ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 1 - RELATIONS ON A SET

PAVEL RUZICKA

1.1. Cartesian product and relations. A cartesian product of sets
M, ..., M, is a set of all n-tuples (my,..., m,) such that m; € M;,
for all i = {1,2,...,n}. The cartesian product of n-copies of a single
set M is called a cartesian power of M and is be denoted by M". In
particular, M? is just the set M and M° = {@} is an one-element set.

An n-ary relation on a set M is a subset of M™. For instance,

unary relations correspond to subsets of M, binary relations are exactly
subsets of M2 = M x M, etc.

1.2. Binary relations. As defined above, a binary relation on a set M
is a subset of the cartesian power M? = M x M. Given such a relation
R € M x M, we will usually use the notation aRb for (a,b) € R,
a,b € M. We define the diagonal relation, the transpose of a binary
relation, and thecomposition of binary relations as follows:

e The diagonal relation (on M) is the relation
A = {{a,a) | a € M},
e The transpose of a relation R on M is defined as
R" := {(b,a) | (a,b) € R},
e The composition of relations R and S on M is the relation
RoS:={{a,c) | (b€ M)(aRband bSc}.
Exercise 1.1. Prove that given binary relations R,S and T on a set
M, the following holds true:
(i) (RoS)oT=Ro(SoT);
(ii) RoS" = ST o RT;
(iii) R CR <= RCR?T < R=R".
There are some important properties of binary relations, which en-
able us to define practically useful classes of binary relations as partial

orders and equivalences. Let us define some of them: A binary relation
R on a set M is said to be
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reflexive if aRa, for all a € M;

transitive if (aRband bR¢) = aRc for all a,b,c € M,
symmetric if aRb = bRa for all a,b € M;

anti-symmetric if (aRb and bRa) = a = b, foralla,b € M;
asymmetric if aRb = —(bRa), for all a,b € M.

Exercise 1.2. Prove that a binary relation R on set M 1s
(i) reflexive if and only if A C R,
(i) transitive if and only if RoR C R,
(iii) symmetric if and only if R = RT,
(iv) anti-symmetric if and only if RNRT C A,
(v) asymmetric if and only if RNRT = ().

Now we are ready to define the most important classes of binary
relations. An equivalence on a set M is a binary relation on M that is
reflexive, transitive and symmetric. A partial order on M is a reflexive,
transitive, anti-symmetric relation on M while a strict (partial) order
is a transitive and asymmetric relation on M.

Another important class of binary relations is the smallest class con-
taining all equivalences and orders: By definition, a quasi-order is a
reflexive and transitive binary relation.

1.3. Equivalences and partitions. Let E be an equivalence relation
on a set M. Given an element a € M, the block of a is the set

la] :={be M | aEb}.

Before understanding the structure of blocks of an equivalence re-
lation, we define a partition of a set M as a collection P of pairwise
disjoint subsets of M such that |JP = M.

Lemma 1.1. Let E be an equivalence on a set M. For ever a,b € M,
[a]| = [b] <= [a]N[b] # 0.

Proof. Tt is clear that [a] = [b] = [a] N [b] # 0. In order to prove
the opposite implication, assume that [a] N [b] # 0. Then we can pick
¢ € [a] N [b]. For every d € [a], we have dEa, aE¢, and cEb, due to
symmetry. Applying transitivity of E, we conclude that d Eb, which
says that d € [b]. Thus [a] C [b]. The opposite inclusion is proved
similarly. U

Observe that Lemma 1.1 says that the blocks of an equivalence re-
lation on a set M form a partition of M, indeed, it follows that they
are pairwise disjoint and as a € [a], their union is the entire M. On
the other hand, a partition P of a set M gives rise to a relation, say
E, defined by aEb if and only if a and b belong to the same block
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of P. It is straightforward to verify that E is reflexive, transitive and
symmetric. The outcome of this discussion shall be the observation
that equivalence relations on a set M correspond to partitions of M.

Exercise 1.3. Prove that the composition EoF of equivalence relations
E and F on a set M is an equivalence on M if and only if EoF = FoE.

1.4. Orders and quasi-orders. First observe that every partial order
on a set M correspond to a unique strict order on M. In particular,
given an order R on a set M, the corresponding strict order is R\ A
while a strict order S correspond to a partial order SU A.

Let us see that a quasi-order on a set M decomposes into an equiva-
lence relation on M and an order relation on the corresponding parti-
tion. Let Q be a quasi-order on M. We denote by E the binary relation
on M defined by

aEb <= aQband bQa,

that is, E := QN Q7.
Lemma 1.2. The relation E is an equivalence on M.

Proof. Since Q is reflexive (by the definition), E is reflexive as well.
Suppose that a Eb and bE ¢ for some a,b,c € M. Then a Qb and b Qc,
whence a Q ¢, due to the transitivity of Q. The symmetry of E implies
that bQa and cQb, and so cQ a, due to transitivity of Q. Since both
aQc and cQa, we conclude that a E c. This proves that E is transitive.
Symmetry of E is seen readily from its definition. These guarantee that
E is an equivalence on M. O

Let P denote the partition oof the set M corresponding to the equiv-
alence relation E.

Lemma 1.3. Let aEad' and bEV for some a,a’,b,b' € M. Then aQb
if and only if ' QU'.

Proof. Suppose that aQb. From a Ed’ we have that ¢’ Qa and from
bEV we get that b Q. The transitivity of QQ implies that a’ Q¥b'. The
opposite implication is proven similarly. O

Lemma 1.3 allow us to define a relation R on P by [a] R[b] if a Qb,
for all a,b € M.

Lemma 1.4. The relation R on P is reflexive, transitive and anti-
symmetric, that s, it is a partial order on P.

Proof. The reflexivity and the transitivity of R follows readily from the
reflexivity and the transitivity of Q. In order to prove that R is anti-
symmetric, suppose that, for some a,b € M, [a] R[b] and [b] R[a]. The
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definition of R gives that a Qb and b Q a, which means that a E b, that
is, [a] = [b]. This shows that R is anti-symmetric. O



