TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 3 / MARCH 24 2023

Problem 3.1. Let $U \colon \mathbf{Vec}_T \to \mathbf{Set}$ be the forgetful functor. For the set X, let V_X denote the arithmetic vector space with basis X (of all formal linear combinations of elements of X). Let $u \colon X \to V_X$ denote the inclusion map. Show that the pair $\langle u, V_X \rangle$ is a universal morphism from X to the forgetful functor U.

Problem 3.2. Let **ID** denote the category whose objects are integral domains and whose morphisms are one-to-one ring homomorphisms. Let **Fld** denote the category of all fields. Note that **Fld** is a complete subcategory of the category **ID**. Let $U : \mathbf{Fld} \to \mathbf{ID}$ be the forgetful functor that assigns to the field T the integral domain U(T), formed by forgetting the partial unary operation of inversion (i.e., the operation $t \mapsto t^{-1}$ defined for $t \in T \setminus \{0\}$), and which is an identity on morphisms. Find a universal morphism from the integral domain R to the functor U.

Problem 3.3. Let **A** be a category and $G: \mathbf{A} \to \mathbf{Set}$ a functor. An universal object (sometimes called an universal pair) of the functor G is a pair $\langle a, u \rangle$ consisting of an object of the category **A** and an element $u \in G(a)$ such that

for every pair $\langle b, v \rangle$, where b is an object of the category A and $v \in G(b)$, there is a unique morphism $g: a \to b$ in catA such that v = G(g)(u).

Given a set X and an element $x \in X$, we denote by $\dot{x} \colon \{\emptyset\} \to X$ the map given by $\dot{x}(\emptyset) = x$. Prove that a pair $\langle a, u \rangle$ is a universal object of the functor G if and only if the pair $\langle a, \dot{u} \rangle$ is a universal morphism from the set $\{\emptyset\}$ into G.

Problem 3.4. Let $F: \mathbf{A} \to \mathbf{B}$ be a functor and let b be an object of a category \mathbf{B} . Let G denote the functor $G:= \mathbf{B}(b,F(-)) = \mathbf{B}(b,-) \circ F: \mathbf{A} \to \mathbf{Set}$. Show that the pair $\langle a,u \rangle$ is a universal morphism from b to F if and only if it is a universal object of the functor G.

Problem 3.5. What are products and co-products in the following catgories? The category

- Set of all sets;
- \mathbf{Vec}_T of all vector spaces over the solid T;
- **Grp** of all groups;
- **Ab** of all abelian groups;

Problem 3.6. Let P be a partially ordered set viewed as a category. What are products and co-products in the category P? Characterize posets P that are complete (resp. co-complete) categories.

Problem 3.7. prove that every equalizer is a monomorphism and every co-equalizer is an epimorphism.

Problem 3.8. Characterize equalizers and co-equalizers in the category

- Set of all sets;
- \mathbf{Vec}_T of all vector spaces over the solid T;
- $\bullet \ \ \mathbf{Grp} \ \mathit{of all groups};$
- Ab of all abelian groups;