
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 10 - GROUPS ACTING ON SETS

PAVEL RŮŽIČKA

10.1. G-sets, orbits, and isotropy subgroups. Let G = (G, ·) be
a group. An action of the group G on a set X is a homomorphism

α : G → SX .

A set X equipped with an action of a group G on X is often referred
to as a G-set .

Having fixed an action α of the groupG on a setX, we put α(g)(x) =
g ·x, for all g ∈ G and x ∈ X. Thus the action corresponds to the map
G×X → X given by ⟨g, x⟩ 7→ g ·x. It is easily seen from the definition
of a group homomorphism that

(i) (f · g) · x = f · (g · x), for all f, g ∈ G and all x ∈ X.
(ii) uG · x = x, for all x ∈ X.

On the other hand,

Lemma 10.1. Any map G×X → X satisfying properties (i) and (ii)
corresponds to an action of the group G on the set X.

Proof. For each g ∈ G we define a map α(g) : X → X by α(g)(x) = g·x,
x ∈ X.

First we prove that α(g) is a bijection for all g ∈ G. Let g ∈ G and
x ∈ X. Then

g−1 · α(g)(x) = g−1 · (g · x) = (g−1 · g) · x = uG · x = x,

hence the image α(g)(x) determines x, whence α(g) is one-to-one. Since

α(g)(g−1 · x) = g · (g−1 · x) = (g · g−1) · x = uG · x = x,

the map α(g) maps the set X onto X. We conclude that α(g) is a
bijection, and so α is a map from G to SX .

For all f, g ∈ G and all x ∈ X we have that

α(f · g)(x) = (f · g) · x = f · (g · x) = α(f)(α(g)(x)),

hence α(f · g) = α(f) ◦α(g). We conclude that α : G → SX is a group
homomorphism. �
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Let X be a G-set. For each x ∈ X, we set

Gx := {g ∈ G | g · x = x}.
Lemma 10.2. Let X be a G-set. The set Gx determines a subgroup
Gx of G, for every x ∈ X.

Proof. A simple verification gives that

f · x = g · x = x =⇒ (f · g) · x = f · (g · x) = f · x = x,

for all f, g ∈ G, and

g · x = x =⇒ g−1 · x = g−1 · (g · x) = (g−1 · g) · x = uG · x = x,

for all g ∈ G. �
We call Gx the isotropy subgroup1 of x. Next we define

OG(x) := {g · x | g ∈ G}.
The set OG(x) is called a G-orbit of x.

Lemma 10.3. Let X be a G-set. The binary relation ∼G defined on
the set X by y ∼G x if y = g · x for some g ∈ G is an equivalence on
X and G-orbits correspond to blocks of ∼G.

Proof. Since x = uG · x, the relation ∼G is reflexive. If y = g · x, then
x = uG ·x = (g−1 ·g) ·x = g−1 ·(g ·x) = g−1 ·y, and so ∼G is symmetric.
Finally, if x = f · y and y = g · z, then x = f · y = f · (g · z) = (f · g) · z,
hence ∼G is transitive. We conclude that ∼G is an equivalence on X.
It is clear from the definition ofG-orbits that they correspond to blocks
of ∼G. �
Lemma 10.4. Let X be a G-set and x ∈ X. Then

(10.1) |OG(x)| = [G : Gx].

Proof. Observe that

f · x = g · x ⇐⇒ g−1 · f ∈ Gx,

for all f, g ∈ G. Applying Lemma 5.2, we see that elements of the G-
orbit OG(x) correspond to left cosets of Gx. Equation (10.1) readily
follows. �
Corollary 10.5. Let X be a G-set and x ∈ X. Then

|G| = |OG(x)| · |Gx|.
Exercise 10.1. Let p be a prime number and G a group of size pn for
some positive integer n. Prove that a G-set X with p - |X| contains an
element x such that g · x = x for all g ∈ G.

1Some authors call Gx the stabilizer of x.



3

Exercise 10.2. Let p be a prime and G a group of automorphisms of
a finitely generated vector space V over the field Zp.

(i) Prove that there is a non-zero vector vvv ∈ V such that f(vvv) = vvv,
for all f ∈ G.

(ii) Prove that there is a basis of V such that all endomorphisms
from G are represented with respect to the bases by upper tri-
angular matrices.

10.2. Counting orbits. Let X be a G-set. We denote by X/G the
set

X/G := {OG(x) | x ∈ X}
of all G-orbits of X.

Lemma 10.6. Let X be a G-set. Then

(10.2) |X/G| = 1

|G|
∑
x∈X

|Gx|.

Proof. Let ∆ be a set of representatives of G-orbits, i.e., ∆ picks one
element from each G-orbit. Then we have that
(10.3)

|X/G| = |∆| =
∑
y∈∆

|OG(y)|
|OG(y)|

=
∑
y∈∆

∑
x∈OG(y)

1

|OG(x)|
=

∑
x∈G

1

|OG(x)|
.

It follows from Corollary 10.5 that

1

|OG(x)|
=

|Gx|
|G|

,

for all x ∈ X. We conclude from (10.3) that

|X/G| =
∑
x∈G

1

|OG(x)|
=

∑
x∈G

|Gx|
|G|

=
1

|G|
∑
x∈G

|Gx|.

�

For each g ∈ G we define

Xg := {x ∈ X | g · x = x}.

Observe (see Figure 1) that

(10.4)
∑
x∈X

|Gx| = |{⟨g, x⟩ ∈ G×X | g · x = x}| =
∑
g∈G

|Xg|.
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Figure 1. The set {⟨g, x⟩ | g · x = x}

Lemma 10.7 (Burnside’s Lemma2). Let X be a G-set. Then

(10.5) |X/G| = 1

|G|
∑
g∈G

|Xg|.

Proof. Apply Lemma 10.6 and equation (10.4). �
Burnside’s lemma can be elegantly applied to solve some combina-

torial problems.
Let C be a (finite) set of colors. By a C-coloring of a set X we mean

a map γ : X → C. We denote by XC the set of all C-colorings of the set
X. A group G acting on the set X naturally acts on XC via

(10.6) (g · γ)(x) = γ(g · x), for all x ∈ X,

for all ⟨g, γ⟩ ∈ G× XC.

Lemma 10.8. Let α : G → SX be an action of a group G on a set X
and C a set of colors. Then

|CXg| = |C|k,
where k is the number of cycles of α(g) ∈ SX , for all g ∈ G.

Proof. Let g ∈ G and γ be a C-coloring of the set X. It follows from
(10.6) that g · γ = γ if and only if γ(x) = γ(g · x), for all x ∈ X.This is
equivalent to all elements of each cycle of α(g) having the same color.

2Burnside’s lemma is actually due to Frobenius (1887).
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Therefore the size of CXg is the number of all possible colorings of cycles
of g, which is |C|k. �

Let us have a look at some applications:

Example 10.9. Suppose that we can color faces of a cube by n colors.
We can obtain exactly

n2

24

(
n4 + 3n2 + 12n+ 8

)
distinct cubes.

Proof. Let C be the set of n given colors. Two colorings of faces of a
cube give identical cubes if and only they can be obtained from each
other by rotations. The group R of all rotations of a cube acts on the
set X of all faces of a cube (via the map α : R → SX) and consequently
R acts on the set of all colorings of the faces by colors from C. Therefore
the number of distinct cubes obtained by coloring faces of a cube equals
to the size of the set CX/R of all R-orbits of CX. Conjugated rotations
act on X as conjugated permutations and so they have the same type
(see Theorem 6.11), in particular, they have the same number of cycles.
We have the following rotation of a cube:

(i) 1 identity u which corresponds to the type ⟨6, 0, 0, 0⟩, and so
|CXu| = n6,

(ii) 3 rotation p over the axes connecting the centers of two oppo-
site edges over the angle 180o. Then typeα(p) = ⟨2, 2, 0, 0⟩,
and so |CXp| = n4,

(iii) 6 flips r, that is, rotations over axes connecting the centers
of two opposite faces over the angle 180o. Then typeα(r) =
⟨0, 3, 0, 0⟩, and so |CXr| = n3,

(iv) 8 rotations s over diagonals of the cube. Then typeα(s) =
⟨0, 0, 2, 0⟩, and so |CXs| = n2,

(v) 6 rotations t over axes connecting the centers of two opposite
faces over the angle 90o. Then typeα(t) = ⟨2, 0, 0, 1⟩, and so
|CXt| = n3.

According to Example 6.12 the group R is isomorphic to S4 and so it
has 24 elements. Applying Burnside’s lemma we compute that

|CX/R| = 1

24

(
n6 + 3n4 + 6n3 + 8n2 + 6n3

)
=

n2

24

(
n4 + 3n2 + 12n+ 8

)
.

�
Exercise 10.3. If we color faces of a tetrahedron by n colors, how
many distinct tetrahedrons we obtain?
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Exercise 10.4. Suppose we color tiles of a chessboard by n colors. How
many distinct boards we can obtain?

Exercise 10.5. Suppose that we are making necklaces each from k
beads. How many distinct necklaces we can make when we use beads of
n colors? How many distinct necklaces can be made from 5 blue and 5
red beads?

10.3. Translations and Lagrange’s theorem revised. We denote
by P(X) the set of all subsets of a set X. Given a group G, we set

Λ(g)(X) := g ·X, for all g ∈ G,X ⊆ G.

Thus Λ(g) : P(G) → P(G) is a map with an inverse Λ(g−1). It is
straightforward to verify that Λ: G → SP(G) is an action of the group
G on the set P(X).

Let H be a subgroup of the group G. The isotropy subgroup

GH = {g ∈ G | g ·H = H}
is the group H itself and the G-orbit of H is the set

OG(H) = {g ·H | g ∈ G}
of all left cosets of H . Lagrange’s theorem is then a special case of
Lemma 10.4 and Corollary 10.5, indeed

|G| = |OG(H)| · |GH | = [G : H ] · |H|.

Exercise 10.6. Prove Lemma 10.4 and Corollary 10.5 directly without
applying Lagrange’s theorem.

10.4. Conjugations and The class formula. Let G be a group. An
isomorphism G → G is called an automorphism of the group G. It is
straightforward that automorphisms ofG are closed under composition
and inverses, and so they form a group which we denote by Aut(G).

Recall that fg = f · g · f−1 denotes the conjugation of an element
g ∈ G by an element f ∈ G. Observe that

(10.7) f (g · h) = f · (g · h) · f−1 = (f · g · f−1)(f · h · f−1) = fg · fh
and

(10.8) f ·gh = (f · g) · h · (f · g)−1 = f · g · h · g−1 · f−1 = f (gh),

for all f, g, h ∈ G. It follows from (10.7) and (10.8) that the conjuga-
tion by an element f ∈ G induces an automorphism G with the inverse
given by the conjugation by f−1. The automorphisms induced by con-
jugations are called inner automorphisms . They form a subgroup of
Aut(G) which we denote by Inn(G). Moreover, it follows from (10.8)
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that the map ϕ : G → Aut(G) given by f 7→ (g 7→ fg) corresponds to
the action

G×G → G

⟨f, g⟩ 7→ fg

of the group G on the set G. It is straightforward to see that the image
of ϕ is the subgroup Inn(G) of all inner automorphisms and the kernel
of ϕ is the center of G (cf. 6.2).

Exercise 10.7. Let G be a group. Prove that Inn(G) E Aut(G) and
that Inn(G) ≃ G/Z(G).

Let ∆ be a set of representatives of orbits of ϕ. The orbits of ϕ
correspond to conjugacy classes of G. Since G is a disjoint union of
the conjugacy classes, we have that

(10.9) |G| =
∑
g∈∆

|OG(g)|.

Lemma 10.10. Let G be a group acting on itself by conjugation. Then

Z(G) = {g ∈ G | OG(g) = {g}}.

Proof. Let g ∈ G. Then

fg = g ⇐⇒ f · g · f−1 = g ⇐⇒ f · g = g · f,
for all f ∈ G. Therefore fg = g for all f ∈ G if and only if g ∈
Z(G). �

It follows that Z(G) ⊆ ∆ and we infer from (10.9) that

(10.10) |G| = |Z(G)|+
∑

g∈∆\Z(G)

|OG(g)|.

Let uG denote the trivial subgroup of G. It follows from Lemma 10.4
that |OG(g)| = [G : Gg], for all g ∈ G. This allow us to reformulate
(10.9) as

(10.11) [G : uG] =
∑
g∈∆

[G : Gg]

and (10.10) can be stated in the form

(10.12) |G| = |Z(G)|+
∑

g∈∆\Z(G)

[G : Gg].

Equation (10.11) is often referred to as The class formula. We show
some non-trivial applications of (10.12) which, indeed, is a version of
The class formula.
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Let G be a group and g ∈ G. Then o(g) is the order of the cyclic
group generated by g, hence o(g) | |G| due to Lagrange’s theorem.
According to Lemma 9.7 if a group G is cyclic that for every m | |G|
there is a unique subgroup of G of order m. The subgroup is neces-
sarily cyclic, due to Lemma 9.6, and so generated by an element of
order m. In general, finite groups may not have subgroups of order m
for every divisor m of their order. For example, the alternating group
of permutations A5 has order 5!/2 = 60 but it has no a subgroup of
order 30. Otherwise the subgroup would be normal due to Lemma 6.4
which would contradict the simplicity A5 justified by Theorem 6.13.
Nevertheless we prove that a finite group G has an element (and con-
sequently a subgroup) of order p for every prime divisor p of |G|.

Theorem 10.11 (Cauchy). Let G be a finite group and p a prime
dividing its order. Then there is g ∈ G with o(g) = p.

Proof. We prove the theorem by induction on the order ofG. If |G| = p,
then G is necessarily cyclic and each of its non-unit elements has order
p.

Suppose first that the group G is Abelian (i.e, comutative3) If G is
cyclic, it has an element of order p due to Lemma 9.7. Otherwise G
has a proper non-trivial subgroup, say H . Since |G| = |G/H| · |H| due
to Lagrange’s theorem, either p | |H| or p | |G/H|. In the first case
we are done by the induction hypothesis, since |H| < |G|. If the latter
holds true, the factor group G/H contains an element of order p again
by the induction hypothesis. Therefore there is an element g ∈ G \H
such that gp ∈ H. Put q = o(gp) and observe that o(gq) = p.

Now let G be an arbitrary finite group. If there is a proper subgroup
H of G such that p | |H|, then H contains an element of order p by
the induction hypothesis. Otherwise p - |Gg|, hence p | [G : Gg], for all
g ∈ ∆ \ Z(G). Formula (10.12) gives that

|Z(G)| = |G| −
∑

g∈∆\Z(G)

[G : Gg].

Since the right hand side is divisible by p, we conclude that p | |Z(G)|.
Since the group Z(G) is commutative, we are done by the previous
paragraph. �

3Commutative groups are usually called Abelian groups in tribute to Norwegian
mathematician Niels Henrik Abel (1802 - 1829).


