Introduction to Group Theory (NMAG337) Exercise sheet 4 25. 10. 2022

Definition 1. Let G be a group, $H \leq G$. We say that H is:

- a characteristic subgroup of G if $\varphi(H) = H$ for any $\varphi \in Aut(G)$
- a fully characteristic subgroup if $\varphi(H) \subseteq H$ for any $\varphi \in End(G)$

Exercise 1. It is easy to see that (fully characteristic) \implies (characteristic) \implies (normal). Show that the opposite implications doesn't hold.

Exercise 2. Let $H \leq G$ be normal / characteristic / fully characteristic and $K \leq H$ be normal / characteristic / fully characteristic subgroup of H. What can you say about $K \leq G$?

Exercise 3. Let G be a group. Is Z(G) characteristic/fully characteristic subgroup of G? What about [G, G]?

Exercise 4. Let $G \to S_X$ be a group action and $x \in X$. Show that Fix(x) is a normal subgroup of G if and only if Fix(x) = Fix(y) for any y in the orbit of x.

Exercise 5. Let G, H be finite groups, gcd(|G|, |H|) = 1. Show that $Aut(G \times H) = Aut(G) \times Aut(H)$.

Exercise 6. Show that $SU(2)/\{\pm I\} \cong SO(3)$:

• Define an isomorphism of vector spaces between \mathbb{R}^3 and the space S of purely imaginary quaternions given by

$$f: \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

• Check that

$$g: w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \mapsto \begin{pmatrix} w + \mathbf{i}x & y + \mathbf{i}z \\ -y + \mathbf{i}z & w - \mathbf{i}x \end{pmatrix}$$

is an isomorphism between the group of quaternions of unit length (containing not just $\pm 1, \pm \mathbf{i}, \pm \mathbf{j}$ and $\pm \mathbf{k}$, but also elements such as $\sqrt{2} + \sqrt{2}\mathbf{i}$) and SU(2).

- Let u be a quaternion of unit length and v be a purely imaginary quaternion. Show that $\varphi_u(v) := uvu^{-1}$ is a purely imaginary quaternion. Show that $f^{-1} \circ \varphi_u \circ f \in SO(3)$ and that this defines a homomorphism $\psi : SU(2) \to SO(3)$.
- Show $Ker(\psi) = \{\pm I\}.$
- Show that if $(x, y, z)^T$ is a unit vector in \mathbb{R}^3 and $\alpha \in \mathbb{R}$, then $\cos(\alpha) + \sin(\alpha)(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$ correspond to the rotation by 2α around the axis $(x, y, z)^T$. Conclude that ψ is surjective. *Hint: This may be easier to see if you notice that the multiplication of purely imaginary* quaternions behaves like a cross product of vectors in \mathbb{R}^3 .

Exercise 7. Let φ be the rotation by 180° in D_{4n} . Show that $D_{4n}/\{id,\varphi\} \cong D_{2n}$.