# Introduction to Group Theory (NMAG337) 

Exercise sheet 2
11. 10. 2022

Exercise 1. Show that a group of order $p_{1}^{n_{1}} \cdots \cdots p_{k}^{n_{k}}$ can be generated by $\sum_{i=1}^{k} n_{k}$ elements.
Exercise 2. Suppose $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $x_{i} x_{j}=x_{j} x_{i}$ for all $1 \leq i, j \leq n$. Show that $G$ is abelian.
Exercise 3. Find the center $Z(G)=\{x \in G ; \forall g \in G x g=g x\}$ of the group $G=D_{2 n}$ (the $2 n$ element group of symmetries of a regular $n$-sided polygon).
Exercise 4. Find the subgroups of $D_{12}$ (the group of symmetries of a hexagon):

- Find the order of each element of the group.
- Use this to determine all the cyclic subgroups.
- Let $x, y$ be two elements, which are not in a common cyclic subgroup. How does the Lagrange's theorem restrict the possible sizes of $\langle x, y\rangle$ ? For which $x$ and $y$ this guarantees $\langle x, y\rangle=D_{12}$ ?
- Suppose $x$ is a rotation, $y$ is a reflection and $\operatorname{ord}(x) \neq 6$. Find a geometric object in the plane, which is conserved by both $x$ and $y$ (like the hexagon is), but it is not conserved by some other element of $D_{12}$. Use this object to show that $\langle x, y\rangle \neq G$.
- Suppose that $x$ and $y$ are both reflections. Show that $\langle x, y\rangle$ must contain some non-trivial rotation. From that conclude that $\langle x, y\rangle$ is either $G$ or one of the already found subgroups.
- List all of the subgroups of $D_{12}$.

Exercise 5. Find the subgroups of $A_{4}$ :

- Find the order of elements and the cyclic subgroups.
- Show that $A_{4}$ has no subgroup $H$ of order 6. Hint: According to previous exercise sheet, any such subgroup would be normal. Based on the order of $x \in A_{4}$, what could be its image in the map $G \rightarrow G / H$ ?
- Find all of the subgroups of $A_{4}$.

Exercise 6. Show that a group $G$ of order $p^{2}$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ :

- If there exists an element of order $p^{2}$, show the isomorphism.
- Suppose there isn't such element. What are the possible orders of elements of $G$ ?
- How many non-trivial subgroups does $G$ have?
- Let $X$ be the set of all non-trivial subgroups of $G$. Show that for $g \in G, \pi_{g}: X \rightarrow X$, $H \mapsto g H g^{-1}$ is a permutation on $X$.
- Show that $\pi: g \mapsto \pi_{g}$ is a homomorphism of groups $G \rightarrow S_{X}$.
- From the orders of $G$ and $S_{X}$ determine how many elements can $\operatorname{Im}(\pi)$ have. Use this to show that $G$ has a non-trivial normal subgroup $H$.
- Similarly define a conjugation homomorphism $G \rightarrow S_{H \backslash\{e\}}$. Use it to show that $H \subseteq Z(G)$.
- Show that $G$ is abelian and isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

