ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 12 - EUKLIDEAN AND PRINCIPAL IDEAL
DOMAINS

PAVEL RUZICKA

For simplicity we restrict ourselves to commutative rings.

12.1. Divisibility and ideals. Ideals of a ring R are closed under
arbitrary intersections. It follows that each subset X C R possesses a
least ideal containing X', namely the intersection of all ideals containing
X. The ideal will be denoted by (X) and call the ideal generated by
the set X. Conversely, if I is an ideal of the ring R and X C I is such
that I = (X)), then the set X is called the set of generators of (the
ideal) I.

An ideal generated by a single element is called principal. That is,
a principal ideal is an ideal of the form (a) for some a € R. It is
straightforward to see that

(@)={r-a|reR}={beR|a|b},

i.e, the principal ideal (@) consists of all elements of R that are divisible
by the element a. It readily follows that

(12.1) (a) C (b) < b|a,

and, consequently, (a) = (b) if and only if a ~ b.

Ideals of the ring R are ordered by inclusion. The greatest ideal
contained in ideals I, J is clearly the intersection I N J. The least
ideal containing I, J is

I+J:={a+blaclbeJ}.

It is straightforward from the definition that I + J is an ideal. On the
other hand, every ideal containing both I and J, being closed under
addition, contains I + J as well.

12.2. Principal ideal domains. A ring R is an integral domain if

a-b=0 = a=0o0rb=0,
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i.e., an integral domain is a commutative ring with no non-zero divisors
of 0. A principal ideal domain (shortly p.i.d.) is an integral domain
whose every ideal is principal.

Lemma 12.1. Every pair of elements of a principal ideal domain has
a greatest common divisor.

Proof. Let R be a principal ideal domain and a,b € R. The ideal
(a) + (b) is principal, hence generated by some d € R. Since (d) =
(a)+ (b) 2 (a), it follows from (12.1) that d | a. Similarly we get that
d | b, and so d is a common divisor of a and b.

Let ¢ be a common divisor of a, b. Again, by (12.1), we have that
(a) € (¢) and (b) C (¢). It follows that (a) + (b) C (c), hence
(d) € (c¢), whence ¢ | d, due to (12.1). We conclude that d is the
greatest common divisor of a and b. U

Observe that, in the situation of the proof of Lemma 12.1, all gener-
ators of the ideal (a) + (b) form a block of ~, corresponding to (a, b).
Applying Theorem 11.12 we conclude that

Corollary 12.2. Every irreducible element of a principal ideal domain
1S prime.

Lemma 12.3. Let R be a principal ideal domain. Let a,b € R and
d € (a,b). Then there are r,s € R such that

(12.2) d=r-a+s-b
Proof. 1t follows from (d) = (a) + (b) that
de(a)+(b)={r-a+s-b|rse R}
U

Lemma 12.3 states that in principal ideal domains, greatest common
divisors are expressed as linear combinations of the elements. Equality
(12.2) is called Bézouts identity.

12.3. Euklidean domains. Let R be an integral domain. An Fu-
clidean norm on Risamap N: R\ {0} — Ny such that for all a,b € R,
b # 0, there are ¢,r € R such that

(i)a=0b-c+r,
(ii) »=0o0r N(r) < N(b).

An Euklidean domain is a domain having an Euklidean norm.

Lemma 12.4. Fvery Fuklidean domain is a principal ideal domain.
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Proof. Let R be an Euklidean domain with an Euklidean norm N: R\
{0} — Ny and I an ideal of R. If I = (0), then I is principal.
Suppose that I contains a non-zero element and pick a non-zero b € [
with N (b) smallest possible. Then clearly (b) C I. We prove that the
equality holds true. Suppose that there is @ € I'\ (b). Since R is an
Euklidean domain, there are ¢, € R such that a = b-c+r and r =0 or
N(r) < N(b). Since a ¢ (b), we have that r # 0, and so N(r) < N(b).
Since r = a — b - ¢, we have that r € I. This contradicts the choice of
b with N(b) smallest possible in I. O

Observe that common divisors of a and b corresponds to common
divisors of a and r. We can thus compute the greatest common divisor
of a, b using the Fuklidean algorithm.:

Euklidan algorithm: Compute the greates common divisor

1: procedure GCD
input elements a, b

2: loop A:

3: until b=0do

4:  find ¢,r such that a =b-c+r and r =0 or N(r) < N(b)

5 a:=b

6: b:=r

7

8:

goto loop A
return a

Example 12.5. For an integer a put N(a) = |a|; the absolute value
of a. The ring Z of all integers is an Euklidean domain with the Eu-
klidean norm N: Z \ {0} — N. Observe that the Euklidean norm is
multiplicative, i.e, N(a-b) = N(a)- N(b), for all a,b € Z\ {0}.

Let F be a field and F[z] the ring of all polynomials with coefficients
inT. For a polynomial f(x) = ap-x"+---+ai-x+ag, with a, # 0, put
N(f) =n be the degree of f. It is well known that N : F[z]\ {0} — Ny
is an Fuklidean norm on Fx]. In this case however the Euklidean norm
is not multiplicative. Instead we have that N(f-g) = N(f)+ N(g) for
every pair of non-zero polynomials f,g.

Exercise 12.1. Decide, whether there is a multiplicative Fuklidean
norm on the ring Fx| of all polinomials with coeficients in a field F'.

12.4. Gaussian integers. Put
Zi| ={a+1ib|a,beZ},

and observe that Z[i] is a subring of the field C of all complex numbers.
Indeed (a+ib) —(c+id) = (a—c)+i(b—d) € Z]i] and (a+1b)-(c+id) =
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(a-c=b-d)+i(a-d+0b-c) € Z[i]. Elements of the ring Z[i] are called
Gaussian integers.

Let ¢ = z + iy be a complex number. We denote by & := = — iy the
conjugate of £ and we put

N(E):=¢-E=(z+iy) - (z —iy) = 2° + 9.

Thus N (&) is the square of the complex norm of £. Observe that
(123)  NE-n=(En-EnN=E&n & 7=NE- Nn).
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FIGURE 1. The ring Z[i|

Lemma 12.6. The restiction N | (Z[i]\ {0}): Z[i] \ {0} — N is an

Euklidean norm on the ring Z[i| of Gaussian integers.

Proof. Let a, f € Z[i] be such that § # 0. We are looking for v, p €
Z(i] such that o = - v+ p and either p = 0 or N(p) < N(p).
Elements of the ring Z[i] form a lattice in the complex plane (see
Figure 1). The lattice consists of squares with sides of size 1. Since
B # 0, we can form the complex fraction % The fraction lies inside a
square of the lattice. Since the side of the square has length 1, there is
a vertex 7 of the square (not necessarily unigue) such that |5 —~| <1

(see Figure 2). It follows that

« o
12.4 N(=—-7)=|5-17<1
(12.4) (5= =I5l



We set p = a — (-~. It follows from (12.3) and (12.4) that

N(p)=N(5-7)-8) = N(% — ) N(8) < N(B).

a+i(b+1) ! 7i (a+1)+i(b+1)

a+ib ! \qlr—’ (a4 1) +ib
| !

FIGURE 2. Fouding vy



