TUTORIAL FOR THE SUBJECT NMAG336 INTRODUCTION TO THE CATEGORY THEORY

TUTORIAL 1 / FEBRUARY 24 2023

Problem 1.1. Show that by composing two monomorphisms (or epimorphisms, sections, retractions, isomorphisms) we get again monomorphism (or epimorphism, section, retraction, isomorphism).

Problem 1.2. Consider the category **Rel** whose objects are sets and relation morphisms (with standard composition of relations).

- 1. Show that $\rho \in \mathbf{Rel}(A, B)$ is a monomorphism if and only if there exists $B' \subseteq B$ such that $\rho \cap (A \times B')$ is a bijection $A \to B'$.
- 2. Decide when $\rho \in \mathbf{Rel}(A, B)$ is an epimorphism, or isomorphism.
- 3. Show that monomorphisms are sections and retraction are epimorphisms in the category **Rel**.

Problem 1.3. Let (P, \leq) be a partially ordered set. Consider a category \mathbf{P} whose objects are elements of the set P and morphisms correspond to ordered pairs of elements of P. This means that there is a morphism between a pair of objects $p, q \in \mathbf{P}$ if and only if $p \leq q$ and this morphism is unique.

- 1. Show that **P** is a category.
- 2. Show that every morphism in **P** is a bimorphism (i.e., a monomorphism and at the same time epimorphism).
- 3. Show that for a morphism $f \in \mathbf{P}$ is equivalent
 - (i) f is a section;
 - (ii) g is a retraction;
 - (iii) f is an isomorphism;
 - (iv) f is an identity morphism (on some object);
- 4. Let (Q, \leq) be another ordered set and let \mathbf{Q} be the corresponding category. Show that functors $\mathbf{P} \to \mathbf{Q}$ correspond to monotone (=order preserving) mappings $P \to Q$.

Problem 1.4. Let **Pos** denote the category of all partially ordered sets. Morphisms in this category are monotone mappings. Decide whether all monomorphisms in this category are sections and whether all bimorphisms are isomorphisms.

Problem 1.5. Let **Grp** denote the category of all groups (i.e., objects in this category are groups and morphisms are group homomorphisms).

- 1. Show that monomorphisms in **Grp** are precisely one-to-one homomorphisms.
- 2. Show that epimorphisms in **Grp** are precisely homomorphisms onto.
- 3. Describe the sections and retractions in this category.
- 4. Decide whether all bimorphisms in this category are isomorphisms.

Problem 1.6. Find a monoid (= a category with one object) that contains a bimorphism that is not an isomorphism. Can this monoid be finite?

Problem 1.7. Show that a full-faithful functor maps on a section only a section. Find an examples that none of the assumptions of fullness and faithfulness can be omitted.

Problem 1.8. Find an example of a functor whose image is not a subcategory (of the target category).