ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 12 - EUKLIDEAN AND PRINCIPAL IDEAL DOMAINS

PAVEL RŮŽIČKA

For simplicity we restrict ourselves to commutative rings.

12.1. Divisibility and ideals. Ideals of a ring \mathbf{R} are closed under arbitrary intersections. It follows that each subset $X \subseteq R$ possesses a least ideal containing X, namely the intersection of all ideals containing X. The ideal will be denoted by (\mathbf{X}) and call the *ideal generated* by the set X. Conversely, if \mathbf{I} is an ideal of the ring \mathbf{R} and $X \subseteq I$ is such that $\mathbf{I} = (\mathbf{X})$, then the set X is called the *set of generators of* (the ideal) \mathbf{I} .

An ideal generated by a single element is called *principal*. That is, a principal ideal is an ideal of the form (a) for some $a \in \mathbf{R}$. It is straightforward to see that

$$(a) = \{r \cdot a \mid r \in R\} = \{b \in R \mid a \mid b\},\$$

i.e, the principal ideal (a) consists of all elements of R that are divisible by the element a. It readily follows that

$$(12.1) (a) \subseteq (b) \iff b \mid a,$$

and, consequently, (a) = (b) if and only if $a \sim b$.

Ideals of the ring R are ordered by inclusion. The greatest ideal contained in ideals I, J is clearly the intersection $I \cap J$. The least ideal containing I, J is

$$\boldsymbol{I} + \boldsymbol{J} := \{ a + b \mid a \in I, b \in J \}.$$

It is straightforward from the definition that I + J is an ideal. On the other hand, every ideal containing both I and J, being closed under addition, contains I + J as well.

12.2. Principal ideal domains. A ring **R** is an *integral domain* if

$$a \cdot b = 0 \implies a = 0 \text{ or } b = 0,$$

Date: January 12, 2018.

PAVEL RŮŽIČKA

i.e., an integral domain is a commutative ring with no non-zero divisors of 0. A *principal ideal domain* (shortly p.i.d.) is an integral domain whose every ideal is principal.

Lemma 12.1. Every pair of elements of a principal ideal domain has a greatest common divisor.

Proof. Let \mathbf{R} be a principal ideal domain and $a, b \in R$. The ideal $(\mathbf{a}) + (\mathbf{b})$ is principal, hence generated by some $d \in R$. Since $(\mathbf{d}) = (\mathbf{a}) + (\mathbf{b}) \supseteq (\mathbf{a})$, it follows from (12.1) that $d \mid a$. Similarly we get that $d \mid b$, and so d is a common divisor of a and b.

Let c be a common divisor of a, b. Again, by (12.1), we have that $(a) \subseteq (c)$ and $(b) \subseteq (c)$. It follows that $(a) + (b) \subseteq (c)$, hence $(d) \subseteq (c)$, whence $c \mid d$, due to (12.1). We conclude that d is the greatest common divisor of a and b.

Observe that, in the situation of the proof of Lemma 12.1, all generators of the ideal (a) + (b) form a block of \sim , corresponding to (a, b). Applying Theorem 11.12 we conclude that

Corollary 12.2. Every irreducible element of a principal ideal domain is prime.

Lemma 12.3. Let \mathbf{R} be a principal ideal domain. Let $a, b \in R$ and $d \in (a, b)$. Then there are $r, s \in R$ such that

$$(12.2) d = r \cdot a + s \cdot b.$$

Proof. It follows from (d) = (a) + (b) that

$$d \in (\boldsymbol{a}) + (\boldsymbol{b}) = \{r \cdot a + s \cdot b \mid r, s \in R\}.$$

Lemma 12.3 states that in principal ideal domains, greatest common divisors are expressed as linear combinations of the elements. Equality (12.2) is called *Bézouts identity*.

12.3. Euklidean domains. Let \mathbf{R} be an integral domain. An *Euclidean norm* on \mathbf{R} is a map $N: \mathbf{R} \setminus \{0\} \to \mathbb{N}_0$ such that for all $a, b \in R$, $b \neq 0$, there are $c, r \in R$ such that

(i)
$$a = b \cdot c + r$$
,

(ii)
$$r = 0$$
 or $N(r) < N(b)$.

An *Euklidean domain* is a domain having an Euklidean norm.

Lemma 12.4. Every Euklidean domain is a principal ideal domain.

2

Proof. Let **R** be an Euklidean domain with an Euklidean norm $N: R \setminus \{0\} \to \mathbb{N}_0$ and **I** an ideal of **R**. If $\mathbf{I} = (\mathbf{0})$, then **I** is principal. Suppose that **I** contains a non-zero element and pick a non-zero $b \in I$ with N(b) smallest possible. Then clearly $(\mathbf{b}) \subseteq \mathbf{I}$. We prove that the equality holds true. Suppose that there is $a \in \mathbf{I} \setminus (\mathbf{b})$. Since **R** is an Euklidean domain, there are $c, r \in R$ such that $a = b \cdot c + r$ and r = 0 or N(r) < N(b). Since $a \notin (\mathbf{b})$, we have that $r \neq 0$, and so N(r) < N(b). Since $r = a - b \cdot c$, we have that $r \in I$. This contradicts the choice of b with N(b) smallest possible in I. □

Observe that common divisors of a and b corresponds to common divisors of a and r. We can thus compute the greatest common divisor of a, b using the *Euklidean algorithm*:

Euklidan algorithm: Compute the greates common divisor
1: procedure GCD
input elements a, b
2: loop \mathbf{A} :
3: until $b = 0$ do
4: find c, r such that $a = b \cdot c + r$ and $r = 0$ or $N(r) < N(b)$
5: $a := b$
6: $b := r$
7: goto loop A
8: return a

Example 12.5. For an integer a put N(a) = |a|; the absolute value of a. The ring \mathbb{Z} of all integers is an Euklidean domain with the Euklidean norm $N: \mathbb{Z} \setminus \{0\} \to \mathbb{N}$. Observe that the Euklidean norm is multiplicative, i.e, $N(a \cdot b) = N(a) \cdot N(b)$, for all $a, b \in \mathbb{Z} \setminus \{0\}$.

Let \mathbf{F} be a field and $\mathbf{F}[x]$ the ring of all polynomials with coefficients in \mathbf{T} . For a polynomial $f(x) = a_n \cdot x^n + \cdots + a_1 \cdot x + a_0$, with $a_n \neq 0$, put N(f) = n be the degree of f. It is well known that $N : \mathbf{F}[x] \setminus \{0\} \to \mathbb{N}_0$ is an Euklidean norm on $\mathbf{F}[x]$. In this case however the Euklidean norm is not multiplicative. Instead we have that $N(f \cdot g) = N(f) + N(g)$ for every pair of non-zero polynomials f, g.

Exercise 12.1. Decide, whether there is a multiplicative Euklidean norm on the ring $\mathbf{F}[x]$ of all polynomials with coefficients in a field \mathbf{F} .

12.4. Gaussian integers. Put

 $\boldsymbol{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}\},\$

and observe that $\mathbf{Z}[i]$ is a subring of the field \mathbf{C} of all complex numbers. Indeed $(a+ib)-(c+id) = (a-c)+i(b-d) \in \mathbf{Z}[i]$ and $(a+ib)\cdot(c+id) =$

PAVEL RŮŽIČKA

 $(a \cdot c - b \cdot d) + i(a \cdot d + b \cdot c) \in \mathbf{Z}[i]$. Elements of the ring $\mathbf{Z}[i]$ are called *Gaussian integers*.

Let $\xi = x + iy$ be a complex number. We denote by $\overline{\xi} := x - iy$ the conjugate of ξ and we put

$$N(\xi) := \xi \cdot \overline{\xi} = (x + iy) \cdot (x - iy) = x^2 + y^2.$$

Thus $N(\xi)$ is the square of the *complex norm* of ξ . Observe that

(12.3)
$$N(\xi \cdot \eta) = (\xi \cdot \eta) \cdot \overline{(\xi \cdot \eta)} = \xi \cdot \eta \cdot \overline{\xi} \cdot \overline{\eta} = N(\xi) \cdot N(\eta).$$

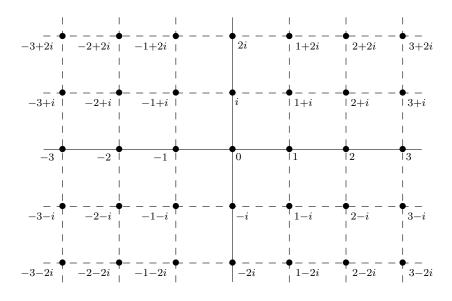


FIGURE 1. The ring $\boldsymbol{Z}[i]$

Lemma 12.6. The restiction $N \upharpoonright (\mathbf{Z}[i] \setminus \{0\}) : \mathbf{Z}[i] \setminus \{0\} \to \mathbb{N}$ is an Euklidean norm on the ring $\mathbf{Z}[i]$ of Gaussian integers.

Proof. Let $\alpha, \beta \in \mathbb{Z}[i]$ be such that $\beta \neq 0$. We are looking for $\gamma, \rho \in \mathbb{Z}[i]$ such that $\alpha = \beta \cdot \gamma + \rho$ and either $\rho = 0$ or $N(\rho) < N(\beta)$.

Elements of the ring $\mathbf{Z}[i]$ form a lattice in the complex plane (see Figure 1). The lattice consists of squares with sides of size 1. Since $\beta \neq 0$, we can form the complex fraction $\frac{\alpha}{\beta}$. The fraction lies inside a square of the lattice. Since the side of the square has length 1, there is a vertex γ of the square (not necessarily unique) such that $|\frac{\alpha}{\beta} - \gamma| < 1$ (see Figure 2). It follows that

(12.4)
$$N(\frac{\alpha}{\beta} - \gamma) = |\frac{\alpha}{\beta} - \gamma|^2 < 1.$$

4

We set $\rho = \alpha - \beta \cdot \gamma$. It follows from (12.3) and (12.4) that

$$N(\rho) = N((\frac{\alpha}{\beta} - \gamma) \cdot \beta) = N(\frac{\alpha}{\beta} - \gamma) \cdot N(\beta) < N(\beta).$$

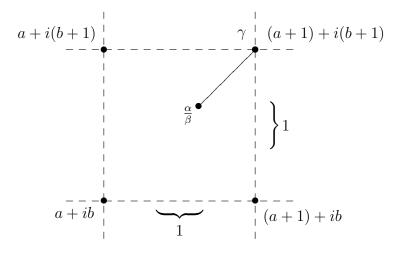


FIGURE 2. Fouding γ