
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 12 - EUKLIDEAN AND PRINCIPAL IDEAL

DOMAINS

PAVEL RŮŽIČKA

For simplicity we restrict ourselves to commutative rings.

12.1. Divisibility and ideals. Ideals of a ring R are closed under
arbitrary intersections. It follows that each subset X ⊆ R possesses a
least ideal containingX, namely the intersection of all ideals containing
X. The ideal will be denoted by (X) and call the ideal generated by
the set X. Conversely, if I is an ideal of the ring R and X ⊆ I is such
that I = (X), then the set X is called the set of generators of (the
ideal) I.

An ideal generated by a single element is called principal . That is,
a principal ideal is an ideal of the form (a) for some a ∈ R. It is
straightforward to see that

(a) = {r · a | r ∈ R} = {b ∈ R | a | b},

i.e, the principal ideal (a) consists of all elements ofR that are divisible
by the element a. It readily follows that

(12.1) (a) ⊆ (b) ⇐⇒ b | a,

and, consequently, (a) = (b) if and only if a ∼ b.
Ideals of the ring R are ordered by inclusion. The greatest ideal

contained in ideals I, J is clearly the intersection I ∩ J . The least
ideal containing I, J is

I + J := {a+ b | a ∈ I, b ∈ J}.

It is straightforward from the definition that I +J is an ideal. On the
other hand, every ideal containing both I and J , being closed under
addition, contains I + J as well.

12.2. Principal ideal domains. A ring R is an integral domain if

a · b = 0 =⇒ a = 0 or b = 0,
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i.e., an integral domain is a commutative ring with no non-zero divisors
of 0. A principal ideal domain (shortly p.i.d.) is an integral domain
whose every ideal is principal.

Lemma 12.1. Every pair of elements of a principal ideal domain has
a greatest common divisor.

Proof. Let R be a principal ideal domain and a, b ∈ R. The ideal
(a) + (b) is principal, hence generated by some d ∈ R. Since (d) =
(a)+(b) ⊇ (a), it follows from (12.1) that d | a. Similarly we get that
d | b, and so d is a common divisor of a and b.

Let c be a common divisor of a, b. Again, by (12.1), we have that
(a) ⊆ (c) and (b) ⊆ (c). It follows that (a) + (b) ⊆ (c), hence
(d) ⊆ (c), whence c | d, due to (12.1). We conclude that d is the
greatest common divisor of a and b. �

Observe that, in the situation of the proof of Lemma 12.1, all gener-
ators of the ideal (a)+ (b) form a block of ∼, corresponding to (a, b).
Applying Theorem 11.12 we conclude that

Corollary 12.2. Every irreducible element of a principal ideal domain
is prime.

Lemma 12.3. Let R be a principal ideal domain. Let a, b ∈ R and
d ∈ (a, b). Then there are r, s ∈ R such that

(12.2) d = r · a+ s · b.

Proof. It follows from (d) = (a)+ (b) that

d ∈ (a)+ (b) = {r · a+ s · b | r, s ∈ R}.

�

Lemma 12.3 states that in principal ideal domains, greatest common
divisors are expressed as linear combinations of the elements. Equality
(12.2) is called Bézouts identity .

12.3. Euklidean domains. Let R be an integral domain. An Eu-
clidean norm onR is a map N : R\{0} → N0 such that for all a, b ∈ R,
b ̸= 0, there are c, r ∈ R such that

(i) a = b · c+ r,
(ii) r = 0 or N(r) < N(b).

An Euklidean domain is a domain having an Euklidean norm.

Lemma 12.4. Every Euklidean domain is a principal ideal domain.



3

Proof. Let R be an Euklidean domain with an Euklidean norm N : R\
{0} → N0 and I an ideal of R. If I = (0), then I is principal.
Suppose that I contains a non-zero element and pick a non-zero b ∈ I
with N(b) smallest possible. Then clearly (b) ⊆ I. We prove that the
equality holds true. Suppose that there is a ∈ I \ (b). Since R is an
Euklidean domain, there are c, r ∈ R such that a = b·c+r and r = 0 or
N(r) < N(b). Since a /∈ (b), we have that r ̸= 0, and so N(r) < N(b).
Since r = a − b · c, we have that r ∈ I. This contradicts the choice of
b with N(b) smallest possible in I. �

Observe that common divisors of a and b corresponds to common
divisors of a and r. We can thus compute the greatest common divisor
of a, b using the Euklidean algorithm:

Euklidan algorithm: Compute the greates common divisor

1: procedure GCD
input elements a, b

2: loop A:
3: until b = 0 do
4: find c, r such that a = b · c+ r and r = 0 or N(r) < N(b)
5: a := b
6: b := r
7: goto loop A
8: return a

Example 12.5. For an integer a put N(a) = |a|; the absolute value
of a. The ring Z of all integers is an Euklidean domain with the Eu-
klidean norm N : Z \ {0} → N. Observe that the Euklidean norm is
multiplicative, i.e, N(a · b) = N(a) ·N(b), for all a, b ∈ Z \ {0}.

Let F be a field and F [x] the ring of all polynomials with coefficients
in T . For a polynomial f(x) = an ·xn+ · · ·+a1 ·x+a0, with an ̸= 0, put
N(f) = n be the degree of f . It is well known that N : F [x]\{0} → N0

is an Euklidean norm on F [x]. In this case however the Euklidean norm
is not multiplicative. Instead we have that N(f · g) = N(f) +N(g) for
every pair of non-zero polynomials f, g.

Exercise 12.1. Decide, whether there is a multiplicative Euklidean
norm on the ring F [x] of all polinomials with coeficients in a field F .

12.4. Gaussian integers. Put

Z[i] := {a+ ib | a, b ∈ Z},
and observe that Z[i] is a subring of the fieldC of all complex numbers.
Indeed (a+ib)−(c+id) = (a−c)+i(b−d) ∈ Z[i] and (a+ib)·(c+id) =
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(a · c− b · d)+ i(a · d+ b · c) ∈ Z[i]. Elements of the ring Z[i] are called
Gaussian integers .

Let ξ = x+ iy be a complex number. We denote by ξ := x− iy the
conjugate of ξ and we put

N(ξ) := ξ · ξ = (x+ iy) · (x− iy) = x2 + y2.

Thus N(ξ) is the square of the complex norm of ξ. Observe that

(12.3) N(ξ · η) = (ξ · η) · (ξ · η) = ξ · η · ξ · η = N(ξ) ·N(η).

_____________________________

_____________________________

_____________________________

_____________________________

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

•
0

•
1

•
2

•
3

•
−1

•
−2

•
−3

•
i

•
1+i

•
2+i

•
3+i

•
−1+i

•
−2+i

•
−3+i

•
2i

•
1+2i

•
2+2i

•
3+2i

•
−1+2i

•
−2+2i

•
−3+2i

•
−i

•
1−i

•
2−i

•
3−i

•
−1−i

•
−2−i

•
−3−i

•
−2i

•
1−2i

•
2−2i

•
3−2i

•
−1−2i

•
−2−2i

•
−3−2i

Figure 1. The ring Z[i]

Lemma 12.6. The restiction N � (Z[i] \ {0}) : Z[i] \ {0} → N is an
Euklidean norm on the ring Z[i] of Gaussian integers.

Proof. Let α, β ∈ Z[i] be such that β ̸= 0. We are looking for γ, ρ ∈
Z[i] such that α = β · γ + ρ and either ρ = 0 or N(ρ) < N(β).

Elements of the ring Z[i] form a lattice in the complex plane (see
Figure 1). The lattice consists of squares with sides of size 1. Since
β ̸= 0, we can form the complex fraction α

β
. The fraction lies inside a

square of the lattice. Since the side of the square has length 1, there is
a vertex γ of the square (not necessarily unigue) such that |α

β
− γ| < 1

(see Figure 2). It follows that

(12.4) N(
α

β
− γ) = |α

β
− γ|2 < 1.
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We set ρ = α− β · γ. It follows from (12.3) and (12.4) that

N(ρ) = N((
α

β
− γ) · β) = N(

α

β
− γ) ·N(β) < N(β).
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•
(a+ 1) + i(b+ 1)

•
γ

•
(a+ 1) + ib

•
a+ i(b+ 1)

•
a+ ib

•α
β

}
1
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Figure 2. Fouding γ
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