Introduction to Group Theory (NMAG337) Exercise sheet 5 1. 11. 2022

Definition. Let G be a group, $a, b \in G$. The commutator of a and b (denoted [a, b]) is $aba^{-1}b^{-1}$. The commutator subgroup [G, G] (sometimes also G' or $G^{(1)}$) is defined as $\langle [a, b]; a, b \in G \rangle$.

Exercise 1. Let G be a group, $H \leq G$. Show that G/H is abelian if and only if $[G, G] \leq H$.

Exercise 2. Compute [G,G] for $G \in \{Q, A_4, S_4, D_{2n}\}$. *Hint: The previous exercise might be helpful.*

Exercise 3. Let G be a group of order pq, $p \neq q$ primes. Use the Sylow theorems to show that G is not simple (it has a non-trivial normal subgroup).

Exercise 4. Let p < q be primes, gcd(p, q - 1) = 0, let G be a group of order pq. Show that $G \cong \mathbb{Z}_{pq}$

Exercise 5. Let G be a finite group and for every prime p let G_p be some p-Sylow subgroup of G. Show that $G = \langle \bigcup G_p \rangle$.

Exercise 6. Find a *p*-Sylow subgroup of S_n :

- Show that we have an injective homomorphism $S_a \times S_b \to S_{a+b}$.
- Let $n = \sum a_i p^i$. Show that we have an injective homomorphism $\prod (S_{p^i})^{a_i} \to S_n$.
- Show that if $G_{p,i}$ is a p-Sylow subgroup of S_{p^i} , then $\prod (G_{p,p^i})^{a_i}$ (when considered as a subgroup of S_n) is a p-Sylow subgroup. Conclude that we only need to find $G_{p,i}$.
- Observe that $(G_{p,i})^p$ is almost a *p*-Sylow subgroup of $S_{p^{i+1}}$. To be more specific, show that $[S_{p^{i+1}}:(G_{p,i})^p]=pq, \ gcd(p,q)=1.$
- Find a subgroup $G_{p,i+1}$ satisfying $(G_{p,i})^p \le G_{p,i+1} \le S_{p^{i+1}}$ and $[G_{p,i+1}: (G_{p,i})^p] = p$.

Exercise 7. Let G be a (possibly infinite group), P its maximal p-subgroup, such that $Conj(P) = \{gPg^{-1}; g \in G\}$ is finite. Show that $|Conj(P)| \equiv 1 \pmod{p}$.

Exercise 8. Let G be a group of order p^2q , $p \neq q$ primes. Show that G is not simple. *Hint: Use the Sylow theorems to find bounds between p and q. You may want to do the case* |G| = 12 *separately.*