TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 2 / MARCH 102023

Problem 2.1. Let Fld denote the category of fields and Grp the category of groups. The functors $\mathbf{G} \mathbf{l}_{n},(-)^{*}: \mathbf{F l d} \rightarrow \mathbf{G r p}$ are defined as follows:

- the functor $\mathbf{G} \mathbf{l}_{n}$ assigns to field F the group $\mathbf{G l}_{n}(F)$ of all regular $n \times n$ matrices over F;
- the functor $(-)^{*}$ assigns to a field F its multiplicative group F^{*}.

Verify that det $=\left\{\operatorname{det}_{F}: \mathbf{G l}_{n}(F) \rightarrow F^{*} \mid F \in \mathbf{o b}(\mathbf{F l d})\right\}$ is a natural transformation $\mathbf{G} \mathbf{l}_{n} \rightarrow(-)^{*}$.
Problem 2.2. Given a set A, let $A \times-$: Set \rightarrow Set be the functor that assigns to a set B the set $A \times B$ and to a morphism $g: B \rightarrow C$ the morphism $A \times g: A \times B \rightarrow A \times B$ which sends $\langle a, b\rangle$ to $\langle a, f(b)\rangle$. Show that every mapping $A \rightarrow B$ corresponds to a natural transformation $A \times-\rightarrow B \times-$.
Problem 2.3. Let \mathbf{A} be a category and \mathbf{P} an ordered set (viewed as a category). Let $F, G: \mathbf{A} \rightarrow \mathbf{P}$ be a pair of functors.
(1) Decide when there is a natural transformation $F \rightarrow G$.
(2) Show that there is at most one natural transformation $F \rightarrow G$.

Problem 2.4. For a field F, let Mat $_{F}$ denote the category whose

- objects are natural numbers,
- morphisms $n \rightarrow m$ are $m \times n$ matrices over F (composition of the morphisms corresponds to matrix multiplication).
Prove that the category $\mathbf{M a t}_{F}$ is equivalent to the category $\mathbf{v e c}_{F}$ of all finitely dimensional vector spaces over the field F (with morphisms being linear maps).
Problem 2.5. For sets A, B, let B^{A} denote the set of all mappings $f: A \rightarrow B$. Consider the functor $(-)^{A}:$ Set \rightarrow Set. For the set X, let us define a map $\varepsilon_{X}: X^{A} \times A \rightarrow X$ by $\varepsilon_{X}(f, a)=$ $f(a)$. Show that $\varepsilon=\left\{\varepsilon_{X} \mid X \in \mathbf{o b}(\mathbf{S e t})\right\}$ is a natural transformation from the functor $(-)^{A} \times A$ to the identity functor on Set.
Problem 2.6. Let Vec_{F} denote the category of vector spaces (and F-linear maps) over a field F. Let $(-)^{*}: \mathbf{V e c}_{F} \rightarrow \mathbf{V e c}_{F}$ be the contravariant functor that assigns to a vector space V the vector prosotor $V^{*}=\operatorname{hom}_{T}(V, F)$ of all linear forms $f: V \rightarrow F$. For the vector space V, consider the mapping $\varepsilon_{V}: V \rightarrow\left(V^{*}\right)^{*}$ given by $\varepsilon(v)(f)=f(v)$ for each $v \in V$ and each $f \in V^{*}$.
(1) Show that $\varepsilon=\left\langle\varepsilon_{V} \mid V \in \mathbf{o b}\left(\mathbf{V e c}_{F}\right)\right\rangle$ is a natural transformation from the identity functor on $\mathbf{V e c}_{F}$ to the functor $\left((-)^{*}\right)^{*}$.
(2) Decide whether ε is a natural equivalence.
(3) Let $\mathbf{v e c}_{F}$ denote the subcategory of the category $\mathbf{V e c}_{F}$ of all finite dimensional spaces. Decide whether the restriction $\varepsilon \upharpoonright \mathbf{v e c}_{F}$ is a natural equivalence.
Problem 2.7. Let G, H be groups. Each of them view as a category with one object (and morphisms corresponding to elements of the groups).
(1) Verify that the functors $G \rightarrow H$ correspond to group homomorphisms.
(2) Show that for a pair of functors $S, T: G \rightarrow H$ there exists a natural transformation $S \rightarrow T$ if and only if there exists $h \in H$ such that $S(g)=h T(g) h^{-1}$ for every $g \in G$. Describe the corresponding natural transformation and decide whether it is a natural equivalence.
Problem 2.8. Let G be a group and F a field. As abocve, view G as an one object category. Show that the category $\mathbf{V e c}_{F}^{G}$ of functors from $G \rightarrow \mathbf{V e c}_{F}$ can be identified with the category of all F-representations of the group G.

