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2.1. Operation on a set. In the previous section we defined an nth-
cartesian power of a set M as

Mn = M × · · · ×M︸ ︷︷ ︸
n×

.

We define the 0th cartesian power of M to be equal to the one-element
set {∅}, i.e, M0 := {∅}. Now we can define for every n ∈ N0 an n-ary
operation on a set M as a map f : Mn → M . Of a particular interest
in our course will be nulary, unary and binary operations. A nulary
operation is determined by its image f(∅) and thus it can be understood
as “picking an element from the set M” while an unary operation on
the set M correspond to a map M → M . Binary operations are by
the definition maps M ×M → M . A set equipped with operations is
called an algebra. A signature is a sequence I = (I0, I1, . . . ) of sets and
an algebra AAA of a given signature I consists of a set A and a bunch of
operations

{f j
i : M

j → M | j = 0, 1, . . . and i ∈ Ij},

i.e., f j
i is an operation of arity j1. The operations are often subject var-

ious requirements which allow us define algebraic structures as groups,
rings, vector spaces, etc. We will focus on these particular cases.

2.2. Algebras with one binary operation. It is customary to de-
note binary operations by symbols as +, ·, ∗, ◦,∧,∨, etc. . . . and write,
for example, a+ b instead of +(a, b) (that, is a+ b stands for the image
of a pair ⟨a, b⟩). An algebra AAA with a single binary operation, say ·, is
called a grupoid . We usually write the grupoid as pair AAA := (A, ·) of a
set and the binary operation. Grupoids are far too general, but inter-
esting classes of them are obtained by imposing additional properties
on the operation.
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1Note that j in f j

i is an upper index, meaning the arity of j, not an exponent
1
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A binary operation · is called associative provided that

(a · b) · c = a · (b · c),
for all a, b, c ∈ A. A grupoid whose operation is associative is called a
semigroup.

Example 2.1. Let M be a set. We denote by F the set of all maps
M → M . We denote by ◦ the composition of maps from F . Then the
pair FFF := (F, ◦) forms a grupoid. It is easy to see that the composition
of maps is associative:

[(f ◦ g) ◦ h](m) = f(g(h(m)) = [f ◦ (g ◦ h)](m), for all m ∈ M.

It follows that FFF is a semigroup. There is something more; I mean the
identity map 1M : M → M . Observe that 1M ◦ f = f ◦ 1M = f , for all
f ∈ F .

Such an element, say u, of a grupoid is called a unit element (or
shortly a unit). In particular, an element l, resp. r, of a grupoid
G := (G, ·) is a left unit , resp. right unit if l · a = a, resp. a · r = r,
for all a ∈ G. An element u ∈ G is a unit provided that it is both left
and right unit. That is, u is the unit of the grupoid G if

a · u = a = u · a, for all a ∈ G.

Lemma 2.1. Let G = (G, ·) be a grupoid. If l is a left unit and r is a
right unit of G then l = r. In particular, a unit element of a grupoid
is unique.

Proof. The statement follows readily from l = l · r = r. �
Note that it can happen that a monoid has many distinct left units.

Indeed, if G = (G, ∗) is such that g ∗h = h, for all g, h ∈ G, then every
element of G is a left unit. Of course, the monoid G has no right unit
unless G has at most one element.

A semigroupAAA = (A, ·) with a distinguished unit element u is called a
monoid. Note that the unit element can be viewed as a nulary operation
on A and a monoid as an algebra of the signature (1, 0, 1, 0, 0, . . . ), i.e,
an algebra with one unary and one nulary operation.

Example 2.2. Let M be a set and let Rb(M) denote the set of all
binary relations on the set M . Then Rb(M) := (Rb(M), ◦,∆) is a
monoid.

Let AAA = (A, ·) be a grupoid. The operation · is called
• left cancellative if a · b = a · c =⇒ b = c, for all a, b, c ∈ A,
• right cancellative if a · c = b · c =⇒ a = b, for all a, b, c ∈ A,
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• left divisible if an equation a · x = b has a solution in A, for all
a, b ∈ A,

• right divisible if an equation x · a = b has a solution in A, for
all a, b ∈ A.

A binary operation is cancellative and divisible respectively if it is both
left and right cancellative and left and right divisible.

A grupoid whose operation is both cancellative and divisible is called
a loop.

Each binary operation (especially on a finite set) can be represented
by a table. For instance, the table

∗ a b c d

a b c c d
b c a c a
c a a c b
d b b c c

represents a binary operation ∗ on a set {a, b, c, d}.

Exercise 2.1. Let ∗ be a binary operation on a set M . Prove that,
given a table of ∗, the following holds true:

(i) The operation ∗ is left cancellative if and only if each element
of M appears in each row of the table at most once.

(ii) The operation ∗ is right cancellative if and only if each element
of M appears in each column of the table at most once.

(iii) The operation ∗ is left divisible if and only if each element of
M appears in each row of the table at least once.

(iv) The operation ∗ is right divisible if and only if each element of
M appears in each column of the table at least once.

Exercise 2.2. Let ∗ be a binary operation on a finite set M . Prove
that the operation is left, right cancellative respectively if and only if it
is left, right divisible. Show that this may not be true for an infinite
M .

Let L = (L, ∗) be loop on a set L. By the definition, the operation ∗
is both cancellative and divisible, hence each row and each column of
the table of ∗ contains each element of L exactly once. In other word,
rows and columns of the table are permutations of L. Such tables are
called latin squares . Here is an example of a latin square:
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(2.1)

∗ a b c d e

a b c a d e
b c a e b d
c a b d e c
d e d c a b
d d e b c a

A grupoid whose operation is associative, cancellative, and divisible
is called a group. Thus groups are loops whose operation is associative,
i.e, loops which are at the same time semigroups. While cancellativity
and divisibility of a binary operation is easily seen from its table, it is
not the case of associativity.

Let us explore some basic properties of groups.

Lemma 2.2. A group has a (unique) unit element.

Proof. Let G = (G, ·) be a group. It follows from the divisibility of ·
that for each g ∈ G, there are elements lg and rg such that

lg · g = g = g · rg.

Given a couple g, h of (not necessarily distinct) elements of G we get
that

(g · rg) · h = g · h = g · (lh · h).
Since the operation · is associative, we get that

(g · rg) · h = (g · lh) · h,

hence,

g · rg = g · lh,
due to the right cancellativity. The left cancellativity gives rg = lh.
Therefore u = rg = lh is the unique (cf. Lemma 2.1) unit element of
G. �

Note that neither a semigroup nor a loop has to have a unit element.
For example, the set of all positive integers with addition form a semi-
group without unit and the table (2.1) determines a loop without an
unit element.

Lemma 2.3. Let G = (G, ·) be a group with an unit element u. Then
for each g ∈ G there is a unique element g−1 such that

g−1 · g = u = g · g−1.
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Proof. From the divisibility of · there are elements gl and gr ∈ G such
that gl · g = u and g · gr = u. It suffices to show that they are equal.
This follows from the following computation:

gl = gl · u = gl · (g · gr) = (gl · g) · gr = u · gr = gr.

We set g−1 := gl = gr. �
The element g−1 will be called an inverse of g.

Proposition 2.4. A semigroup G = (G, ·) is a group if and only if it
has a unit element and each element of G has an inverse.

Proof. It follows from Lemmas 2.2 and 2.3 that each group has a unit
element and inverses. Therefore it suffices to verify the (⇐) implica-
tion. Suppose that the semigroup G has a unit element u, and an
inverse element g−1 for every g ∈ G. We show that the operation · is
cancellative and divisible. Suppose that g ·h = g · k, for some g, h, and
k from G. Multiplying by g−1 on the left we get that

h = u·h = (g−1 ·g)·h = g−1 ·(g ·h) = g−1 ·(g ·k) = (g−1 ·g)·k = u·k = k,

which proves that · is left cancellative. The right cancellativity is
proved similarly. It is straightforward to verify that the equations
g · x = h (resp. x · g = h) have a solution g−1 · h (resp. h · g−1).
That is why the operation · is divisible. �

It follows from Proposition 2.4 that we can view groups as algebras
with a asociative binary operation, a nulary operation (the unit) and
a unary operation (the inverse map).

Exercise 2.3 (A. G. Kuroš). A semigroup G = (G, ·) is a group if
and only it has a right unit u and every element of g ∈ G has a right
inverse, (i.e, an element g−1 such that g · g−1 = u).


