Introduction to Group Theory (NMAG337)
 Exercise sheet 11
 20. 12. 2022
 (4 days until Christmas)

Exercise 1. Let G be a finite simple group, H a nontrivial subgroup of G. Show that if

- $\left|\operatorname{Conj}_{G}(H)\right|=n$, then $n!\geq|G|$.
- $[G: H]=n$, then $n!\geq|G|$.

Hint: consider the action of G on $\operatorname{Conj}_{G}(H)$ or the cosets of H. You can also show that $[G: H] \geq$ $\left|C o n j_{G}(H)\right|$ and solve the second part using the first part.

Exercise 2. Suppose that in the previous exercise $n \neq 2$. (In other words, suppose that A_{n} is a nontrivial normal subgroup of S_{n}.) Show that $\frac{n!}{2} \geq|G|$ and that the equality can hold only if $G \cong A_{n}$. Use this to show that there is no injective homomorphism $S_{n} \rightarrow A_{n+1}$.

Exercise 3. Show that the group G of rotations of a cube is isomorphic to S_{4} and the group H of all of its symmetries is isomorphic to $S_{4} \times \mathbb{Z}_{2}$

- Compare the orders of the groups that should be isomorphic and check that they are equal.
- Consider the action of the group of rotations on the set of 4 diagonals of the cube. Show that this homomorphism $G \rightarrow S_{4}$ is injective and conclude that it is an isomorphism.
- Find a normal 2-element subgroup of H, use it to find the isomorphism $H \cong S_{4} \times \mathbb{Z}_{2}$.

Exercise 4. Show that the group G of rotations of a regular dodecahedron (the Platonic solid with 12 faces) is isomorphic to A_{5} and the group H of all of its symmetries is isomorphic to S_{5} :

- Compare the orders of the groups that should be isomorphic and check that they are equal.
- On the union of edges of the dodecahedron, define a metric $d(A, B)$ as the length of the shortest path from A to B going only on the edges. Let X be the set of the 30 centres of edges. Define a relation \sim on X as $A \sim B \Longleftrightarrow d(A, B) \in\{0,3,6\}$. Show that \sim is an equivalence relation.
- Observe that the group of rotations/symmetries acts on the 5 -element set X / \sim. Show that these homomorphisms $G \rightarrow S_{5}, H \rightarrow S_{5}$ are injective. Conclude the result.

Note: the group of rotations/symmetries is the same for a cube and an octahedron and for a dodecahedron and an icosahedron since you get one platonic solid from the other by connecting the centres of faces.

Exercise 5. Let $\varphi: \mathbb{Z}_{2} \rightarrow \operatorname{Aut}\left(S_{3}\right)$ be defined by $1 \mapsto(\pi \mapsto(12) \pi(12))$. Show that $S_{3} \rtimes_{\varphi} \mathbb{Z}_{2} \cong S_{3} \times \mathbb{Z}_{2}$. (Compare this with Ex. 4, Sh. $7: H \rtimes_{\varphi} K$ is abelian if and only if H, K are abelian and $\varphi_{k}=i d_{H}$ for all $k \in K$)

Exercise 6. It can be shown that a subgroup of a finitely generated abelian subgroup is finitely generated. Show that this doesn't hold for groups in general: let G be the subgroup of $S_{\mathbb{Z}}$ generated by $a \mapsto a+1$ and the transposition (12), find a subgroup of G, which is not finitely generated.

