
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 8 - THE ISOMORPHISM THEOREMS,

CONGRUENCES, AND KERNELS

PAVEL RŮŽIČKA

8.1. The isomorphisms theorems.

Theorem 8.1 (The 1st isomorphism theorem). Let φ : G → H be a
group homomorphism. The image φ(G) of φ is a subgroup of H and

φ(G) ≃ G/ kerφ.
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Figure 1. The 1st isomorphism theorem

Proof. Since φ is a group homomorphism, we have that φ(g) ·φ(h)−1 =
φ(g ·h−1) ∈ φ(G), for all g, h ∈ G. Therefore φ(G) is a subgroup of H .
It follow from Theorem 7.10 that there is an embedding ψ : G/ kerφ→
φ(G) such that φ = ψ ◦ πG/ kerφ. Thus ψ induces an isomorphism
between G/ kerφ and φ(G). �

Lemma 8.2. Let N , H be subgroups of a group G.

(i) If N E G or H E G, then N ·H is a subgroup of G.
(ii) If both N E G and H E G, then N ·H E G.

Proof. (i) Since N E G or H E G, then N · H = H · N . It follows
that

(N ·H) · (N ·H) = N ·N ·H ·H = N ·H,
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hence N ·H is a sub-universe of G. For all n ∈ N and h ∈ H, we have
that (n · h)−1 = h−1 · n−1 ∈ H ·N = N ·H. We conclude that N ·H
is a subgroup of G.

(ii) If both N and H are normal subgroup of G, then g · N · H =
N · g ·H = N ·H · g, for all g ∈ G. It follows the subgroup N ·H is
normal due to Lemma 6.6. �
Remark 8.3. Observe that N ·H is the least subgroup (resp. normal
subgroup) of G containing both the groups N and H and if at least
one of the subgroups N and H is normal (resp. both the subgroups
N and H are normal), then N ∩H is the greatest common subgroup
(resp. normal subgroup) of N and H .

Theorem 8.4 (The 2nd isomorphism theorem). Let G be a group, H
a subgroup of G, and N a normal subgroups of G. Then N ·H is a
subgroup G,

N ∩ H E H , and H/(N ∩ H) ≃ (N ·H)/N .
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Figure 2. The 2nd isomorphism theorem

Proof. The product N ·H is a subgroup of G due to Lemma 8.2 (i).
Since N E H , we have according to Lemma 6.6 that h ·(N∩H) ·h−1 ⊆
(h · N · h−1) ∩ (h · H · h−1) ⊆ N ∩ H, for all h ∈ H. It follows that
N ∩ H E H . Note that

g · h−1 ∈ N ∩H if and only if g · h−1 ∈ N,

for all g, h ∈ H. Applying Corollary 5.3, we infer that

g · (N ∩H) = h · (N ∩H) if and only if g ·N = h ·N,
for all g, h ∈ H. It follows that we can define a group embedding
H/(N ∩ H) → (N ·H)/N by h · (N ∩H) 7→ h ·N . It is clear that
(N ·H)/N = {h ·N | h ∈ H}, hence the map is an isomorphism. �
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Theorem 8.5 (The 3rd isomorphism theorem). Let G be a group and
N , K normal subgroups of G. If K ⊆ N , then

N/K E G/K and G/N ≃ (G/K)
/
(N/K).

Proof. Since K E G, we have that

(g ·K) · (n ·K) · (g ·K)−1 = g ·K · n ·K · g−1 ·K = g · n · g−1 ·K
for all n ∈ N and g ∈ G. Since N E G, there is n′ ∈ N such that
g · n · g−1 = n′, hence

(g ·K) · (n ·K) · (g ·K)−1 = n′ ·K,
for some n′ ∈ N . It follows that N/K E G/K.

Let g, h ∈ G. If g · h−1 ·K ∈ N/K, then g · h−1 ·K = n ·K, for some
n ∈ N . It follows that g · h−1 ∈ N . From this we infer that

g · h−1 ∈ N if and only if g · h−1 ·K ∈ N/K, for all g, h ∈ G,

and so

g ·N = h ·N if and only if (g ·K) ·N/K = (h ·K) ·N/K,
for all g, h ∈ G. Therefore we can define a map

G/N → (G/K)
/
(N/K)

by g ·N 7→ (g ·K) · (N/K). It is straightforward to verify that the map
is a group isomorphism. �

8.2. Congruences of algebras. Let A be an algebra of a given sig-
nature I = ⟨I0, I1, . . .⟩ (cf. Subsection 2.3).

Definition 8.6. A congruence of the algebra A is an equivalence re-
lation θ on the set A satisfying

(8.1) ∀ i = 1, . . . , k : ai ≡θ bi =⇒ fk
i (a1, . . . , ak) ≡θ f

k
i (b1, . . . , bk),

for all k ∈ N0, i ∈ Ik, and a1, . . . , ak, b1, . . . , bk ∈ A.

We denote by [a]θ the θ-block of a ∈ A, that is,

[a]θ := {b ∈ A | a ≡θ b},
and we set

A/θ := {[a]θ | a ∈ A}.
It follows from (8.1) that we can define

fk
i ([a1]θ, . . . , [ak]θ) := [fk

i (a1, . . . , ak)]θ,

for all k ∈ N0, i ∈ Ik, and a1, . . . , ak, b1, . . . , bk ∈ A and so make the
set A/θ an algebra A/θ of the signature I. The algebra A/θ is called
a factor algebra of A by the congruence θ.
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Definition 8.7. Let I = ⟨I0, I1, . . .⟩ be a signature, and A, B algebras
of the signature I. A map φ : A → B is a homomorphism from the
algebra A to the algebra B provided that

(8.2) φ(fk
i (a1, . . . , ak)) = fk

i (φ(a1), . . . , φ(ak)),

for all k ∈ N0, i ∈ Ik, and a1, . . . , ak ∈ A. That is a homomorphism is
a map preserving all operations.

Lemma 8.8. Let A be an algebra of a signature I = ⟨I0, I1, . . .⟩, let
θ be a congruence of A. The map πA/θ : A → A/θ given by the corre-
spondence a 7→ [a]θ induces a homomorphism πA/θ : A → A/θ. It is
called the canonical homomorphism onto the factor algebra A/θ.

Proof. Let k ∈ N0, i ∈ Ik, and a1, . . . , ak, b1, . . . , bk ∈ A. It follows
from (8.1) that

πA/θ(f
k
i (a1, . . . , ak)) = [fk

i (a1, . . . , ak)]θ = fk
i ([a1]θ, . . . , [ak]θ)

= fk
i (πA/θ(a1), . . . , πA/θ(ak)).

Therefore πA/θ : A → A/θ is a homomorphism. �
Definition 8.9. Let A, B be algebras of the same signature and
φ : A → B their homomorphism. The kernel of the homomorphism φ
is an equivalence on A defined by

kerφ := {(a, b) ∈ A× A | φ(a) = φ(b)}.

It is straightforward from the definitions that the kernel of a homo-
morphism φ : A → B is a congruence of A. On the other hand a
congruence θ of an algebra A is the kernel of the canonical homomor-
phism πA/θ : A → A/θ. That is, congruences correspond to kernels of
homomorphisms.

The homomorphism theorem and the three isomorphism theorems
can be reformulated in the setting of general algebras and their ho-
momorphisms. We will limit ourselves to the first two of them, Theo-
rems 7.10 and 8.1. Their proves closely follow these for groups and we
will omit them.

Theorem 8.10 (The homomorphism theorem). Let A, B be algebras
of the same signature and φ : A → B their homomorphism. Let θ be
congruence of the algebra A.There is a homomorphism ψ : A/θ → B
such that φ = ψ ◦ πA/θ is and only if θ ⊆ kerφ.

Moreover ψ is an embedding if and only if θ = kerφ.

Theorem 8.11 (The 1st isomorphism theorem). Let A, B be algebras
of the same signature and φ : A → B their homomorphism. The image
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φ(A) is a sub-universe of B and

φ(A) ≃ A/ kerφ.

8.3. Congruences modulo normal subgroups. Let N be a sub-
group of a group G. We proved in Lemma 5.4 that the relation ≡N

defined by f ≡N g if g−1 · f ∈ N , for all f, g ∈ G, is an equivalence on
G and that the blocks of ≡N correspond to left cosets of N .

Lemma 8.12. If N is a normal subgroup of a group G, then ≡N is a
congruence of G.

Proof. Suppose that f1 ≡N g1 and f2 ≡N g2 for some f1, f2, g1, g2 ∈ G.
By the definition we have that g−1

i ·fi ∈ N , for both i = 1, 2. SinceN is
a normal subgroup of G, we infer from Lemma 6.6 that f2 ·N = N ·f2.
It follows that (g1 · g2)−1 · (f1 · f2) = g−1

2 · g−1
1 · f1 · f2 ∈ g−1

2 ·N · f2 =
g−1
2 · f2 ·N ⊆ N , hence f1 · f2 ≡N g1 · g2.
Let f, g ∈ G. Since N is a normal subgroup of G, we have according

to Corollary 6.9 that if g−1 · f ∈ N , then f · g−1 = g−1 · f ∈ N , hence
(g−1)−1 · f−1 = g · f−1 = (f · g−1)−1 ∈ N . Therefore f ≡N g implies
f−1 ≡N g−1. �

We call ≡N the congruence modulo N and if f ≡N g, we say that f
is congruent to g modulo N .

Lemma 8.13. Let θ be a congruence of a group G. Then the block of
unit N := [uG]θ is a normal subgroup of G and θ equals ≡N .

Proof. Since N = [uG]θ = {g ∈ G | πG/θ(g) = uG/θ}, N forms a normal
subgroup of G due to Lemma 7.7. For all f, g ∈ G we have that

g−1 · f ∈ N ⇐⇒ πG/θ(g
−1 · f) = uG/N ⇐⇒ πG/θ(f) = πG/θ(g),

hence g ≡N f ⇐⇒ g ≡θ f . �
It follows that the kernels of group homomorphism defined by Defi-

nition 8.9 are determined by their blocks of the unit and the blocks are
normal subgroups. Moreover a normal subgroup is a block of unit of a
unique group congruence. This justifies Definition 7.6.


