ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 8 - THE ISOMORPHISM THEOREMS,
CONGRUENCES, AND KERNELS

PAVEL RUZICKA

8.1. The isomorphisms theorems.

Theorem 8.1 (The 1st isomorphism theorem). Let ¢: G — H be a
group homomorphism. The image p(G) of ¢ is a subgroup of H and

0(G) ~ G/ ker p.
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F1GURE 1. The 1st isomorphism theorem

Proof. Since ¢ is a group homomorphism, we have that p(g)-(h)™! =
o(g-h™) € p(G), for all g, h € G. Therefore ¢(G) is a subgroup of H.
It follow from Theorem 7.10 that there is an embedding ¢: G/ ker p —
¢(G) such that ¢ = ¥ o TG kerp. Thus ¢ induces an isomorphism
between G/ ker ¢ and ¢(G). O

Lemma 8.2. Let N, H be subgroups of a group G.
(i) If N QG or H <G, then N - H is a subgroup of G.
(ii) If both N < G and H < G, then N - H < G.
Proof. (i) Since N 9 G or H < G, then N-H = H - N. It follows
that
(N-H)-(N-H)=N-N-H-H=N-H,
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hence N - H is a sub-universe of G. For alln € N and h € H, we have
that (n-h)™ ' =h™'-n"' € H-N = N-H. We conclude that N - H
is a subgroup of G.

(ii) If both N and H are normal subgroup of G, then g- N - H =
N-g-H=N-H-g, for all g € G. It follows the subgroup N - H is
normal due to Lemma 6.6. U

Remark 8.3. Observe that IN - H is the least subgroup (resp. normal
subgroup) of G containing both the groups IN and H and if at least
one of the subgroups IN and H is normal (resp. both the subgroups
N and H are normal), then N N H is the greatest common subgroup
(resp. normal subgroup) of N and H.

Theorem 8.4 (The 2nd isomorphism theorem). Let G be a group, H
a subgroup of G, and N a normal subgroups of G. Then N - H is a
subgroup G,

NNH<H, and H/(NNH)~(N-H)/N.
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FI1GURE 2. The 2nd isomorphism theorem

Proof. The product N - H is a subgroup of G due to Lemma 8.2 (i).
Since N < H | we have according to Lemma 6.6 that h- (NN H)- ht C
(h-N-BYn(h-H-h')yC NNH, for all h € H. Tt follows that
N N H < H. Note that

g-h*e NNnHifandonlyifg-h™' €N,
for all g,h € H. Applying Corollary 5.3, we infer that
g-(NNH)=h-(NNH)ifand only if g- N =h- N,

for all g,h € H. It follows that we can define a group embedding
H/(NNH)— (N-H)/Nbyh-(NNH)— h-N. It is clear that
(N-H)/N={h-N|he€ H}, hence the map is an isomorphism. [J
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Theorem 8.5 (The 3rd isomorphism theorem). Let G be a group and
N, K normal subgroups of G. If K C N, then
N/K <G/K and G/N ~(G/K)/(N/K).
Proof. Since K < G, we have that
(g~K)-(n-K)-(g-K)_l:g-K-n-K-g_l-K:g-n-g_1~K

for alln € N and g € G. Since N < G, there is n’ € N such that
g-n-g~' =n', hence

(9-K)-(n-K)-(g-K)'=n""K,

for some n’ € N. It follows that N/K < G/K.
Let g h e G. If g-h - K € N/K, then g-h™!- K = n- K, for some
n € N. It follows that g- h~' € N. From this we infer that

g-hteNifandonlyif g-h™'- K € N/K, for all g,h € G,
and so
g-N=h-Nifandonlyif (¢- K)- N/K = (h-K)-N/K,
for all g, h € G. Therefore we can define a map
G/N = (G/K)/(N/K)
by g-N — (g-K)-(N/K). It is straightforward to verify that the map
is a group isomorphism. O

8.2. Congruences of algebras. Let A be an algebra of a given sig-
nature Z = (Iy, I1,...) (cf. Subsection 2.3).

Definition 8.6. A congruence of the algebra A is an equivalence re-
lation € on the set A satisfying

(81) Vi=1,...,k:a;=gb; = fFlay,...,ax) =¢ f¥(by,...,bp),
for all K € Ny, i € Iy, and ay,...,ag,by,..., b, € A.
We denote by [a]g the 6-block of a € A, that is,
[alg :=={b€ A|a=yb},

and we set
AJ0 = {[a]s | a € A}.
It follows from (8.1) that we can define

fik([al]g, ey [ak]g) = [ff(al, Ce ,ak)]g,

for all k € Ny, i € I}, and aq,...,a,b1,...,bp € A and so make the
set A/0 an algebra A/0 of the signature Z. The algebra A/f is called
a factor algebra of A by the congruence 6.
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Definition 8.7. Let Z = (I, I1, . ..) be a signature, and A, B algebras
of the signature Z. A map p: A — B is a homomorphism from the
algebra A to the algebra B provided that

(8'2) So(fz‘k(alv S 7ak’)) = fik((p(al)a R ¢(ak))7

for all k € Ny, 7 € Iy, and aq,...,ar € A. That is a homomorphism is
a map preserving all operations.

Lemma 8.8. Let A be an algebra of a signature T = (Iy, I1,...), let
0 be a congruence of A. The map Ta/9: A — A/0 given by the corre-
spondence a — |alg induces a homomorphism Tas9: A — A/J0. It is
called the canonical homomorphism onto the factor algebra A/6.

Proof. Let k € Ny, ¢ € Iy, and ay,...,ag,b1,...,b, € A. It follows
from (8.1) that

wa(fi(an, .. an)) = [ffar, .. an)lo = fF([ao, - -, [arlo)
= fzk(ﬁA/e(al)a cee aﬂ—A/@(ak>>-
Therefore m4/9: A — A/0 is a homomorphism. O

Definition 8.9. Let A, B be algebras of the same signature and
¢: A — B their homomorphism. The kernel of the homomorphism ¢
is an equivalence on A defined by

kerp :={(a,b) € Ax A| p(a) = p(b)}.

It is straightforward from the definitions that the kernel of a homo-
morphism ¢: A — B is a congruence of A. On the other hand a
congruence # of an algebra A is the kernel of the canonical homomor-
phism m4/9: A — A/0. That is, congruences correspond to kernels of
homomorphisms.

The homomorphism theorem and the three isomorphism theorems
can be reformulated in the setting of general algebras and their ho-
momorphisms. We will limit ourselves to the first two of them, Theo-
rems 7.10 and 8.1. Their proves closely follow these for groups and we
will omit them.

Theorem 8.10 (The homomorphism theorem). Let A, B be algebras
of the same signature and @: A — B their homomorphism. Let 6 be
congruence of the algebra A.There is a homomorphism 1p: A/ — B
such that ¢ =1 omayg is and only if 0 C ker p.

Moreover v is an embedding if and only if 6 = ker ¢.

Theorem 8.11 (The 1st isomorphism theorem). Let A, B be algebras
of the same signature and ¢: A — B their homomorphism. The image



©(A) is a sub-universe of B and
©(A) ~ A/ ker .

8.3. Congruences modulo normal subgroups. Let IN be a sub-
group of a group G. We proved in Lemma 5.4 that the relation =y
defined by f=ngif g7'- f € N, for all f,g € G, is an equivalence on
G and that the blocks of =y correspond to left cosets of IN.

Lemma 8.12. If N is a normal subgroup of a group G, then =y is a
congruence of G.

Proof. Suppose that f; =y g1 and fy =x g2 for some fi, f5,91,92 € G.
By the definition we have that g; - f; € N, for both i = 1,2. Since N is
a normal subgroup of G, we infer from Lemma 6.6 that fo- N = N - fs.
It follows that (g1 -g2) ™" - (fr-f2) =92 -1 -fi-fa€ g5 - N-fo=
ga' - fa- N C N, hence fi- fo =n g1 go-

Let f,g € G. Since N is a normal subgroup of G, we have according
to Corollary 6.9 that if g7 - f € N, then f-g~ ' =g~ ' f € N, hence
(gt ft=g-f'=(f-g')' € N. Therefore f =y g implies
fl=ngt. O

We call =y the congruence modulo N and if f =y g, we say that f
15 congruent to g modulo N .

Lemma 8.13. Let 0 be a congruence of a group G. Then the block of
unit N := [uglg is a normal subgroup of G and 0 equals =y .

Proof. Since N = [uglo = {9 € G | 7g9(9) = ugo}, N forms a normal
subgroup of G due to Lemma 7.7. For all f,g € G we have that

g fEN = mgu(g™" - f)=ugn = Ten(f)="7cn(9),
hence g =y f <= 9=y f. U

It follows that the kernels of group homomorphism defined by Defi-
nition 8.9 are determined by their blocks of the unit and the blocks are

normal subgroups. Moreover a normal subgroup is a block of unit of a
unique group congruence. This justifies Definition 7.6.



