
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 7 - HOMOMORPHISMS AND KERNELS

PAVEL RŮŽIČKA

7.1. Group homomorphisms. Let G = (G, ·) and H = (H, ·) be
groups. A (group) homomorphism φ : G → H is a map φ from the set
G to H such that φ(f · g) = φ(f) · φ(g), for all f, g ∈ G.

Lemma 7.1. Let φ : G → H be a group homomorphism, uG and uH
respectively the units of G and H. Then φ(uG) = uH and φ(g−1) =
φ(g)−1, for all g ∈ G.

Proof. We have from the definition that

uH · φ(uG) = φ(uG) = φ(uG · uG) = φ(uG) · φ(uG)
Since the group operation is right cancellative, we infer that uH =
φ(uG). For an element g ∈ G we have that

φ(g−1) = uH · φ(g−1) = (φ(g)−1 · φ(g)) · φ(g−1)

= φ(g)−1 · (φ(g) · φ(g−1)) = φ(g)−1 · (φ(g · g−1)

= φ(g)−1 · φ(uG) = φ(g)−1 · uH = φ(g)−1.

�
A (group) embedding is an one-to-one group homomorphism. We say

that a group G can be embedded into a group H if there is a group
embedding G → H .

A (group) isomorphism is a group homomorphism that is both one-
to-one and onto. Groups G and H are called isomorphic provided that
there is a group isomorphism G → H .

For each group G let us denote by 1G the identity map G→ G. The
map is clearly a (group) homomorphism and we will call the identity
isomorphism of G.

Lemma 7.2. A group homomorphism φ : G → H is an isomorphism if
and if there is a group homomorphism ψ : H → G such that ψ◦ϕ = 1G

and ϕ ◦ ψ = 1H . That is, a group homomorphism is an isomorphism
if and only if it has an inverse.
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Proof. (⇐) It follows from ψ ◦ ϕ = 1G that ϕ is one-to-one. From
ϕ ◦ ψ = 1H we infer that ϕ maps G onto H. (⇒) Since φ is a one-
to-one map from G onto H, each h ∈ H has a unique g ∈ G with
φ(g) = h. We define ψ(h) = g. From φ(ψ(h)) = φ(g) = h we get that
φ ◦ ψ = 1H . From the choice of ψ(φ(g)) as the unique φ-preimage
φ(g), we see that ψ(φ(g)) = g, for all g ∈ G. Therefore ψ ◦ φ = 1G.
Let f and h be arbitrary elements of H. Since φ is a homomorphism,
we have that

ψ(f · h) = ψ((φ ◦ ψ)(f) · (φ ◦ ψ)(h)) = ψ(φ(ψ(f)) · φ(ψ(h))))
= ψ(φ(ψ(f) · ψ(h))) = (ψ ◦ φ)(ψ(f) · ψ(h)) = ψ(f) · ψ(h).

It follows that ψ : H → G is a group homomorphism. �
We say that groups G and H are isomorphic, which we denote

by G ≃ H , if there is an isomorphism G → H . Observe that the
inverse to an isomorphism is again an isomorphism and a composition of
isomorphisms gives an isomorphism. It follows that the binary relation
≃ defined on the class of all groups is symmetric and transitive. Since
each group is isomorphic to itself via the identity isomorphism, ≃ is an
equivalence relation.

Obviously, a group isomorphism G → H transfers properties of the
groupG to properties ofH . Thus saying that some (group) property is
unique up to isomorphism means that the property determines a group
up to its isomorphism class (i.e, the block of ≃).

Given a set X we denote by SX the set of all one-to-one maps from X
ontoX. The set is equipped with the binary operation ◦ of composition
of maps and thus it forms a group called the symmetric group of the
set X and denote by SX . Clearly, for finite sets X and Y the groups
SX and SY are isomorphic if and only if the sets X and Y have the
same size. In particular, if X is an n-element set, then SX ≃ Sn.

Theorem 7.3 (Cayley). Every group can be embedded into a symmet-
ric group of its underlying set.

Proof. Let G = (G, ·) be a group. For each f, g ∈ G we set λ(f)(g) =
f · g. Thus we have defined a map λ(f) : G → G for all f ∈ G. From
the left cancellativity of the group operation it follows that λ(f)(g) ̸=
λ(f)(h) whenever g ̸= h, hence the mat λ(f) is one-to-one. The left
divisibility of the group operation implies that λ(f) maps G onto G.
Therefore λ can be regarded as a map from G to SG. Since

λ(f · g)(h) = (f · g) · h = f · (g · h) = λ(f)(λ(g)(h)) = (λ(f) ◦ λ(g))(h),
for all f, g, h ∈ G, and so λ(f · g) = λ(f) ◦ λ(g), the map is a group
homomorphism λ : G → SG. Let u denote the unit of G. If f ̸= g in
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G, then

(7.1) λ(f)(u) = f · u = f ̸= g = g · u = λ(g)(u),

in particular λ(f) ̸= λ(g). We conclude that λ is a group embedding.
�

Corollary 7.4. A finite group embeds into Sn, where n is the size of
the group.

Remark 7.5. The map λ : G → SG is called a left translation in G.
Similarly we can define a right translation, say ρ, by ρ(f)(g) = g · f−1

(we need the inverse of f to make ρ an homomorphism) and prove that
it induces another embedding ρ : G → SG. Observe that in the proof of
Theorem 7.3 we only needed the left cancellativity, the left divisibility,
and the existence of a right unit (respectively the right cancellativity,
the right divisibility, and the existence of a left unit if we argue using
ρ instead of λ). This gives an elegant solution of Exercies 2.4.

7.2. Kernels of group homomorphisms.

Definition 7.6. Let φ : G → H be a group homomorphism. A kernel
of the homomorphism φ is the set

kerφ := {g ∈ G | φ(g) = uH},
where uH denotes the unit of H .

Observe that the kernel of a homomorphism contains the unit of G,
and so it is non-empty. Much more holds true:

Lemma 7.7. The kernel of a group homomorphism φ : G → H is a
normal subgroup of G.

Proof. If g, h ∈ kerφ, then

φ(g · h−1) = φ(g) · φ(h)−1 = uH · u−1
H = uH ,

and so g · h−1 ∈ kerφ. Therefore kerφ is a subgroup of G.
Let k ∈ kerφ and g ∈ G. Then

φ(g · k · g−1) = φ(g) · φ(k) · φ(g−1) = φ(g) · uH · φ(g)−1 = uH .

Therefore g · k · g−1 ∈ kerφ, and so the subgroup kerφ is normal due
to Lemma 6.8. �

Let N be a normal subgroup of a group G. The map πG/N : G →
G/N defined by g 7→ N · g = g ·N is a group homomorphism1, indeed

πG/N (g · h−1) = N · g · h−1 = N · g ·N · h−1 = (N · g) · (N · h)−1,

1Note that since N E G, we have that N · g = g ·N , for all g ∈ G.
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for all g, h ∈ G. By the definition,

kerπG/N = {g ∈ G | πG/N = N} = {g ∈ G | N · g = N} = N.

Therefore

Corollary 7.8. Normal subgroups correspond to kernels of group ho-
momorphisms.

Example 7.9. Similarly as in Example 6.11 let R denote the group
of all symmetries of a cube. We showed that R is isomorphic to the
group of permutations S4. The numbering vertices of the cube as in
Figure 1 induces an embedding α : R → S8. Similar numbering of
edges or faces of the cube respectively induces embeddings β : R → S12

or γ : R → S6.

(a) (b)
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Figure 1. The cube

Color vertices of the cube blue and red as in Figure 1 (a). Observe
that each rotation of the cube either leaves or changes the color of all
vertices. Thus the coloring induces a homomorphism δ : R → S2 from
R onto S2. Note that the kernel of the homomorphism corresponds to
the subgroup of all even permutations of the four diagonals of the cube.

We can number (and color) the faces of the cube by {1, 2, 3} so that
the opposite faces have the same number (color) as in Figure 2. This
induces a homomorphism ε : R → S3 from R onto S3.

We can insert the cube into the 3-dimensional real real vector space
so that the center of the cube correspond do the zero vector and the
centers of faces of the cube to the vectors of the canonical basis of R3

and their inverses, as in Figure 1 (b). We can view the rotations of the
cube as restrictions of one-to-one linear maps R3 → R3. The matrices
of these linear maps with respect to the canonical basis have one non-
zero entry in each line and each column, the non-zero entries are 1 or
-1, and the determinants of these matrices all equal to 1. On the other
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Figure 2. The surface of the cube

hand every such matrix correspond to some rotation of the cube. In
particular, we have an embedding ϕ : R → GL(3,R).

Consider all matrices from GL(3,R) that have one non-zero entry
in each line and each column and the non-zero entries are 1 or -1.
There are 48 of them and they form a group (together with the ma-
trix multiplication). The matrices correspond to linear maps R3 → R3

whose restriction to the cube map bijectively vertices to vertices, edges
to edges, and faces to faces. These are called symmetries of the cube.
The 48-element group of all symmetries of the cube will be denoted
by S. The symmetries that are not rotations are called reflections.
Unlike rotations, reflections cannot be realized with a real cube in our
3-dimensional world. However we could have realized them if we had
lived in a four-dimensional world.

Exercise 7.1. Let α : R → S8, β : R → S12, γ : R → S6, be as in
Example 7.9.

(i) Prove that α(R) ⊆ A8.
(ii) Decide whether β(R) ⊆ A12, γ(R) ⊆ A6.

Exercise 7.2. Let δ : R → S2 and ε : R → S3 be as in Example 7.9.

(i) Find kernels of the group homomorphisms δ and ε.
(ii) Show that ε(R) = S3.

Exercise 7.3. Describe all conjugacy classes of the group S of all
symmetries of a cube. Compute characteristic polynomials and Jordan
canonical forms of corresponding matrices.
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Exercise 7.4. Analyze the group of all rotations and the group of all
symmetries of

(i) a square.
(ii) a regular tetrahedron.

7.3. The homomorphism theorem. We prove a theorem relating
homomorphisms, kernels, and normal subgroups.

Theorem 7.10 (The homomorphism theorem). Let φ : G → H be
a group homomorphism and N a normal subgroup of G. There is a
homomorphism ψ : G/N → H such that φ = ψ ◦ πG/N if and only if
N ⊆ kerφ. The homomorphism ψ is necessarily unique.

Moreover ψ is a group embedding if and only if N = kerφ.
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Figure 3. The homomorphism theorem

Proof. (⇒) Suppose that φ = ψ◦πG/N for some ψ : G/N → H . Then
φ(n) = ψ ◦ πG/N (n) = ψ(N) = uH , hence n ∈ kerφ, for all n ∈ N .

(⇐) Suppose that N ⊆ kerφ. If f · N = g · N , for some f, g ∈ G,
then g−1 · f ∈ N due to Lemma 5.2 (iii ⇒ i). Since N ⊆ kerφ, we
have that uH = φ(g−1 · f) = φ(g)−1 · φ(f), hence φ(g) = φ(f). It
follows that we can define a map ψ : G/N → H by g · N 7→ φ(g).
Clearly ψ((f · N) · (g · N)) = ψ(f · g · N) = φ(f · g) = φ(f) · φ(g),
for all f, g ∈ G, thus ψ : G/N → H is a group homomorphism. It
is straightforward that φ = ψ ◦ πG/N and that ψ is unique with the
required properties.

Suppose that ψ is a group embedding. Let g ∈ kerϕ. We compute
that ψ(N) = uH = φ(g) = ψ(πG/N (g)) = ψ(N · g), hence N = N · g,
whence g ∈ N . It follows that kerφ ⊆ N . Since N ⊆ kerφ due to the
first part of the theorem, we conclude that N = kerφ.

Coversely, suppose that N = kerφ. Let f, g ∈ G satisfy ψ(f ·N) =
ψ(g ·N). It follow that φ(f) = φ(g), hence φ(g−1 ·f) = φ(g)−1 ·φ(f) =
uH , whence g−1 · f ∈ kerφ = N . We get that f · N = g · N , due to
Corollary 5.3. We conclude that ψ is an embedding. �
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Corollary 7.11. A group homomorphism φ : G → H is an embedding
if and only if kerφ = {uG}.


