
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 6 - NORMAL SUBGROUPS, FACTOR

GROUPS, AND CONJUGACY

PAVEL RŮŽIČKA

6.1. Normal subgroups and factor-groups.

Definition 6.1. A subgroup N of a group G is normal , (which we
denote by N E G) provided that each right coset of N is at the same
time a left coset of N .

Remark 6.2. Observe that a subgroup of a commutative group is
necessarily normal.

Example 6.3. In case of non-commutative groups it often happens
that left and right cosets of a subgroup differ (although they have the
same size by Lemma 5.5). Consider for example the 6-element sym-
metric group S3 and its 2-element subgroup, say H, with the universe
{υ3, (1, 2)}. The left cosets of H are {υ3, (1, 2)}, {(2, 3), (1, 2, 3)}, and
{(1, 3), (1, 3, 2)}, while the right cosets are {υ3, (1, 2)}, {(1, 3), (1, 2, 3)},
and {(2, 3), (1, 3, 2)}.

Lemma 6.4. Let N be a subgroup of a group G. If [G : N ] = 2, then
N E G, i.e, a subgroup of the index 2 is normal.

Proof. Since [G : N ] = 2, there are exactly two left cosets of N . Since
N is one-of them and the left cosets form a partition ofG, the remaining
one is G \N . Similarly we prove that N and G \N are the right cosets
of N , and so the left and the right cosets of N coincide. �

Since [Sn : An] = 2 whenever 2 ≤ n, we have that

Corollary 6.5. For each integer 2 ≤ n, An E Sn.

Lemma 6.6. Let N be a subgroup of a group G. The following are
equivalent:

(i) N is a normal subgroup of G,
(ii) g ·N = N · g, for all g ∈ G,
(iii) g ·N · g−1 ⊆ N , for all g ∈ G.
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Proof. (i) ⇒ (iii) Let u denote the unit of G. If N E G, the left
coset g · N is a right coset, that is, g · N = N · f , for some f ∈ G. It
follows that g = g · u = n · f , hence n−1 = f · g−1, for some n ∈ N . In
particular, f ·g−1 ∈ N . Therefore g ·N ·g−1 = N ·f ·g−1 ⊆ N ·N ⊆ N .
(iii) ⇒ (ii) Let g ∈ G. By multiplying both sides of g · N · g−1 ⊆ N
by g from the right, we get that g · N ⊆ N · g. Replacing g with g−1

we reformulate (iii) as g−1 ·N · g ⊆ N . Multiplying by both sides by g
from the left, we conclude that N · g ⊆ g ·N . Implication (ii) ⇒ (i) is
trivial. �

Given a normal subgroup N of a group G we will call left (right)
cosets of N simply cosets of N .

Lemma 6.7. Let N be a normal subgroup of a group G. The product
of cosets of N is a coset of N .

Proof. Let u denote the unit element of G. Since N is a subgroup of
G, we have that N = u ·N ⊆ N ·N ⊆ N . Let f, g ∈ G. Since N is a
normal subgroup of G, we have that g ·N = N · g, due to Lemma 6.6.
It follows that f · N · g · N = f · g · N · N = (f · g) · N , which is a
coset. �

The multiplication of cosets of a normal subgroup N is clearly asso-
ciative, N plays a role of unit, and (g ·N)−1 = g−1 ·N . Therefore, the
set of all cosets of N together with their multiplication forms a group.
We denote this group by G/N and call the factor group of G over N .
The size of the factor group G/N clearly equals [G : N ], the size of
the set of all cosets of N . In particular, if G is finite, we infer from
the Lagrange theorem that

(6.1) |G/N | = |G|
|N |

.

6.2. Conjugacy. Elements g, h of a group G are said to be conjugate
(which we denote by g ∼ h) if there is f ∈ G such that

g = f · h · f−1.

In this case we say the g is conjugate to h by f .
Clearly g is conjugate to g by the unit of G and if g is conjugate

to h by f then h is conjugate to g by f−1. It follows that the relation
∼ is reflexive and symmetric. If g is conjugate with h by f and h is
conjugate with k by e, then g is conjugate with k by f · e, indeed,
(f ·e) ·k · (f ·e)−1 = f ·e ·k ·e−1 ·f−1 = f ·h ·f−1 = g. Thus we have the
transitivity of ∼. We conclude that the conjugacy form an equivalence
relation on G. The blocks of ∼ are called the conjugacy classes of G.
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It follows from Lemma 6.6(i) ⇔ (iii) that

Lemma 6.8. A subgroup N of a group G is normal if and only if it
is an union of conjugacy classes of G, that is, f · n · f−1 ∈ N , for all
n ∈ N and all f ∈ G.

For a group G set

Z(G) := {g ∈ G | g · f = f · g for all f ∈ G}.

The set Z(G) is called the center of the group G. Observe that g ∈
Z(G) if and only if g = f · g · f−1 for all f ∈ G, equivalently, if and
only if the conjugacy class of g equals to {g}. It follows that Z(G) is
the union of all singleton conjugacy classes of G.

Proposition 6.9. The center of a group G forms a normal subgroup
of G.

Proof. Let g, h ∈ Z(G) and f ∈ G. Then

g−1 · f = g−1 · f · g · g−1 = g−1 · g · f · g−1 = f · g−1,

and

g · h · f = g · f · h = f · g · h,
for all f ∈ G, hence both g−1 and g · h belong to Z(G). It follows that
Z(G) forms a subgroup of G. Furthermore, we have that

f · Z(G) = {f · g | g ∈ Z(G)} = {g · f | g ∈ Z(G)} = Z(G) · f

for all f ∈ G. It follows that the subgroup Z(G) is normal in G. �

Conjugated elements in a group usually share the same properties.
Recall from linear algebra that complex matrices AAA,BBB are called sim-
ilar if there is a regular matrix CCC such that AAA = CCC · BBB · CCC−1. Sim-
ilar complex matrices have the same characteristic polynomial. The
similarity classes are characterized by the Jordan canonical form. All
regular complex matrices (of a given order n) form a group, usually
denoted by GLn(C) or GL(n,C) and called the general linear group. It
follows from the definitions that matrices in GLn(C) are conjugated if
and only if they are similar if and only if they have the same Jordan
canonical form.

Let n be a positive integer. A type of a permutation π ∈ Sn is a map
tπ : {1, 2, . . . , n} → N0, where tπ(k) is the number of cycles of length k
in the decomposition of π into the product of independent cycles, for
all k ∈ N0. For example, if

π := (1, 6, 3, 14) · (2, 8, 4, 20, 19) · (7, 11) · (9, 17, 10, 18) · (12, 13)
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is a permutation from the group S20, then tπ(1) = 3, tπ(2) = 2, tπ(3) =
0, tπ(4) = 2, tπ(5) = 1, and tπ(k) = 0 for all k ≥ 6.

We will use the following notation. Given a group G and elements
g, f ∈ G, we set

fg := f · g · f−1,

that is, fg is the element of G which is conjugated to g by f .

Theorem 6.10. Two permutations π, ρ ∈ Sn are conjugated if and
only if they have the same type.

Proof. Let π, σ ∈ Sn be permutations and a, b ∈ {1, 2, . . . , n} are such
that π(a) = b. Then σπ(σ(a)) = σ(b). Indeed,

(6.2) σπ(σ(a)) = σ · π · σ−1(σ(a)) = σ(π(a)) = σ(b).

It follows that if γ = (c1, . . . , ck) is a cycle, then σγ = (σ(c1), . . . , σ(ck))
is a cycle of the same length and if

π = γ1 · γ2 · · · γm
is a decomposition of the permutation π into the product of indepen-
dent cycles, then

σπ = σγ1 · σγ2 · · · σγm
is a decomposition of its conjugate σπ into the product of independent
cycles. In particular, the permutations π and σπ have the same type.

Suppose that permutations π and ρ have the same type. Let π =
γ1 . . . γ2 · · · γm and ρ = δ1 · δ2 · · · δm be decompositions of the permu-
tations into products of independent cycles. Since π and ρ have the
same types, we can suppose without loss of generality that the cy-
cles γi = (ci,1, . . . , ci,ki) and δi = (di,1, . . . , di,ki) have the same length
ki, for all i ∈ {1, 2, . . . ,m}. Let σ ∈ Sn be a permutation such that
σ(ci,j) = di,j for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , ki}. We infer
from (6.2) that ρ = σπ, in particular, the permutations π and ρ are
conjugated. �
Example 6.11. Consider a group, say R, of all rotations of a cube.
We can number (and color accordingly) the vertices of the cube as in
the Figure 1. Each rotation of the cube is determined by

• which of the six faces is in front,
• which of the four vertices of the front face is in the upper left
corner,

after executing the rotation. It follows that there are exactly 6 · 4 = 24
rotations of the cube. Rotating each of the six faces of the cube so that
the vertex numbered 1 is in the upper left corner, we see that all of
them are different. Observe tha we get all six possible permutations of



5

���������

���������

���������

•
4

•
3

•1 •
2

•
2

•
1

•3 •4

Figure 1. The cube

the remaining three vertices (see Figure 2). By rotating the faces we
get all 24 permutations of the set {1, 2, 3, 4}. Thus we can identify the
rotations of the cube with the permutations of the four-element set.

Observe that vertices with the same number are endpoints of the four
diagonals of the cube. We can number the diagonals according to their
endpoints. The permutations of the numbers of vertices in the front
face of the cube correspond to permutations of the diagonals. Therefore
there is a one-to-one correspondence between the rotations of the cube
and the permutations of the diagonals of the cube. The composition
of rotations coincides with the the product of permutations and so the
group R coincides with the permutation group S4 (we will say that the
groups are isomorphic).

The table below lists the conjugacy classes of the group S4 and the
types of corresponding rotations of the cube. In the first column we
write the type of a permutation characterizing a conjugacy class (we
write as a tuple instead a map). The second column contains a repre-
sentative of a given conjugacy class. In the third column we identify
the corresponding rotations of the cube. There are five classes corre-
sponding to

• the identity rotation of the cube (i.e., we do nothing),
• a rotation over the axis connecting the centers of two opposite
edges; the angle of the rotation is necessarily 180o,

• a flip, that is, a rotation over the axis connecting the centers
of two opposite faces; the angle of the rotation is 180o.

• a rotation over the diagonal of the cube;
• a flip, the angle of the rotation is 120o,
• again a rotation over the axis connecting the centers of two
opposite faces but the angle of the rotation is 90o.

In the last column of the table we write the sizes of conjugacy classes.
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Figure 2. Faces

type example corresponding rotation size
⟨4, 0, 0, 0⟩ υ4 the identity 1

⟨2, 1, 0, 0⟩ (1, 2) centers of opposite edges; 180o
(
4
2

)
= 6

⟨0, 2, 0, 0⟩ (1, 2) · (3, 4) centers of opposite faces; 180o 3
⟨1, 0, 1, 0⟩ (1, 2, 3) a diagonal, 120o 4 · 2 = 8
⟨0, 0, 0, 1⟩ (1, 2, 3, 4) centers of opposite faces; 90o 3! = 6

Often groups are employed to study behaviours of symmetries of some
objects (as the cube here). The outcome of this example should be the in-
tuition that conjugate elements represent same symmetries of the stud-
ied object only placed differently.

6.3. Simplicity of the group An for n ≥ 5. A (non-trivial) group
has two trivial subgroups, the singleton subgroup containing only the
unit element and the group itself. These two subgroups are necessarily
normal. These are the only subgroups (and a fortiori the only nor-
mal subgroups) of finite groups of a prime size due to the Langrange
theorem. The other groups have non-trivial subgroups but it still can
happen that they have only trivial normal subgroups. The groups
whose only normal subgroups are the trivial ones are called simple.
We prove that this is the case of most of the alternating groups (with
the only exception of A4).
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Theorem 6.12. The alternating group of permutations An is simple
for all n ≥ 5.

Proof. First we prove that

Claim 1. Every even permutation is a product of 3-cycles.

Proof of Claim 1. Since an even permutation is a product of an even
number of transpositions, due to Lemma 4.4, it suffices to show that a
product of two transpositions, say τ, σ is at the same time a product of
3-cycles. There three cases to discus: Firstly, when supp τ = suppσ,
then τ = σ and τ · σ = υn. Secondly if supp τ ∩ suppσ ̸= ∅ but
τ ̸= σ. Then τ = (a, b) and σ = (b, c) for some pairwise distinct
a, b, c. We compute that τ · σ = (a, b) · (b, c) = (a, b, c) is a 3-cycle.
Finally we assume that supp τ ∩ suppσ = ∅. In this case τ = (a, b) and
σ = (c, d) for some pairwise distinct a, b, c, d and we compute that τ ·σ =
(a, b) · (c, d) = (a, b) · (b, c) · (b, c) · (c, d) = (a, b, c) · (b, c, d). � Claim 1.

Next, using the assumption that n ≥ 5, we show that

Claim 2. All 3-cycles are conjugated in An.

Proof of Claim 2. Let π = (a, b, c) and ρ = (d, e, f) be 3-cycles (with
not necessarily disjoint supports). According to (6.2), ρ is conjugated
to π by a permutation σ satisfying σ(a) = d, σ(b) = e and σ(c) = f . If
σ is even, we are done. If σ is odd, we find g, h distinct from d, e, f and
replace σ with the even permutation σ′ = (g, h) · σ. We still have that
σ′(a) = d, σ′(b) = e and σ′(c) = f , and so ρ = σ′

π. This is possible
since n ≥ 5. � Claim 2.

Let N be a non-singleton normal subgroup of An. If N contains a
3-cycle, then it contains all 3-cycles due to Claim 2 and the normality
of N , and so N = An due to Claim 1. We conclude the prove with

Claim 3. The non-singleton normal subgroup N of An contains a
3-cycle.

Proof of Claim 3. Let π be a non-unit permutation fromN with supp π
of the least possible size (among non-unit permutations from N ). We
will discus two complementary cases.

First suppose that in the decomposition of π into the product of
independent cycles there is a cycle (a, b, c, . . . ) of the length at least 3.
If π is a 3-cycle, we are done. Otherwise there is e ∈ supp π different
from a, b, c. We put f = π(e). Since e ̸= a, we have that f ̸= b.
Therefore the permutation σ = (a, e) · (b, f) is even. Put ρ = π−1 · σπ.
Observe that supp ρ ⊆ supp π and, since N E An, the permutation
ρ belongs to N . According to (6.2), σπ(f) = c. Since f ̸= b, we
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have that σπ ̸= π, hence ρ is a non-unit permutation. We compute
that ρ(a) = π−1(σπ(a)) = π−1(b) = a, hence supp ρ ( supp π. This
contradicts the choice of π.

The remaining case is when π = (a, b) · (c, d) · · · is a product of
independent transpositions. Since n ≥ 5, we can pick e /∈ {a, b, c, d}
and put σ = (a, b) · (c, e). As in the previous case let ρ = π−1 · σπ
(which here equals to π · σπ). Observe that supp ρ ⊆ supp π ∪ {e} and
as above ρ ∈ N . We easily compute that ρ(a) = a, ρ(b) = b and
ρ(e) = π−1(d) = c ̸= e. It follows that ρ is a non-unit permutation
and a, b /∈ supp ρ. We conclude that | supp ρ| < | suppπ|, which is a
contradiction. � Claim 3.

�
Remark 6.13. Note that all the permutations of the type ⟨0, 2, 0, 0⟩
together with the unit-permutation form a non-trivial normal subgroup
of A4.

Exercise 6.1. Decide whether all 3-cycles are conjugated in A4.

6.4. Generating sets and the 15-puzzle. Let A be an algebra of a
given signature. Observe that the set of all sub-universes of the A is
closed under arbitrary intersections. It follows that for every X ⊆ A
the set

⟨X⟩ := {B | B is a sub-universe of A and X ⊆ B}
is the least sub-universe of A containing the set X. If sub-universes
of A coincide with sub-algebras of A, we call ⟨X⟩ the (sub-)algebra
generated by the set X.

We get ⟨X⟩ by starting from X and repeatedly applying operations
of A. In particular,

⟨X⟩ =
∞∪
n=0

Xi,

where the sets X0 ⊆ X1 ⊆ X2 ⊆ . . . are defined inductively as follows:

(i) X0 := X,
(ii) Xn+1 := {f(xxx) | xxx ∈ Xk

n and f is a k-ary operation of A}.
Viewing groups as algebras with a binary operation, an unary operation
of the inverse, and a nulary operation corresponding to the unit ele-
ment, the sub-universes of a group correspond to its subgroups. There-
fore given X ⊆ G, we can define the subgroup ⟨X⟩ generated by the
set X as the intersection of all subgroups of G containing X. It is easy
to see that ⟨X⟩ is the set of all products of sequences of elements of X
and their inverses.
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A subset X of a group G is a generating set of G (we also say that
X generates G) provided that ⟨X⟩ = G. We proved in Lemma 4.3
that every permutation is a product of transpositions. It follows that
all transpositions on the set {1, 2, . . . , n} form a generating set of Sn.
It follows from Theorem 6.12 (Claim 1) that every even permutation is
a product of 3-cycles. Consequently, all 3-cycles form a generating set
of An.

Exercise 6.2. Let n be a positive integer.

(i) Prove that the transpositions (1, 2), (2, 3), . . . , (n− 1, n) gener-
ate the group Sn.

(ii) Prove that Sn is generated by the cycles (1, 2) and (1, 2, . . . , n).
(iii) Decide whether the cycles (1, 3) and (1, 2, 3, 4) generate S4.

Exercise 6.3. Let n be a positive integer and X a subset of An such
that for every c ∈ {3, 4, . . . , n} there is a 3-cycle (a, b, c) ∈ X with
a, b < c. Then X is a generating set of An.

Exercise 6.4. Let n be an odd positive integer. Prove that an n-cycle
(a1, a2, . . . , an) and a 3-cycle (a1, an−1, an) generate the group An.

In Proposition 4.7 we proved that standard positions of the 15 puzzle
corresponding to odd permutations are unsolvable. We complete our
analysis of the puzzle proving that the other standard positions can be
solved.

Proposition 6.14. Standard positions of the 15 puzzle corresponding
to even permutations are solvable.
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Figure 3. The cycles

Proof. Let {b, a1, a2 . . . , ak} be a k + 1-element subset of {1, 2, . . . , n}.
It is straightforward to see that

(a1, a2, . . . , ak) = (b, a1) · (a1, a2) · (a2, a3) · · · (ak−1, ak) · (ak, b).
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It follows that the sequences of moves depicted in the Figure 3 result
in the permutations

(15, 14, 13, 9, 10, 6, 5, 1, 2, 3, 4, 8, 7, 11, 12) and (15, 11, 12).

According to Exercise 6.4 these two cycles generate A15. This proves
the solubility of every standard position corresponding to an even per-
mutation. �
Exercise 6.5. Prove that for all distinct a, b, c ∈ {1, 2, . . . , 15} there is
a sequence, say πa,b,c, of moves starting and ending in a lower left cor-
ner (i.e, transforming a standard position to another standard position)
that moves a to 15, b to 11, and c to 12.

With help of Exercise 6.5 we give another proof of the solubility of
all even standard positions. Since every even permutation is a product
of 3 cycles, it suffices to prove that all standard positions corresponding
to 3-cycles are solvable. However, the standard position corresponding
to the 3-cycle (a, b, c) is solved by the sequence of moves leading to the
permutation π−1

a,b,c · (15, 11, 12) · πa,b,c. The inverse π−1
a,b,c is obtained by

reversing the moves giving πa,b,c. Many puzzles (as the Rubik cube)
can be solved employing the conjugacy of permutations.


