ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 11 - RINGS, IDEALS, AND DIVISIBILITY

PAVEL RŮŽIČKA

11.1. **Rings.** A *ring* \mathbf{R} consists of a set, R, and a pair of binary operations + and \cdot respectively of addition and multiplication such that

- (i) (R, +) is an Abelian group,
- (ii) (R, \cdot) is a monoid,
- (iii) the *distributive law* holds true, that is,

$$(a+b) \cdot c = a \cdot c + b \cdot c$$
 and $c \cdot (a+b) = c \cdot a + c \cdot b$,
for all $a, b, c \in R$.

The unit of the Abelian group (R, +) is usually denoted by 0 and called the zero of the ring \mathbf{R} while the unit of the monoid (R, \cdot) is usually denote by 1 and it is called the unit of \mathbf{R} . We will often write a - b instead of a + (-b).

Exercise 11.1. Let $\mathbf{R} = (R, +, \cdot)$ be a ring. Prove that

(i) $a \cdot 0 = 0 \cdot a = 0$, for all $a \in R$. (ii) $(-a) \cdot b = a \cdot (-b) = -a \cdot b$, for all $a, b \in R$.

A ring \boldsymbol{R} is *commutative* provided that

$$a \cdot b = b \cdot a,$$

for all $a, b \in R$, i.e, the monoid (R, \cdot) is commutative.

A commutative ring $\mathbf{F} = (F, +, \cdot)$ such that $(F \setminus \{0\}, \cdot)$ is an (Abelian) group is called a *field*, i.e, a field is a commutative ring whose every non-zero element has a multiplicative inverse.

Example 11.1. Let us recall some well known examples of fields.

- 1. The sets of all rational, real, or complex numbers respectively form fields that are usually denoted by Q, R, and C.
- 2. For each prime number p, the set $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ with the operations $+_p$ and \cdot_p of addition and multiplication modulo p, respectively, is an example of a finite field. We will denote this field by \mathbb{Z}_p .

Example 11.2. Let us list a few examples of rings:

Date: January 10, 2018.

PAVEL RŮŽIČKA

- 1. The ring $\mathbf{Z} = (\mathbb{Z}, +, \cdot)$ of all integers.
- 2. Let \mathbf{F} be a field. All polynomials in a single variable x with coefficients from the field \mathbf{F} form a ring which we denote by $\mathbf{F}[x]$.
- 3. Let \mathbf{F} be a field and n a positive integer. All $n \times n$ matrices with entries from \mathbf{F} form a ring. We will denote this ring by $\mathbf{M}_n(\mathbf{F})$.

11.2. Ideals and factor-rings. An *ideal* of a ring $\mathbf{R} = (R, +, \cdot)$ is a subset $I \subseteq R$ such that

(i) $a, b \in I \implies a + b \in I$, (ii) $b \in I \implies a \cdot b \cdot c \in I$,

(ii) $0 \in I \implies a \cdot 0 \cdot c \in$

for all $a, b, c \in R$.

Observe that (I, +) is a subgroup of the Abelian group (R, +), indeed, if $a \in I$, then $-a = (-1) \cdot a \in I$, due to (ii). We can form a factor-group \mathbf{R}/\mathbf{I} , elements of the factor-group are cosets, a + I, of I. Let $a, b \in R$. We have that

$$(a+I) \cdot (b+I) = a \cdot b + a \cdot I + I \cdot b + I \cdot I \subseteq a \cdot b + I.$$

And so \mathbf{R}/\mathbf{I} is a ring which will be called a *factor-ring* of \mathbf{R} over the ideal I.

11.3. Ring homomorphisms and their kernels. Let R and S be rings. A map $\varphi \colon R \to S$ is a *(ring) homomorphism* provided that

- (i) $\varphi(a+b) = \varphi(a) + \varphi(b)$, for all $a, b \in R$,
- (ii) $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$, for all $a, b \in R$,
- (iii) $\varphi(1) = 1$.

Note that a map $\varphi \colon R \to S$ is a ring homomorphism if and only if it is at the same a homomorphism $(R, +) \to (S, +)$ of Abelian groups and $(R, \cdot) \to (S, \cdot)$ of monoids.

Let $\varphi \colon \mathbf{R} \to \mathbf{S}$ be a ring homomorphism. The *kernel* of φ is the set

$$\ker \varphi := \{ a \in R \mid \varphi(a) = 0 \}.$$

Lemma 11.3. Let $\varphi \colon \mathbf{R} \to \mathbf{S}$ be a ring homomorphism. Then ker φ is an ideal of \mathbf{R} .

Proof. Let $a, b \in \ker \varphi$. Then

$$\varphi(a+b) = \varphi(a) + \varphi(b) = 0,$$

hence $a + b \in \ker \varphi$. If $b \in \ker \varphi$ and $a, c \in R$, then

$$\varphi(a \cdot b \cdot c) = \varphi(a) \cdot \varphi(b) \cdot \varphi(c) = \varphi(a) \cdot 0 \cdot \varphi(c) = 0,$$

hence $a \cdot b \cdot c \in \ker \varphi$. We conclude that $\ker \varphi$ is an ideal of \mathbf{R} . \Box

 $\mathbf{2}$

On the other hand, if I is an ideal of the ring \mathbf{R} , we define a map $\pi_{\mathbf{R}/\mathbf{I}} \colon \mathbf{R} \to \mathbf{R}/\mathbf{I}$ by $a \mapsto a + \mathbf{I}$, for all $a \in \mathbf{R}$. One readily sees that $\pi_{\mathbf{R}/\mathbf{I}} \colon \mathbf{R} \to \mathbf{R}/\mathbf{I}$ is a ring homomorphism and that $I = \ker \pi_{\mathbf{R}/\mathbf{I}}$. Therefore, ideals correspond to kernels of rings homomorphisms.

11.4. Divisibility in commutative monoids. Let $M = (M, \cdot, 1)$ be a commutative monoid and $a, b \in M$. We say that a *divides* b (and we write $a \mid b$) if there is $c \in M$ such that $b = a \cdot c$. It is straightforward that the binary relation \mid defined on the set M is reflexive and transitive, that is, it is a quasi-order on M.

The quasi-order of divisibility induces an equivalence relation \sim on M given by $a \sim b$ provided that $a \mid b$ and $b \mid a$, for all $a, b \in M$. We say that the elements a and b are *associated* if $a \sim b$. We denote by $[a]_{\sim}$ the block of the equivalence relation \sim containing $a \in M$.

Lemma 11.4. Assume that the monoid M is cancellative. Let $a, b \in M$. Then $a \sim b$ if and only if there is an invertible element $u \in M$ such that $b = a \cdot u$.

Proof. (\Rightarrow) Suppose that $a \sim b$. Then $a \mid b$ and $b \mid a$, that is, there are $u, v \in M$ satisfying $b = a \cdot u$ and $a = b \cdot v$. It follows that $b = a \cdot u \cdot v$ and from the cancellativity we get that $1 = u \cdot v$. Since M is commutative, we conclude that u is invertible. (\Leftarrow) Suppose that there is an invertible element $u \in M$ such that $b = a \cdot u$. Let v be an inverse of u. Then $1 = u \cdot v$, and so $a = a \cdot 1 = a \cdot u \cdot v = b \cdot v$. Therefore $a \mid b$ and $b \mid a$, hence $a \sim b$.

An element $p \in M$ is *prime* provided that p is not invertible and $p \mid a \cdot b$ implies that $p \mid a$ or $p \mid b$, for all $a, b \in M$.

An element $q \in M$ is *irreducible* provided that q is not invertible and $q \sim a \cdot b$ implies that either $q \sim a$ or $q \sim b$, for all $a, b \in M$.

By induction we prove that

Lemma 11.5. An element $p \in M$ is prime if and only if

 $p \mid a_1 \cdots a_n \implies p \mid a_i \text{ for some } i \in \{1, 2, \dots, n\},\$

for all $n \in \mathbb{N}$ and all $a_1, \ldots, a_n \in M$. An element $q \in M$ is irreducible if and only if

 $q \sim a_1 \cdots a_n \implies q \sim a_i \text{ for some } i \in \{1, 2, \dots, n\},\$

for all $n \in \mathbb{N}$ and all $a_1, \ldots, a_n \in M$.

Lemma 11.6. Every prime element of M is irreducible.

PAVEL RŮŽIČKA

Proof. Let $p \in M$ be a prime element and $p \sim a \dots b$ for some $a, b \in M$. Then either $p \mid a \text{ or } p \mid b$. Since both $a \mid p$ and $b \mid p$, we conclude that either $p \sim a$ or $p \sim b$. It follows that p is irreducible.

In general not every irreducible element is prime. We will have a closer look at this phenomena later.

A common divisor of elements $a_1, \ldots, a_n \in M$ is $b \in M$ such that $b \mid a_i$ for all $i \in \{1, 2, \ldots, n\}$. A greatest common divisor of elements a_1, \ldots, a_n is

- a common divisor of a_1, \ldots, a_n ,

- if c is a common divisor of a_1, \ldots, a_n , then $c \mid d$.

The greatest common divisor of a_1, \ldots, a_n may not be unique. However, it is easy to see that all the greatest common divisors are associated. On the other hand, if d is a greatest common divisor of the elements a_1, \ldots, a_n and $c \sim d$ then c is a greatest common divisor of a_1, \ldots, a_n as well. Therefore, all greatest common divisors of a_1, \ldots, a_n form a block of the equivalence \sim . We will denote the block by (a_1, \ldots, a_n) .

Lemma 11.7. Let M be a commutative monoid, $a, b, c \in M$. Then

(11.1)
$$(a, (b, c)) = ((a, b), c).$$

Proof. Pick $d \in (a, (b, c))$ and $e \in ((a, b), c)$. We prove that $d \sim e$. Pick $f \in (b, c)$ and $g \in (a, b)$. Then $d \mid a$ and $d \mid f$. Since $d \mid f$, we have that $d \mid b$ and $d \mid c$. From $d \mid a$ and $d \mid b$ we infer that $d \mid g$ and, since $d \mid c$, we conclude that $d \mid e$. Similarly we prove that $e \mid d$.

Corollary 11.8. Let M be a commutative monoid. If a greatest common divisor exists for each pair of elements of M, then a greatest common divisor exists for every non-empty finite subset $\{a_1, \ldots, a_n\}$ of M and it can be computed inductively as

$$(a_1, a_2, \ldots, a_n) = (a_1, (a_2, \ldots, a_n)).$$

Lemma 11.9. Let M be a commutative cancellative monoid. Let $a, b, c \in M$ be such that both (a, b) and $(a \cdot c, b \cdot c)$ exist. Then

$$(a \cdot c, b \cdot c) = (a, b) \cdot c.$$

Proof. Pick $d \in (a, b)$ and $e \in (a \cdot c, b \cdot c)$. From $d \cdot c \mid a \cdot c$ and $d \cdot c \mid b \cdot c$ we infer that $d \cdot c \mid e$, in particular, there is $x \in M$ such that

$$e = d \cdot c \cdot x.$$

Since $e \mid a \cdot c$ and $e \mid b \cdot c$, there are $y, z \in M$ such that

$$\begin{aligned} a \cdot c &= e \cdot y = d \cdot c \cdot x \cdot y, \\ b \cdot c &= e \cdot z = d \cdot c \cdot x \cdot z. \end{aligned}$$

4

Since the monoid M is cancellatice, we infer that

$$a = d \cdot x \cdot y$$
 and $b = d \cdot x \cdot z$.

Therefore $d \cdot x$ is a common divisor of a, b, and so $d \cdot x \mid d$. It follows that $d \cdot x \sim d$, hence $e = d \cdot x \cdot c \sim d \cdot c$. We conclude that $d \cdot c$ is a greatest common divisor of $a \cdot c$ and $b \cdot c$.

We say that $a, b \in M$ are *relatively prime* if the only common divisors of a and b are the invertible elements of M. Clearly, elements $a, b \in M$ are relatively prime if and only if $(a, b) = [1]_{\sim}$.

Lemma 11.10. Let M be a commutative cancellative monoid such that the greatest common divisor exists for each pair of elements of M. Let $a, b, c \in M$. If $(a, b) = [1]_{\sim}$ and $(a, c) = [1]_{\sim}$, then $(a, b \cdot c) = [1]_{\sim}$.

Proof. Applying Lemma 11.9, we get from $(a, b) = [1]_{\sim}$, that $(a \cdot c, b \cdot c) = [1]_{\sim} \cdot c = [c]_{\sim}$. Similarly, we infer from $(1, c) = [1]_{\sim}$, that $(a, a \cdot c) = [a]_{\sim}$. Applying Lemma 11.7 we conclude that

$$(a, b \cdot c) = ((a, a \cdot c), b \cdot c) = (a, (a \cdot c, b \cdot c)) = (a, c) = [1]_{\sim}.$$

Observe that from Lemma 11.10 it follows that

Corollary 11.11. Let M be a commutative cancellative monoid such that the greatest common divisor exists for each pair of elements of M, $a \in M$. Then the set of all elements of M that are relatively prime to a forms a submonoid of M.

Theorem 11.12. Let M be a commutative cancellative monoid. If every pair of elements of M has a greatest common divisor, then every irreducible element of M is prime.

Proof. Suppose that the assumptions of the theorem hold true and let q be an irreducible element of M. Let $a, b \in M$. Since q is irreducible either $q \mid a$, in which case $(q, a) = [a]_{\sim}$ or $(q, a) = [1]_{\sim}$. It follows that if $q \nmid a$ and $q \nmid b$, then $(q, a) = (q, b) = [1]_{\sim}$. From Lemma 11.10 we infer that $(q, a \cdot b) = [1]_{\sim}$, hence $q \nmid a \cdot b$. Therefore q is a prime element of M.