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4.1. The signum of a permutation. Let π ∈ Sn be a permutation.
The signum of π is defined as sgnπ = (−1)n−m, where m is the number
of blocks of π (both singleton and non-singleton). A permutation π is
even if sgn π = 1 and odd if sgn π = −1.

Observe that a unit permutation υn ∈ Sn has exactly n blocks.
Therefore sgn υn = (−1)n−n = 1. Next note that if γ = (a1, . . . , an) is a
cycle, then γ−1 = (an, . . . , a1). Finally, if a permutation π = γ1 · · · γm
is a product of independent cycles (including the trivial ones), then
π−1 = γ−1

m . . . γ−1
1 . Therefore the permutations π and π−1 have the

same blocks. We conclude that

Lemma 4.1. The unit permutation is even, and sgn π = sgn π−1, for
every π ∈ Sn. In particular, the inverse of an even permutation is
even.

Exercise 4.1. Let π ∈ Sn. Prove that sgn π = (−1)k where k is the
number of blocks of π of even size.

It is customary to call 2-cycles transpositions .

Lemma 4.2. Let π, τ ∈ Sn. If τ is a transposition, then

(4.1) sgn τ · π = − sgn π.

Proof. Let B1, . . . , Bm be blocks of π and π = γ1 · · · γm the decom-
position of the permutation π into the product of independent cycles
(including the trivial ones that correspond to singleton blocks). By the
definition, sgn π = (−1)n−m. The proof splits into two cases:

Case 1: supp τ is contained in a block of π. We can without loss
of generality assume that supp τ ⊆ B1 (since the cycles are indepen-
dent, and so permutable), τ = (a1, ai) and γ1 = (a1, . . . , ak). Then we
compute that

τ · γ1 = (a1, ai) · (a1, . . . , ai−1, ai, . . . , ak) = (a1, . . . , ai−1) · (ai, . . . , ak),
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hence

τ · π = τ · γ1 · γ2 · · · γm = (a1, . . . , ai−1)(ai, . . . , ak) · γ2 · · · γm.

It follows that the permutation τ ·π is a product of m+1 independent
cycles (including the trivial ones), and so it has m + 1 blocks. We
conclude that sgn τ · π = (−1)n−(m+1) = − sgn π.

Case 2: supp τ meets two different blocks of π. By suitably per-
muting the cycles γ1 · · · γm, we can assume that supp τ ⊆ B1 ∪ B2,
τ = (a1, b1), γ1 = (a1, . . . , ak), and γ2 = (b1, . . . , bl). We compute that

τ · γ1 · γ2 = (a1, b1) · (a1, . . . , ak) · (b1, . . . , bl) = (a1, . . . , ak, b1, . . . , bl),

hence

τ · π = τ · γ1 · γ2 · γ3 · · · γm = (a1, . . . , ak, b1, . . . , bl) · γ3 · · · γm.

It follows that the permutation τ ·π is a product of m− 1 independent
cycles (including the trivial ones), and so it has m − 1 blocks. We
conclude that sgn τ · π = (−1)n−(m−1) = − sgn π. �

Lemma 4.3. Every permutation on at least two-element set is a prod-
uct of transpositions.

Proof. Let n be a positive integer. The identity equals (1, 2) · (1, 2).
Since every permutation is a product of cyclic permutations due to
Theorem 3.3, it suffices to prove that every cyclic permutation is a
product of transpositions. Its straightforward, for we have that

(a1, . . . , ak) = (a1, ak) · (a1, ak−1) · · · (a1, a2),

for every cycle (a1, . . . , ak). �

Exercise 4.2. Prove that a cycle of the length k is not a product of
less than k − 1 transpositions.

Lemma 4.4. If a permutation π = τ1 · · · τk is a product of transposi-
tions τ1, . . . , τk, then sgnπ = (−1)k.

Proof. By induction on k applying Lemma 4.2. �

There are many ways how to write a permutation as a product o
transpositions but the signum can be computed from any of them.

Lemma 4.5. Let π, ρ be permutations on at least two element set.
Then

sgn(π · ρ) = sgn π · sgn ρ.
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Proof. Permutations π and ρ can be decomposed as products of trans-
positions, say π = τ1 · · · τm and ρ = σ1 · · ·σk, due to Lemma 4.3. Then
π · ρ = τ1 · · · τm · σ1 · · ·σk, and, by Lemma 4.4,

sgn(π · ρ) = (−1)m+k = (−1)m(−1)k = sgn π · sgn ρ.
�

Corollary 4.6. The product of

• even permutations is an even permutation,
• two odd permutations is an even permutation,
• even and odd permutation is an odd permutation.

LetAn denote the set of all even permutations on the set {1, 2, . . . , n}.
It follows from Corollary 4.6 that An is a sub-universe of the symmetric
group Sn = (Sn, ·). From Lemma 4.1 we see that An is an underlying
set of a subgroup of Sn. The subgroup is called the alternating group
of permutations and is denoted by An.

4.2. The 15 puzzle. The 15 puzzle is a game invented by invented by
Noyes Palmer Chapman, a postmaster in Canastota, NY, around the
year 1875. In 1880, the game spread from USA to Canada and Europe
and later to Asia and it gained a world-wide popularity.

The puzzle is often credited to Sam Loyd, who falsely claimed its
authorship. He is known for offering a $ 1000 prize to a solver of the
advertising position (see Figure:1). We will see that the advertising
position is unsolvable.
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Figure 1. The advertising position

The game consists of a box containing fifteen numbered squared
tiles and one empty square. You can slide neighboring tiles to the
empty square, and so change the position. The aim of the game is to
transform a given starting position to the final position in which the
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tiles are numbered gradually from the upper left corner to the lower
right corner, where the empty square is (see Figure 2).

A starting position The final position
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15 11 9 6

14 10 12
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Figure 2. The 15 puzzle

We can assign the number 16 to the empty space, and so we can write
down each position as a permutation of the set {1, 2, . . . , 16}, where the
final position corresponds to the unit permutation. For example, the
starting position on Figure 2 is written as

(1, 7, 3, 5) · (4, 8) · (6, 12, 15, 9, 11, 10, 14, 13).
We call a position standard if the empty square is in the lower right
corner (i.e., position 16). We clam that

Proposition 4.7. Standard positions corresponding to odd permuta-
tions are unsolvable.

Proof. We will use the chessboard trick. Lets call one slide of a tile to
the empty square a move. Color the box as in Figure 3 making it a
small chessboard, and observe that one-move changes the color of the
empty square, from black to white and conversely.

Let the starting position corresponds to an odd permutation, say
σ. A sequence of moves compose to a pemutation, say π, and the
resulting position corresponds to the product π · σ. Since the starting
position is standard, and so the empty square is black, the color of
the empty space in the resulting position is black if and only if π is
even. Since the product of even and odd permutation is odd (due to
Corollary 4.6), the empty space in the resulting position is black if
and only if the corresponding permutation is odd. However, the final
position corresponds to the unit permutation, which is even. It follows
that the starting position is unsolvable.
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Figure 3. The small chessboard

Exercise 4.3. Decide whether the area on Figure 4 can be covered by
domino tiles. [Hint: Use the chessboard trick.]

The area Domino tile

· · ·

Figure 4. Covering by domino tiles


