Introduction to Group Theory (NMAG337) Exercise sheet 8 22. 11. 2022

This exercise session, we will prove the following theorem:

Theorem 1. (Classification of finitely generated abelian groups) Let G be a finitely generated abelian group. Then $G \cong \mathbb{Z}^a \times \prod_{p \text{ prime}, i \in \mathbb{N}} (\mathbb{Z}_{p^i})^{a_{p,i}}$, where the coefficients $a, a_{p,i} \in \mathbb{N} \cup \{0\}$ are uniquely determined by G.

Exercise 1. Let G be a finite abelian group. Show that G is a direct product of its Sylow subgroups.

Exercise 2. Let G be a finite abelian p-group. Show by induction on |G| that $G \cong \prod_{i \in \mathbb{N}} (\mathbb{Z}_{p^i})^{a_i}$ for some $a_i \in \mathbb{N} \cup \{0\}$:

- Let $g \in G$ be an element with the highest order, $ord(g) = p^k$. By the induction hypothesis $G/\langle g \rangle \cong \prod_{i \in \mathbb{N}} (\mathbb{Z}_{p^i})^{b_i}$. Fix an isomorphism of this form, let $b = \sum b_i$ and for $j \in \{1, \ldots, b\}$, let G_j be the subgroup of $G/\langle g \rangle$ containing the elements with zero in all components except the *j*-th (when considering $G/\langle g \rangle$ as $\mathbb{Z}_{p^{i_1}} \times \ldots \mathbb{Z}_{p^{i_b}}$).
- For each G_j fix a generator h_j and show that there exists an element $g_j \in G$, such that $h_j = g_j + \langle g \rangle$ and $ord(g_j) = ord(h_j)$.
- Show that $\langle g_1, \ldots, g_b \rangle \cong G/\langle g \rangle$.
- Show that $G \cong \langle g_1, \ldots, g_b \rangle \times \langle g \rangle$.

If you know what an injective module is, you may also consider G as a \mathbb{Z}_{p^k} -module and use the Baer's criterion of injectivity to show that $\langle g \rangle$ is an injective \mathbb{Z}_{p^k} -module and therefore the short exact sequence $0 \to \langle g \rangle \to G \to G/\langle g \rangle \to 0$ splits.

Definition. Let G be an abelian group. A torsion of G is the subgroup $T(G) := \{g \in G; ord(g) < \infty\}$. We say that G is torsion-free if T(G) = 0.

Exercise 3. Let G be a finitely generated torsion-free abelian group. Show that $G \cong \mathbb{Z}^b$:

- Suppose $G = \langle g_1, \ldots, g_n \rangle$. Show that if g_i are linearly independent (for $a_i \in \mathbb{Z}$ holds $\sum a_i g_i = 0 \iff (\forall i \ a_i = 0)$), then $G \cong \mathbb{Z}^n$.
- Suppose g_i are not linearly independent, let $S_{(g_1,\ldots,g_n)} = \{(a_i) \in \mathbb{Z}^n; \sum a_i g_i = 0\}$. For $a = (a_i) \in S_{(g_1,\ldots,g_n)}$ define $||a|| = \sum |a_i|$. Take an *n*-element generating set (h_1,\ldots,h_n) and $a \in S_{(h_1,\ldots,h_n)}$, such that ||a|| is the smallest possible.
- For $i \neq j \in \{1, \ldots, n\}$ and $\lambda \in \mathbb{Z}$, observe that $h' = (h_1, \ldots, h_{i-1}, h_i + \lambda h_j, h_{i+1}, \ldots, h_n)$ is a generating set with $a' = (a_1, \ldots, a_{j-1}, a_j \lambda a_i, a_{j+1}, \ldots, a_n) \in S_{h'}$. Show that a must be zero in all components except one.
- Show that ||a|| = 1 and conclude that there exists an (n-1)-element generating set of G. Use the induction to show that $G \cong \mathbb{Z}^b$.

Exercise 4. Let G be a finitely generated abelian group. Show that G/T(G) is torsion-free and finitely generated, $G \cong T(G) \times (G/T(G))$ (similarly as in the Exercise 2.), T(G) is finitely generated and therefore finite. Conclude the existence part of the theorem.

Exercise 5. Show that if $G \cong \prod_{i \in \mathbb{N}} (\mathbb{Z}_{p^i})^{a_i}$, then you can determine a_i from the orders of elements. Show that if $G \cong \mathbb{Z}^a$, then $|Hom(G, \mathbb{Z}_2)| = 2^a$. Use this to prove the uniqueness part of the theorem.