbb{Z}_{p^m} \to \mathbb{Z}_{p^n}$$
$$a \mapsto p^{n-m}a$$

be a homomorphism for all pairs $m \leq n$ of positive integers.

Let **N** denote the category induced by the set of natural numbers with an usual order. Objects of this category are natural numbers $1, 2, \ldots$ and morphisms are ordered pairs of natural numbers. Consider the functor $F: \mathbf{N} \to \mathbf{Ab}$ given by

- $F(n) = \mathbb{Z}_{p^n}$ for every natural number;
- $F(m \le n) = f_{m,n}$ for every ordered pair $m \le n$ of natural numbers.

Let $A = \bigoplus_{i \in \mathbb{N}} A_i$, where $A_i = \langle a_i \rangle$ is the infinite cyclic group generated by the element a_i , for each $i \in \mathbb{N}$. Let $a_0 = 0$ and denote by B the subgroup of the group A generated by the set $\{p \cdot a_i - a_{i-1} \mid i \in \mathbb{N}\}$. Put L = A/B and for $n \in \mathbb{N}$ define a mapping

$$f_n \colon \mathbb{Z}_{p^n} \to L$$
$$x \mapsto x \cdot a_n$$

Prove that f_n are well-defined homomorphisms, that they are one-to-one, and that $\langle L \mid f_n; n \in \mathbb{N} \rangle$ is a limit of the diagram F.

Problem 4.4. Let L_n denote the image of f_n in L. Show that

- 1. the order of each element of the group L is a power of the prime number p;
- 2. $L_n = \{x \in L \mid the order of x is at most p^n\};$
- 3. $\{0\} \subsetneq L_1 \subsetneq L_2 \subsetneq \ldots$, and that L_n are only proper nontrivial subgroups of L;
- 4. $L \simeq L/L_n$ for every $n \in \mathbb{N}$, i.e. the group L is isomorphic to each of its factors.

Problem 4.5. Prove that the equation $a = n \cdot x$ with a variable x has a solution in the group L for every nonzero integer n.

Problem 4.6. Consider the pull-back $\langle A \times_C B | \delta, \gamma \rangle$ diagram $B \xrightarrow{\beta} C \xleftarrow{\alpha} A$ represented by the following diagram:

Prove that if β is a monomorphism, then γ is also a monomorphism.

Problem 4.7. Prove that the equalizer of morphisms $f, g: B \to A$ can be constructed using the pull-back diagram

Problem 4.8. Consider a commutative diagram

Prove that

- 1. if both inner squares are pull-backs, the outer rectangle is also a pull-back;
- 2. if the outer rectangle and the right inner square are pull-backs, the left inner square is also a pull-back.