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LECTURE 3 - SYMMETRIC GROUPS

PAVEL RŮŽIČKA

3.1. Permutations. By a permutation of a finite set we mean a one-
to-one map from the set onto itself.

We denote by Sn the set of all permutations of the n-element set
{1, 2, . . . , n}. The set Sn is equipped with an operation of multipli-
cation, where the multiplication of permutations corresponds to the
composition of maps. The composition is associative and so is the
multiplication of permutations. The identity map corresponds to the
unit element of Sn = (Sn, ·), called a unit permutation. Since one-to-
one maps on a finite set are bijection, they are equipped with inverses.
It follows that Sn is a group. We will called Sn the symmetric group
on the n-elements set.

Exercise 3.1. Prove that |Sn| = n!.

Similarly as in the case of the composition of maps, we multiply
permutations from left to right. That is, given permutations π and
σ ∈ Sn and a ∈ {1, 2, . . . , n}, we have that

(σ · π)(a) = σ(π(a)).

There are several ways how to write down permutations. The sim-
plest one is to put a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} down
as the sequence ⟨π(1), . . . , π(n)⟩. Another familiar way of writing down
a permutation π is to decompose it as a product of independent cycles.

A block of a permutation π is the smallest non-empty subset of
{1, 2, . . . , n}, say B, such that π(B) ⊆ B. Let us use the notation
πk := π · · · π︸ ︷︷ ︸

k×

. Observe that

(3.1) B = {a, π(a), π2(a), . . . },

for an arbitrary a ∈ B. Since the blocks B are finite, (in fact, the size
of B is the least positive integer k such that πk(a) = a), it suffices to
consider, in (3.1), the images πi(a) up to πk−1(a).
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Lemma 3.1. Let π be a permutation of the set {1, 2, . . . , n}. The blocks
of π form a partition of {1, 2, . . . , n}.

Proof. If a ∈ {1, 2, . . . , n}, then {a, π(a), π2(a), . . . } is a block of π.
Therefore {1, 2, . . . , n} is the union of all blocks of π.

Let A and B be blocks of π and suppose that a ∈ A∩B. Then both
A and B are given by (3.1), and so A = B. Therefore the blocks A
and B are either disjoint or equal. The lemma readily follows. �

Exercise 3.2. Let π be a permutation of the set {1, 2, . . . , n}. Write
a ∼π b if there is k ∈ N0 such that πk(a) = b. Prove that ∼π is an
equivalence on the set {1, 2, . . . , n} and that blocks of ∼π correspond to
blocks of π.

Definition 3.2. Let G = (G, ·) be a grupoid. We say that elements
a, b ∈ G commute if a · b = b · a. The grupoid G is called commutative
provided that all pairs of its elements commute.

Let π ∈ Sn be a permutation. The support of π is the set

supp π := {a ∈ {1, 2, . . . , n} | π(a) ̸= a}.

Permutations π, σ ∈ Sn are called independent if supp π ∩ suppσ =
∅. Notice that independent permutations commute. Indeed, since
π is one-to-one, π(a) ̸= a, implies that π2(a) ̸= π(a). Therefore
π(suppπ) = supp π. We infer that if π, σ ∈ Sn are independent and
a ∈ {1, 2, . . . , n}, then

π(σ(a)) = σ(π(a)) =


π(a) if a ∈ supp π;

a if a /∈ supp π ∪ suppσ;

σ(a) if a ∈ suppσ.

A cycle is a permutation with at most one non-singleton block. More
precisely, a k-cycle (for 2 ≥ k) is a cycle with the non-singleton block
of size k. A 1-cycle or a trivial cycle corresponds to the identity. Given
a k-cycle γ with 2 ≥ k, we will use the notation

γ = (a, γ(a), γ2(a), . . . , γk−1(a)),

where a is an element of supp γ. By (i), where a ∈ {1, 2, . . . , n} is
arbitrary, we mean a trivial cycle.

Let π ∈ Sn be a permutation and B1, . . . , Bm all non-trivial blocks
of π. For each j ∈ {1, 2, . . . ,m} we pick an element bj ∈ Bj and we set

γj := (bj, π(bj), . . . , π
|Bj |−1(bj)).
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Since the blocks of π form a partition of the set {1, 2, . . . , n} due to
Lemma 3.1, the cycles γ1, . . . , γm are independent. It follows that

(3.2) π = γ1 · γ2 · · · · · γm.

The expression (3.2) is called the decomposition of the permutation π
into the product of independent cycles. Since the cycles γ1, γ2, . . . , γm
are independent, we can freely change their order in (3.2). On the other
hand, the set {γ1, γ2, . . . , γm} is determined by the permutation π. It
follows that

Theorem 3.3. Every permutation has a unique (up to the order of
cycles) decomposition into the product of independent cycles.

Let us write a simple algorithm that decomposes a permutation, say
π, on a set {1, 2, . . . , n} into a product of independent cyclic permuta-
tions:

Algorithm: Decomposition into cyclic permutations

1: procedure Decompose
input a permutation π ∈ Sn

2: R← {1, 2, . . . , n}
3: loop A:
4: until R = ∅ do
5: j ← minR
6: R← R \ {j}
7: start a new cycle with j
8: loop B:
9: if π(j) ∈ R do
10: R← R \ {j}
11: j ← π(j)
12: add j to the cycle
13: goto loop B
14: close the cycle
15: goto loop A
16: remove all cycles of length 1
17: close;

Example 3.1. For example the permutation

⟨6, 8, 14, 20, 5, 3, 11, 4, 17, 18, 7, 13, 12, 1, 16, 15, 10, 9, 2, 19⟩

decomposes as

(1, 6, 3, 14) · (2, 8, 4, 20, 19) · (7, 11) · (9, 17, 10, 18) · (12, 13) · (15, 16).



4 PAVEL RŮŽIČKA

Exercise 3.3. Recall that we compose permutations from right to left.
Write a pseudo-code of an algorithm whose input is a sequence of (not
necessarily independent) cycles from Sn and whose output is the de-
composition of their product (in the given order) into a product of in-
dependent cycles.

3.2. Sub-universes and sub-algebras. A sub-universe of the alge-
bra A is a subset of B of its underlying set A that is closed under all
the operations of A. Let C be a class of algebras (typically algebras
whose operations satisfy certain properties), and A an algebra from C.
A C-sub-algebra, say B, of the algebra A consists of a sub-universe B
of A together with the restrictions of the operations of A to B and it
belongs to C.
Definition 3.4. By a subgroup of a group G we mean its G-sub-
algebra, where G denotes the class of all groups.

Each group G has a subgroup consisting of its unit element and a
subgroup corresponding to G itself. These two subgroups are called
trivial . Other subgroups are non-trivial .

Observe that when we define a group as an algebra with a cancellative
and divisible operation, not all sub-universes of a groups corresponds
to its subgroup in general. For example, the positive integers form a
sub-universe but not a subgroup of the group of all integers with the
operation of addition.

Exercise 3.4. Let G = (G, ·) be a group. Define a binary operation ∗
on the set G by

g ∗ h = g · h−1, for all g, h ∈ G.

Prove that all sub-universes of the group G are underlying sets of sub-
groups of G.

Exercise 3.5. According to Proposition 2.4 we can define a group G,
as an algebra with an underlying set G and

• an associative binary operation, say ·,
• a nulary operation u satisfying g · u = u · g = g, for all g ∈ G,
• a binary operation −1 such that g · g−1 = g−1 · g = u, for all
g ∈ G.

Prove that when we apply this definition, all sub-universes of a group
are underlying sets of subgroups.

Exercise 3.6. Prove that whatever of the two definitions of a group we
apply, sub-universes of a finite group are underlying sets of subgroups
of the group.


