TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 2 / MARCH 10 2023

Problem 2.1. Let Fld denote the category of fields and Grp the category of groups. The functors $Gl_n, (-)^* \colon Fld \to Grp$ are defined as follows:

- the functor \mathbf{Gl}_n assigns to field F the group $\mathbf{Gl}_n(F)$ of all regular $n \times n$ matrices over F;
- the functor $(-)^*$ assigns to a field F its multiplicative group F^* .

Verify that det = {det_F : $\mathbf{Gl}_n(F) \to F^* \mid F \in \mathbf{ob}(\mathbf{Fld})$ } is a natural transformation $\mathbf{Gl}_n \to (-)^*$.

Problem 2.2. Given a set A, let $A \times -:$ **Set** \to **Set** be the functor that assigns to a set B the set $A \times B$ and to a morphism $g: B \to C$ the morphism $A \times g: A \times B \to A \times B$ which sends $\langle a, b \rangle$ to $\langle a, f(b) \rangle$. Show that every mapping $A \to B$ corresponds to a natural transformation $A \times - \to B \times -$.

Problem 2.3. Let \mathbf{A} be a category and \mathbf{P} an ordered set (viewed as a category). Let $F, G: \mathbf{A} \to \mathbf{P}$ be a pair of functors.

- (1) Decide when there is a natural transformation $F \to G$.
- (2) Show that there is at most one natural transformation $F \to G$.

Problem 2.4. For a field F, let Mat_F denote the category whose

- objects are natural numbers,
- morphisms n → m are m×n matrices over F (composition of the morphisms corresponds to matrix multiplication).

Prove that the category Mat_F is equivalent to the category vec_F of all finitely dimensional vector spaces over the field F (with morphisms being linear maps).

Problem 2.5. For sets A, B, let B^A denote the set of all mappings $f: A \to B$. Consider the functor $(-)^A: \mathbf{Set} \to \mathbf{Set}$. For the set X, let us define a map $\varepsilon_X: X^A \times A \to X$ by $\varepsilon_X(f, a) = f(a)$. Show that $\varepsilon = \{\varepsilon_X \mid X \in \mathbf{ob}(\mathbf{Set})\}$ is a natural transformation from the functor $(-)^A \times A$ to the identity functor on \mathbf{Set} .

Problem 2.6. Let Vec_F denote the category of vector spaces (and F-linear maps) over a field F. Let $(-)^* \colon \operatorname{Vec}_F \to \operatorname{Vec}_F$ be the contravariant functor that assigns to a vector space V the vector prosotor $V^* = \hom_T(V, F)$ of all linear forms $f \colon V \to F$. For the vector space V, consider the mapping $\varepsilon_V \colon V \to (V^*)^*$ given by $\varepsilon(v)(f) = f(v)$ for each $v \in V$ and each $f \in V^*$.

- (1) Show that $\varepsilon = \langle \varepsilon_V | V \in \mathbf{ob}(\mathbf{Vec}_F) \rangle$ is a natural transformation from the identity functor on \mathbf{Vec}_F to the functor $((-)^*)^*$.
- (2) Decide whether ε is a natural equivalence.
- (3) Let \mathbf{vec}_F denote the subcategory of the category \mathbf{Vec}_F of all finite dimensional spaces. Decide whether the restriction $\varepsilon \upharpoonright \mathbf{vec}_F$ is a natural equivalence.

Problem 2.7. Let G, H be groups. Each of them view as a category with one object (and morphisms corresponding to elements of the groups).

- (1) Verify that the functors $G \to H$ correspond to group homomorphisms.
- (2) Show that for a pair of functors $S, T: G \to H$ there exists a natural transformation $S \to T$ if and only if there exists $h \in H$ such that $S(g) = hT(g)h^{-1}$ for every $g \in G$. Describe the corresponding natural transformation and decide whether it is a natural equivalence.

Problem 2.8. Let G be a group and F a field. As above, view G as an one object category. Show that the category \mathbf{Vec}_F^G of functors from $G \to \mathbf{Vec}_F$ can be identified with the category of all F-representations of the group G.