ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 10 - GROUPS ACTING ON SETS

PAVEL RUZICKA

10.1. G-sets, orbits, and isotropy subgroups. Let G = (G, ) be
a group. An action of the group G on a set X is a homomorphism

a: G — Sy.

A set X equipped with an action of a group G on X is often referred
to as a G-set.

Having fixed an action « of the group G on a set X, we put a(g)(x) =
g-x, forall g € G and x € X. Thus the action corresponds to the map
G x X — X given by (g, z) — g-x. It is easily seen from the definition
of a group homomorphism that

(i) (f-g)-x=f-(g-x), forall f,g € Gandall z € X.
(i) ug -z =z, for all x € X.
On the other hand,

Lemma 10.1. Any map G x X — X satisfying properties (i) and (ii)
corresponds to an action of the group G on the set X.

Proof. For each g € G we define amap a(g): X — X by a(g)(z) = g-x,
reX.

First we prove that a(g) is a bijection for all g € G. Let g € G and
x € X. Then

g lalg)e)=g"(g-2)=(g

hence the image a(g)(x) determines x, whence «(g) is one-to-one. Since

19 r=ug-rv=mu,

a(@)gte)=g- (g7 2)=(9-97") z=ug-x=u1,
the map «(g) maps the set X onto X. We conclude that a(g) is a

bijection, and so « is a map from G to Sx.
For all f,g € G and all z € X we have that

a(f-g)(x)=(f-g9)-z=[(g9-2)=a(f)alg)(z)),
hence a(f - g) = a(f) o a(g). We conclude that a: G — Sx is a group
homomorphism. U
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Let X be a G-set. For each x € X, we set
G, ={9eG|g-z=uz}

Lemma 10.2. Let X be a G-set. The set G, determines a subgroup
G, of G, for every x € X.

Proof. A simple verification gives that
fra=go=0 = (f-9)z=f-(g-2)=fr=ux
for all f,g € G, and
gra=r = g lx=9"(g-2)=(9"
for all g € G. O
We call G, the isotropy subgroup® of x. Next we define
Og(z):=={g-z|g€ G}
The set Og(x) is called a G-orbit of .

Lemma 10.3. Let X be a G-set. The binary relation ~g defined on
the set X by y ~g x if y = g - x for some g € G is an equivalence on
X and G-orbits correspond to blocks of ~¢g.

Lg) z=ug -v=1,

Proof. Since x = ug - x, the relation ~¢ is reflexive. If y = g - x, then
r=ug-r= (g1 g)r=9g"(g9-v) =g 'y, and so ~¢g is symmetric.
Finally,ifr = f-yandy=g-z,thenz = f-y=f-(9-2) = (f-9) -z,
hence ~¢ is transitive. We conclude that ~¢ is an equivalence on X.
It is clear from the definition of G-orbits that they correspond to blocks

of ~G. ]
Lemma 10.4. Let X be a G-set and x € X. Then
(10.1) |Oc(2)] =[G : G.].

Proof. Observe that
fr=g-0 = g' fedq,,

for all f,g € G. Applying Lemma 5.2, we see that elements of the G-
orbit Og(z) correspond to left cosets of G,. Equation (10.1) readily
follows. O

Corollary 10.5. Let X be a G-set and x € X. Then
G| = [Og(2)] - |Gal.

Exercise 10.1. Let p be a prime number and G a group of size p™ for
some positive integer n. Prove that a G-set X with p1 |X| contains an
element x such that g-x = x for all g € G.

1Some authors call G, the stabilizer of x.
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Exercise 10.2. Let p be a prime and G a group of automorphisms of
a finitely generated vector space V' over the field Z,,.

(i) Prove that there is a non-zero vector v € V' such that f(v) = v,
forall f € G.

(ii) Prove that there is a basis of V' such that all endomorphisms
from G are represented with respect to the bases by upper tri-
angular matrices.

10.2. Counting orbits. Let X be a G-set. We denote by X/G the
set

X/G :={0¢(x) | x € X}
of all G-orbits of X.

Lemma 10.6. Let X be a G-set. Then
(10.2) | X/G| = € Z |Gl
rxeX

Proof. Let A be a set of representatives of G-orbits, i.e., A picks one
element from each G-orbit. Then we have that

(10.3)
|OG y)| 1
| X/G| = =D T
Z c(y)l EZMGOZ( )| x)l IEZG |Oc ()]
It follows from Corollary 10.5 that
1 G
Oc(x)] |G|

for all z € X. We conclude from (10.3) that

1 Gl
X/G| = Lk}
X/G1= 2 foat ~ 2 1a] |G|Z'G'

For each g € G we define
Xy, ={reX|g-z=1z}
Observe (see Figure 1) that

(10.4) D 1G = Hlg2) e Gx X [g-a=a}[=) |X,].

zeX geG
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FIGURE 1. The set {(g,z) | g-x =z}

Lemma 10.7 (Burnside’s Lemma?). Let X be a G-set. Then

1
(10.5) X/G = 1 1
geG
Proof. Apply Lemma 10.6 and equation (10.4). O

Burnside’s lemma can be elegantly applied to solve some combina-
torial problems.

Let C be a (finite) set of colors. By a C-coloring of a set X we mean
amap v: X — C. We denote by XC the set of all C-colorings of the set
X. A group G acting on the set X naturally acts on XC via
(10.6) (g-7)(x) =~(g-x), forall zeX,
for all (g,~) € G x *C.

Lemma 10.8. Let a: G — Sx be an action of a group G on a set X
and C a set of colors. Then

©X,| = ICI",
where k is the number of cycles of a(g) € Sx, for all g € G.

Proof. Let g € G and v be a C-coloring of the set X. It follows from
(10.6) that g -y = if and only if v(x) = v(g - x), for all z € X.This is
equivalent to all elements of each cycle of a(g) having the same color.

2Burnside’s lemma is actually due to Frobenius (1887).
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Therefore the size of © X, is the number of all possible colorings of cycles
of g, which is |C|*. O

Let us have a look at some applications:

Example 10.9. Suppose that we can color faces of a cube by n colors.
We can obtain exactly

2

2—4 (n* 4 3n* 4+ 12n +8)

distinct cubes.

Proof. Let C be the set of n given colors. Two colorings of faces of a
cube give identical cubes if and only they can be obtained from each
other by rotations. The group R of all rotations of a cube acts on the
set X of all faces of a cube (via the map a: R — Sx) and consequently
R acts on the set of all colorings of the faces by colors from C. Therefore
the number of distinct cubes obtained by coloring faces of a cube equals
to the size of the set X/ R of all R-orbits of ©X. Conjugated rotations
act on X as conjugated permutations and so they have the same type
(see Theorem 6.11), in particular, they have the same number of cycles.
We have the following rotation of a cube:

(i) 1 identity w which corresponds to the type (6,0,0,0), and so
|CXu| — TL6,

(ii) 3 rotation p over the axes connecting the centers of two oppo-
site edges over the angle 180°. Then typea(p) = (2,2,0,0),
and so [€X,| = n4,

(iii) 6 flips 7, that is, rotations over axes connecting the centers
of two opposite faces over the angle 180°. Then type a(r) =
(0,3,0,0), and so |°X,| = n?,

(iv) 8 rotations s over diagonals of the cube. Then typea(s) =
(0,0,2,0), and so |°X,| = n?,

(v) 6 rotations t over axes connecting the centers of two opposite
faces over the angle 90°. Then type a(t) = (2,0,0,1), and so
€X;| = n3.

According to Example 6.12 the group R is isomorphic to S4 and so it
has 24 elements. Applying Burnside’s lemma we compute that

1 2
°X/R| = 2 (n® + 3n* 4 6n° + 8n* 4 6n°) = 3—4 (n* +3n*+ 12n + 8)..

O

Exercise 10.3. If we color faces of a tetrahedron by n colors, how
many distinct tetrahedrons we obtain?
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Exercise 10.4. Suppose we color tiles of a chessboard by n colors. How
many distinct boards we can obtain?

Exercise 10.5. Suppose that we are making necklaces each from k
beads. How many distinct necklaces we can make when we use beads of
n colors? How many distinct necklaces can be made from 5 blue and 5
red beads?

10.3. Translations and Lagrange’s theorem revised. We denote
by P(X) the set of all subsets of a set X. Given a group G, we set
A(g)(X):=¢g-X, forallge G,X CG.
Thus A(g): P(G) — P(G) is a map with an inverse A(g~'). It is
straightforward to verify that A: G — Sp(q) is an action of the group
G on the set P(X).
Let H be a subgroup of the group G. The isotropy subgroup
Gy={9€eG|g-H=H}
is the group H itself and the G-orbit of H is the set
Oc(H)={g-H |geG}

of all left cosets of H. Lagrange’s theorem is then a special case of
Lemma 10.4 and Corollary 10.5, indeed

G| =10c(H)|-|Gr| =[G : H]- |H|.

Exercise 10.6. Prove Lemma 10.4 and Corollary 10.5 directly without
applying Lagrange’s theorem.

10.4. Conjugations and The class formula. Let G be a group. An
isomorphism G — G is called an automorphism of the group G. It is
straightforward that automorphisms of G are closed under composition
and inverses, and so they form a group which we denote by Aut(G).

Recall that ¢ = f - ¢ - f~' denotes the conjugation of an element
g € G by an element f € G. Observe that

(10.7) Hg-n)y=f-(g-h)-f=-g-FNF-h-f)='g-7h
and

(10.8)  Th=(f-g)-h-(f-9) ' =f-g-h-g7' f1=1(h),

for all f,g,h € G. It follows from (10.7) and (10.8) that the conjuga-
tion by an element f € G induces an automorphism G with the inverse
given by the conjugation by f~!. The automorphisms induced by con-

jugations are called inner automorphisms. They form a subgroup of
Aut(G) which we denote by Inn(G). Moreover, it follows from (10.8)
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that the map ¢: G — Aut(QG) given by f — (g +— g) corresponds to

the action
GxG—G

(f.9)—"g

of the group G on the set GG. It is straightforward to see that the image
of ¢ is the subgroup Inn(G) of all inner automorphisms and the kernel
of ¢ is the center of G (cf. 6.2).

Exercise 10.7. Let G be a group. Prove that Inn(G) < Aut(G) and
that Inn(G) ~ G/Z(G).

Let A be a set of representatives of orbits of ¢. The orbits of ¢
correspond to conjugacy classes of G. Since G is a disjoint union of
the conjugacy classes, we have that

(10.9) Gl="10c(9)l.
geA
Lemma 10.10. Let G be a group acting on itself by conjugation. Then
Z(G) ={9 € G| Oclg) = {g}}-
Proof. Let g € G. Then
lg=g <= f-9-f'=9g <= [f-9=9-]
for all f € G. Therefore fg = ¢ for all f € G if and only if ¢ €

Z(G). O
It follows that Z(G) C A and we infer from (10.9) that
(10.10) Gl=12@)+ Y 10a(9)l.
9eA\Z(G)

Let ug denote the trivial subgroup of G. It follows from Lemma 10.4
that |Og(g9)] = [G : G, for all g € G. This allow us to reformulate
(10.9) as

(10.11) [G:ugl =) [G:G,]
geA

and (10.10) can be stated in the form

(10.12) Gl =1ZG)+ Y [G:G,l.
9eA\Z(G)

Equation (10.11) is often referred to as The class formula. We show
some non-trivial applications of (10.12) which, indeed, is a version of
The class formula.
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Let G be a group and g € G. Then o(g) is the order of the cyclic
group generated by g, hence o(g) | |G| due to Lagrange’s theorem.
According to Lemma 9.7 if a group G is cyclic that for every m | |G|
there is a unique subgroup of G of order m. The subgroup is neces-
sarily cyclic, due to Lemma 9.6, and so generated by an element of
order m. In general, finite groups may not have subgroups of order m
for every divisor m of their order. For example, the alternating group
of permutations A has order 5!/2 = 60 but it has no a subgroup of
order 30. Otherwise the subgroup would be normal due to Lemma 6.4
which would contradict the simplicity As justified by Theorem 6.13.
Nevertheless we prove that a finite group G has an element (and con-
sequently a subgroup) of order p for every prime divisor p of |G|.

Theorem 10.11 (Cauchy). Let G be a finite group and p a prime
dividing its order. Then there is g € G with o(g) = p.

Proof. We prove the theorem by induction on the order of G. If |G| = p,
then G is necessarily cyclic and each of its non-unit elements has order
p.

Suppose first that the group G is Abelian (i.e, comutative®) If G is
cyclic, it has an element of order p due to Lemma 9.7. Otherwise G
has a proper non-trivial subgroup, say H. Since |G| = |G/H|-|H| due
to Lagrange’s theorem, either p | |H| or p | |G/H|. In the first case
we are done by the induction hypothesis, since |H| < |G]. If the latter
holds true, the factor group G/H contains an element of order p again
by the induction hypothesis. Therefore there is an element g € G\ H
such that g» € H. Put ¢ = o(¢?) and observe that o(g?) = p.

Now let G be an arbitrary finite group. If there is a proper subgroup
H of G such that p | |H|, then H contains an element of order p by
the induction hypothesis. Otherwise p { |G|, hence p | [G : G, for all
g € A\ Z(G). Formula (10.12) gives that

Z2(@) =1Gl— > [G:G,
gEA\Z(G)

Since the right hand side is divisible by p, we conclude that p | |Z(G)|.
Since the group Z(G) is commutative, we are done by the previous
paragraph. O

3Commutative groups are usually called Abelian groups in tribute to Norwegian
mathematician Niels Henrik Abel (1802 - 1829).



