TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 3 / MARCH 242023

Problem 3.1. Let $U: \operatorname{Vec}_{T} \rightarrow$ Set be the forgetful functor. For the set X, let V_{X} denote the arithmetic vector space with basis X (of all formal linear combinations of elements of X). Let $u: X \rightarrow V_{X}$ denote the inclusion map. Show that the pair $\left\langle u, V_{X}\right\rangle$ is a universal morphism from X to the forgetful functor U.

Problem 3.2. Let ID denote the category whose objects are integral domains and whose morphisms are one-to-one ring homomorphisms. Let Fld denote the category of all fields. Note that Fld is a complete subcategory of the category ID. Let U : Fld \rightarrow ID be the forgetful functor that assigns to the field T the integral domain $U(T)$, formed by forgetting the partial unary operation of inversion (i.e., the operation $t \mapsto t^{-1}$ defined for $t \in T \backslash\{0\}$), and which is an identity on morphisms. Find a universal morphism from the integral domain R to the functor U.
Problem 3.3. Let \mathbf{A} be a category and $G: \mathbf{A} \rightarrow$ Set a functor. An universal object (sometimes called an universal pair) of the functor G is a pair $\langle a, u\rangle$ consisting of an object of the category A and an element $u \in G(a)$ such that
for every pair $\langle b, v\rangle$, where b is an object of the category A and $v \in G(b)$, there is a unique morphism $g: a \rightarrow b$ in cat A such that $v=G(g)(u)$.
Given a set X and an element $x \in X$, we denote by $\dot{x}:\{\emptyset\} \rightarrow X$ the map given by $\dot{x}(\emptyset)=x$. Prove that a pair $\langle a, u\rangle$ is a universal object of the functor G if and only if the pair $\langle a, \dot{u}\rangle$ is a universal morphism from the set $\{\emptyset\}$ into G.
Problem 3.4. Let $F: \mathbf{A} \rightarrow \mathbf{B}$ be a functor and let b be an object of a category \mathbf{B}. Let G denote the functor $G:=\mathbf{B}(b, F(-))=\mathbf{B}(b,-) \circ F: \mathbf{A} \rightarrow \mathbf{S e t}$. Show that the pair $\langle a, u\rangle$ is a universal morphism from b to F if and only if it is a universal object of the functor G.

Problem 3.5. What are products and co-products in the following catgories? The category

- Set of all sets;
- $\mathbf{V e c}_{T}$ of all vector spaces over the solid T;
- Grp of all groups;
- Ab of all abelian groups;

Problem 3.6. Let P be a partially ordered set viewed as a category. What are products and co-products in the category P? Characterize posets P that are complete (resp. co-complete) categories.

Problem 3.7. prove that every equalizer is a monomorphism and every co-equalizer is an epimorphism.

Problem 3.8. Characterize equalizers and co-equalizers in the category

- Set of all sets;
- $\mathbf{V e c}_{T}$ of all vector spaces over the solid T;
- Grp of all groups;
- Ab of all abelian groups;

