TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 4 / APRIL 212023

Problem 4.1. Let A, resp., B, be the product of two copies of the abelian group \mathbb{Z}_{2} in the category $\mathbf{A b}$ of abelian groups, resp., in the category $\mathbf{G r p}$ of groups. Show that $A \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and that the group B is infinite.

Problem 4.2. Find the equalizer and coequalizer of homomorphisms

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow \mathbb{Z}_{60} \\
a & \mapsto 6 a \quad \bmod 60
\end{aligned}
$$

and

$$
\begin{aligned}
g: \mathbb{Z} & \rightarrow \mathbb{Z}_{60} \\
a & \mapsto 10 a \quad \bmod 60
\end{aligned}
$$

in the category $\mathbf{A b}$.
Problem 4.3. Let p be a prime number and

$$
\begin{aligned}
f_{m, n}: \mathbb{Z}_{p^{m}} & \rightarrow \mathbb{Z}_{p^{n}} \\
a & \mapsto p^{n-m} a
\end{aligned}
$$

be a homomorphism for all pairs $m \leq n$ of positive integers.
Let \mathbf{N} denote the category induced by the set of natural numbers with an usual order. Objects of this category are natural numbers $1,2, \ldots$ and morphisms are ordered pairs of natural numbers. Consider the functor $F: \mathbf{N} \rightarrow \mathbf{A b}$ given by

- $F(n)=\mathbb{Z}_{p^{n}}$ for every natural number;
- $F(m \leq n)=f_{m, n}$ for every ordered pair $m \leq n$ of natural numbers.

Let $A=\bigoplus_{i \in \mathbb{N}} A_{i}$, where $A_{i}=\left\langle a_{i}\right\rangle$ is the infinite cyclic group generated by the element a_{i}, for each $i \in \mathbb{N}$. Let $a_{0}=0$ and denote by B the subgroup of the group A generated by the set $\left\{p \cdot a_{i}-a_{i-1} \mid i \in \mathbb{N}\right\}$. Put $L=A / B$ and for $n \in \mathbb{N}$ define a mapping

$$
\begin{aligned}
f_{n}: \mathbb{Z}_{p^{n}} & \rightarrow L \\
x & \mapsto x \cdot a_{n} .
\end{aligned}
$$

Prove that f_{n} are well-defined homomorphisms, that they are one-to-one, and that $\left\langle L \mid f_{n} ; n \in \mathbb{N}\right\rangle$ is a limit of the diagram F.

Problem 4.4. Let L_{n} denote the image of f_{n} in L. Show that

1. the order of each element of the group L is a power of the prime number p;
2. $L_{n}=\left\{x \in L \mid\right.$ the order of x is at most $\left.p^{n}\right\}$;
3. $\{0\} \subsetneq L_{1} \subsetneq L_{2} \subsetneq \ldots$, and that L_{n} are only proper nontrivial subgroups of L;
4. $L \simeq L / L_{n}$ for every $n \in \mathbb{N}$, i.e. the group L is isomorphic to each of its factors.

Problem 4.5. Prove that the equation $a=n \cdot x$ with a variable x has a solution in the group L for every nonzero integer n.

Problem 4.6. Consider the pull-back $\left\langle A \times_{C} B \mid \delta, \gamma\right\rangle$ diagram $B \xrightarrow{\beta} C \stackrel{\alpha}{\leftarrow} A$ represented by the following diagram:

Prove that if β is a monomorphism, then γ is also a monomorphism.
Problem 4.7. Prove that the equalizer of morphisms $f, g: B \rightarrow A$ can be constructed using the pull-back diagram

Problem 4.8. Consider a commutative diagram

Prove that

1. if both inner squares are pull-backs, the outer rectangle is also a pull-back;
2. if the outer rectangle and the right inner square are pull-backs, the left inner square is also a pull-back.
