
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 13 - UNIQUE FACTORIZATION DOMAINS

PAVEL RŮŽIČKA

13.1. Gaussian monoids. Let M be a commutative monoid. We say
that factorizations a = b1 · b2 · · · bm and a = c1 · c2 · · · cn of an element
a ∈ M as a product of elements of M are associated if m = n and
there is a permutation σ of the set {1, 2, . . . , n} such that bi ∼ cσ(i) for
all i ∈ {1, 2, . . . , n}.

A commutative cancellative monoid M is Gaussian if every non-
invertible element a ∈ M has a factorization a = q1 · q2 · · · qn as a
product of irreducible elements and all such factorizations of the ele-
ment a are associated.

Lemma 13.1. Let M be a Gaussian monoid. Let a | b in M and

b = qβ1

1 · qβ2

2 · · · qβn
n ,

where q1, q2, . . . , qn are pairwise non-associated irreducible elements and
0 ≤ αi, for all i = 1, 2, . . . , n. Then

a = u · qα1
1 · qα2

2 · · · qαn
n ,

where u is invertible and 0 ≤ αi ≤ βi, for all i = 1, 2, . . . , n.

Proof. Since a | b, there is c ∈ M such that b = a · c. We prove the
statement by induction on the sum β1 + β2 + · · · + βn. If β1 + β2 +
· · · + βn = 0, then b is invertible and since a | b, a is invertible as
well, and the statement holds true. Suppose that a is not invertible
and let q be an irreducible element dividing a; let a = q · a′. Then
b = q · a′ · c. Since M is a Gaussian monoid, a′ · c is either invertible or
it has a unique, up to being associated, factorization into the product
of irreducible elements p1 · p2 · · · pm. Compering the factorizations

b = qβ1

1 · qβ2

2 · · · qβn
n = q · p1 · p2 · · · pm,

we infer that there is i ∈ {1, 2, . . . , n} such that q ∼ qi. Therefore there
is an invertible v ∈ M such that q = qi · v. We can without loss of
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generality assume that i = 1. Then, applying the cancellativity of the
monoid M , we get that

v · a′ · c = qβ1−1
1 · qβ2

2 · · · qβn
n .

From the induction hypothesis, we get that

(13.1) v · a′ = u · qα1−1
1 · qα2

2 · · · qαn
n ,

for some 0 ≤ αi ≤ βi, i = 1, 2, . . . , n, and some invertible u ∈ M . .
Multiplying both sides of equation (13.1) by q1, we conclude that

a = u · qα1
1 · qα2

2 · · · qαn
n .

�
Corollary 13.2. Let M be a Gaussian monoid, a, b ∈ M and

b ∼ qβ1

1 · qβ2

2 · · · qβn
n ,

where q1, q2, . . . , qn are pairwise non-associated irreducible elements and
0 ≤ αi, for all i = 1, 2, . . . , n. Then a | b if and only if

a ∼ qα1
1 · qα2

2 · · · qαn
n ,

for some 0 ≤ αi ≤ βi, i = 1, 2, . . . , n.

Lemma 13.3. Let M be a Gaussian monoid. Then the greatest com-
mon divisor exits for every pair of elements of M .

Proof. Let a, b ∈ M . Since M is a Gaussian monoid, there are pairwise
non-associated irreducible elements q1, q2, . . . , qn in M and integers
0 ≤ αi, βi, i = 1, 2, . . . , n, such that

a ∼ qα1
1 · qα2

2 · · · qαn
n and b ∼ qβ1

1 · qβ2

2 · · · qβn
n .

It follows readily from Corollary 13.2 that

(a, b) = [qγ11 · qγ22 · · · qγnn ]∼,

where γi = min{αi, βi}, for all i ∈ {1, 2, . . . , n}. �
Let M be a Gaussian monoid and a ∈ M . Let a = qα1

1 · qα2
2 · · · qαn

n ,
where qi are pairwise non-associated irreducible elements. We set
h(a) := α1 + α2 + · · · + αn. It follows readily from Corollary 13.2
that

(13.2) a | b and b - a =⇒ h(a) < h(b).

Theorem 13.4. Let M be a commutative cancellative monoid. The
monoid M is Gaussian if an only if it satisfies the following two prop-
erties:

(i) There is no infinite sequence a1, a2, . . . of elements of M such
that aj | ai if and only if i ≤ j;
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(ii) Every irreducible element of M is prime.

Proof. (⇒) Suppose that the monoid M is Gaussian. An infinite se-
quence a1, a2, a3, . . . such that aj | ai if and only if i ≤ j would in-
duce an infinite strictly decreasing sequence h(a1) > h(a2) > · · · of
non-negative integers due to (13.2). Such a sequence does not exist.
Therefore (i) holds true. Item (ii) follows from Theorem 11.12 and
Lemma 13.3.

(⇐) Suppose that properties (i) and (ii) hold true. First we show
that every non-invertible element of the monoid M is a product of
irreducible elements.

Claim 1. Let U be a non-empty subset of M . Then there is a ∈ U
such that

(13.3) b | a =⇒ a ∼ b,

for all b ∈ U .

Proof of Claim 1. Suppose otherwise, that is, there is a non-empty U ⊆
M such that for every a ∈ U , there is b ∈ U such that b | a and a - b. We
can pick any a1 ∈ U and then construct inductively an infinite sequence
a1, a2, . . . such that ai+1 | ai and ai - ai+1 for all i ∈ N. It follows readily
that aj | ai if and only if i ≤ j, which violates (i). � Claim 1.

Let us denote by U the set of all non-invertible a ∈ M that are not
products of irreducible elements, and suppose that U ≠ ∅. It follows
from Claim 1 that there is a ∈ U satisfying (13.3). Clearly none of
the elements of U is irreducible. It follows that a = b · c for some
b, c ∈ M with a - b and a - c. Since a satisfies (13.3), both b, c /∈ U .
It follows that there are irreducible elements q1, . . . , qn and p1, . . . , pm
such that b = q1 · · · qn and c = p1 · · · pm. From a = b · c, we get that
a = p1 · · · pm · q1 · · · qn, which contradicts a ∈ U .

Let a ∈ M and let a = p1 · · · pn ∼ q1 · · · qm be two factorizations of
a into a product of irreducible elements. We prove by induction on m
that the two factorizations are associated. If m = 0, a is invertible,
necessarily n = 0, and we are done. Since qm is irreducible and therefore
prime due to (ii), qm | pi for some i ∈ 1, 2, . . . , n. Since pi is irreducible,
we infer that qm ∼ pi. Since the monoid M is cancellative, we get
that p1 · · · pi−1 · pi+1 · · · pn ∼ q1 · · · qm−1. These two factorizations are
associated due to the induction hypothesis. �

13.2. Unique factorization domains. Let R be an integral domain.
We say that R is a unique factorization domain1 if the multiplicative

1Alterantively Gaussian domain
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monoid (R \ {0}, ·) of non-zero elements of R is a Gaussian monoid.
This means, by the definition, that every non-invertible element of a
unique factorization domain is a product of irreducible elements in a
unique way up to the associated factorizations. It follows from The-
orem 13.4 that unique factorization domains are characterized by the
satisfaction of conditions (i) and (ii). Observe, applying equivalence
(12.1), that property (i) is equivalent to

(i’) There is no infinite strictly increasing chain of principal ideals.

Theorem 13.5. Every principal ideal domain is a unique factorization
domain.

Proof. Let R be a principal ideal domain. Suppose that there is an
infinite sequence a1, a2, . . . of elements of R such that (a1) ( (a2) (
· · · and put I =

∪
i∈N (ai). It is straightforward to see that a union of

an increasing chain of ideal is an ideal, in particular I is an ideal of R.
Since R is a principal ideal domain, the ideal I is principal, generated
by, say b ∈ R. Since b ∈ I, there is n ∈ N such that b ∈ (an). It follows
that I ⊆ (an) ( (an+1) ⊆ I, which is a contradiction. Therefore I
satisfies (i’), hence (i). Property (ii) is due to Corollary 12.2. �
Example 13.6. It is straightforward to verify that

Z[i
√
3] := {a+ i

√
3b | a, b ∈ Z}

is an integral domain, indeed,

(a+ i
√
3b) · (c+ i

√
3d) = (a · c− 3 · b · d) + i

√
3(b · c+ a · d).

Let N(x+ iy) = (x+ iy) · (x− iy) = x2 + y2 be a square of the complex
norm. By (12.3) we have that N(ξ · η) = N(ξ) ·N(η). It follows that

(13.4) α | β =⇒ N(α) | N(β), for all α, β ∈ Z[i
√
3].

It follows, that N(α) = 1, for all invertible α ∈ Z[i
√
3]. On the other

hand, if N(α) = 1, we have that 1 = α·α, and so α is invertible. There-
fore there are exactly two invertible elements in the domain, namely 1
and −1 and an element of Z[i

√
3] is invertible if and only if its norm

is 1. Observe that there is no α = a + i
√
3b ∈ Z[i

√
3] with N(α) = 2.

This is because we would have 2 = a2 + 3b2, which is impossible. It
follows that if α ∈ Z[i

√
3] satisfies N(α) = 4, then α is irreducible.

We have that
(1 + i

√
3) · (1− i

√
3) = 4 = 2.2,

and N(1 + i
√
3) = N(2) = 4. The only elements of Z[i

√
3] associated

with 2 are its multiples by invertible elements, that is, 2 and −2. It
follows that 1+ i

√
3 | 2 · 2 but 1+ i

√
3 - 2, and so 1+ i

√
3 is irreducible
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(since N(1 + i
√
3) = 4) but not prime. Note also, that the elements

2 + i
√
3 · 2 and 4 have no greatest common divisor in Z[i

√
3].

There is geometric reason, while we cannot prove that Z[i
√
3] is an

Euclidean domain in a similar way as we did for the domain Z[i] of
Gaussian integers. Elements of Z[i

√
3] form a rectangular lattice in

the complex plane consisting of rectangles with sides of length 1 and√
3 (see Figure 1). The distance of the center C of such a rectangle

from each of the vertices is exactly 1. This is where the geometric
argument successfully used for the Gaussian integers fails in case of
the domain Z[i

√
3].
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•
(a+ 1) + i

√
3(b+ 1)

•
(a+ 1) + i

√
3b

•
a+ i

√
3(b+ 1)

•
a+ i

√
3b

• C

1

1

1

11

1

√
3

√
3

Figure 1. The critical point C

Exercise 13.1. Prove that Z[
√
5] := {a+

√
5b | a, b ∈ Z} is not a

unique factorization domain.

13.3. Primes in Gaussian integers. In the ring Z[i] is a unique
factorization domain, in particular all irreducible elements of the ring
are primes. We will describe all the primes in Z[i].

Similarly as in the case of Z[i
√
3], it follows from (12.3) that

(13.5) α | β =⇒ N(α) | N(β), for all α, β ∈ Z[i].

Lemma 13.7. An element α ∈ Z[i] is invertible if and only if N(α) =
1. Here are four invertible elements in Z[i], namely 1,−1, i,−i.
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Proof. If α = a+ ib ∈ Z[i] is invertible, then α | 1, hence N(α) | 1, due
to (13.5). Since N(α) = a2 + b2 is a positive integer, we conclude that
N(α) = 1. On the other hand, if N(α) = α ·α = 1, we readily see that
α is invertible (with the inverse α).

From N(α) = N(a + ib) = a2 + b2, we infer that N(α) = 1 if and
only if either a ∈ {−1, 1} and b = 0 or a = 0 and b ∈ {−1, 1}. The four
possible case give the four invertible elements listed in the lemma. �

Corollary 13.8. Let a, b be positive integers. If a ∼ b in Z[i], then
a = b.

Proof. It follows from Lemma 11.4 that if a ∼ b, then b = a ·α for some
invertible α ∈ Z[i]. Since both a, b are positive intgeres, we get that
α = 1. �

Lemma 13.9. If α = a + ib ∈ Z[i] is a prime, then α = a − ib is a
prime as well.

Proof. It suffices to verify that α is irreducible. If α had a factorization
α = β · γ into the product of its proper divisors, then α = β · γ = β · γ
violate the irreducibility of α, since β, γ would be proper divisors of
α. �

Remark 13.10. The map given by α 7→ α is easily seen to be an
automorphism of Z[i]. Any automorphism of an integral domain maps
primes to primes.

Lemma 13.11. Let α ∈ Z[i] be a prime. Then N(α) is either prime
integer or a square of a prime integer.

Proof. Since Z[i] is an Euklidean domain due to Lemma 12.6, it is a
unique factorization domain due to Lemma 12.4 and Theorem 13.5.
Let p be a prime positive integer such that p | α · α. Since Z[i] is a
unique factorization domain, either p = N(α) or p is associated to one
of α and α. In the latter case, since p is an integer, we infer that p ∼ α,
hence N(α) = p2. �

Lemma 13.12. Let p be a positive integer. If p = a2 + b2, for some
integers a, b, then p ̸≡ 3 (mod 4).

Proof. It follows from a2 ≡ 0 (mod 4) or a2 ≡ 1 (mod 4), for every
a ∈ Z. �

Theorem 13.13. Let α = a+ ib be a prime in Z[i]. Then one of the
following cases holds true.

(i) N(α) = 2 and α ∼ 1 + i.



7

(ii) N(α) = p, where p is a positive prime integer such that p ≡ 1
(mod 4). In this case α is associated to no integer in Z[i].

(iii) N(α) = p2, where p is a positive prime integer such that p ≡ 3
(mod 4) and α ∼ p.

Proof. Since 2 = (1 + i) · (1− i) and (1− i) = (−i) · (1 + i) ∼ (1 + i),
we get (i) in case that 2 | N(α).

Suppose that N(α) = a2 + b2 = p is an odd prime. It follows from
Lemma 13.12 that p ≡ 1 (mod 4), that is, p = 4k+1 for some positive
integer k.

On the other hand, let p = 4k+1 be such a positive prime. Applying
Wilson’s theorem (Lemma 9.23), we get that

(p− 1)! ≡ −1 (mod p),

hence

(−1)2k((2k)!)2 ≡ 1 · 2 · · · 2k · (p− 2k) · · · (p− 1) ≡ −1 (mod p),

whence p | ((2k)!)2 + 1 = ((2k)! + i)((2k)!− i). If p was prime in Z[i],
we would get that either p | (2k)! + i or (2k)!− i. But none of these is
the case. Therefore p decomposes in Z[i], say p = α ·β. It follows that

p2 = α · β · α · β = (α · α) · (β · β).
Since p is a positive prime integer, we conclude that p = α ·α = N(α).

Finally, let p be a positive prime integer such that p ≡ 3 (mod 4).
There is no α ∈ Z[i] with N(α) = p. Since N(p) = p2, p has no a
proper non-invertible divisor in Z[i]. It follows that p is a prime both
in Z and Z[i]. Since Z[i] is a unique factorization domain, p2 = p · p
is the unique factorization of p2 as a product of irreducible elements.
It follows that here are no other primes in Z[i]. �

The theorem has a surprising corollary:

Corollary 13.14. Every positive prime integer p such that p ≡ 1
(mod 4) is uniquely written as a sum of two squares.

We show some applications of Gaussian integers.

Exercise 13.2. Prove that there not positive integers a, b, k such that

(13.6) a2 =
b

103k − b
.

Solution. By a simple computation we derive from (13.6) that

(13.7) (a2 + 1) · b = 103k · a2

Since a2 and a2 + 1 are relatively prime, we infer from (13.7) that
(a2 + 1) | 103k. Since 103 is a prime, a2 + 1 = 103l for some l ≤ k.
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Decomposing in Z[i], we get that 103l = (a + i) · (a − i) which is
not the case, for Z[i] is a unique factorization domain and 103 ≡ 3
(mod 4). �

Exercise 13.3. Find all integer solutions of the Diophantine equation

(13.8) a2 + 4 = b3.

Solution. In the ring Z[i], we can decompose

(13.9) b3 = a2 + 4 = (a+ 2i) · (a− 2i).

Claim 2. It follows from (13.8) that a+ 2i is a cube in Z[i].

Proof of Claim 2. Since (a + 2i, a − 2i) = (a + 2i,−4i) = (a + 2i, 4)
and 4 ∼ (1 + i)4, the greatest common divisor of a+ 2i and a− 2i is a
power of 1+ i. Observe that 1+ i ∼ 1− i, indeed, 1− i = (−i) · (1+ i).
Since (1 + i)k | a + 2i if and only if (1− i)k | a− 2i, for all k ∈ N, we
conclude that (1+ i)k | a+2i if and only if (1+ i)k | a−2i if and only if
2k | a2+4 = b3. It follows that the maximal k such that (1+i)k | a = 2i
is divisible by 3, say k = 3m. Therefore a+2i = (1+ i)3m ·α, a− 2i =
(1 + i)3m · β and (α, β) = 1. It follows that α ∼ γ3 in Z[i], and so
α = γ3 ·ν, where ν is invertible. Obserev that all invertible elements of
Z[i] are cubes, indeed, 1 = 13, −1 = (−1)3, i = (−i)3, and (−i) = i3.
It follows that α is a cube in Z[i] and so is a+ 2i. � Claim 2.

Applying binomial expansion we infer from Claim 2 that

a+ 2i = (x+ iy)3 = x · (x2 − 3y2) + iy · (3x2 − y2),

hence

(13.10) a = x · (x2 − 3y2) and 2 = y · (3x2 − y2).

Since x, y are integers, we conclude that y ∈ {−2,−1, 1, 2}. From this
we get, by case checking, that the only integer solutions of (13.10)
are y ∈ {1,−2} and x = ±1. These correspond to the only integer
solutions a = ±2, b = 2 and a = ±11, b = 5 of (13.8). �

Exercise 13.4. Find all integer solutions of the Diophantine equation

a2 + 49 = b3.

Exercise 13.5. Prove that the Diophantine equation

a2 + 1 = b3.

has no integer solution.



9

Exercise 13.6. Find all integer solutions of the Diophantine equation

(13.11) a2 + 2 = b3.

[Hint: Show that Z[i
√
2] := {a+ i

√
2b | a, b ∈ Z} is an Euklidean

domain and decompose (13.11) in Z[i
√
2].]


