
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 1 - RELATIONS ON A SET

PAVEL RŮŽIČKA

1.1. Cartesian product and relations. A cartesian product of sets
M1, . . . ,Mn is a set of all n-tuples ⟨m1, . . . ,mn⟩ such that mi ∈ Mi,
for all i = {1, 2, . . . , n}. The cartesian product of n-copies of a single
set M is called a cartesian power of M and is be denoted by Mn. In
particular, M1 is just the set M and M0 = {∅} is an one-element set.

An n-ary relation on a set M is a subset of Mn. For instance,
unary relations correspond to subsets ofM , binary relations are exactly
subsets of M2 = M ×M , etc.

1.2. Binary relations. As defined above, a binary relation on a setM
is a subset of the cartesian power M2 = M ×M . Given such a relation
R ⊂ M × M , we will usually use the notation aR b for ⟨a, b⟩ ∈ R,
a, b ∈ M . We define the diagonal relation, the transpose of a binary
relation, and thecomposition of binary relations as follows:

• The diagonal relation (on M) is the relation

∆ := {⟨a, a⟩ | a ∈ M},
• The transpose of a relation R on M is defined as

RT := {⟨b, a⟩ | ⟨a, b⟩ ∈ R},
• The composition of relations R and S on M is the relation

R ◦ S := {⟨a, c⟩ | (∃b ∈ M)(aR b and b S c}.

Exercise 1.1. Prove that given binary relations R, S and T on a set
M , the following holds true:

(i) (R ◦ S) ◦ T = R ◦ (S ◦ T);
(ii) R ◦ ST = ST ◦ RT ;
(iii) RT ⊆ R ⇐⇒ R ⊆ RT ⇐⇒ R = RT .

There are some important properties of binary relations, which en-
able us to define practically useful classes of binary relations as partial
orders and equivalences. Let us define some of them: A binary relation
R on a set M is said to be
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• reflexive if aR a, for all a ∈ M ;
• transitive if (aR b and bR c) =⇒ aR c for all a, b, c ∈ M ;
• symmetric if aR b =⇒ bR a for all a, b ∈ M ;
• anti-symmetric if (aR b and bR a) =⇒ a = b, for all a, b ∈ M ;
• asymmetric if aR b =⇒ ¬(bR a), for all a, b ∈ M .

Exercise 1.2. Prove that a binary relation R on set M is

(i) reflexive if and only if ∆ ⊆ R,
(ii) transitive if and only if R ◦ R ⊆ R,
(iii) symmetric if and only if R = RT ,
(iv) anti-symmetric if and only if R ∩ RT ⊆ ∆,
(v) asymmetric if and only if R ∩ RT = ∅.

Now we are ready to define the most important classes of binary
relations. An equivalence on a set M is a binary relation on M that is
reflexive, transitive and symmetric. A partial order on M is a reflexive,
transitive, anti-symmetric relation on M while a strict (partial) order
is a transitive and asymmetric relation on M .

Another important class of binary relations is the smallest class con-
taining all equivalences and orders: By definition, a quasi-order is a
reflexive and transitive binary relation.

1.3. Equivalences and partitions. Let E be an equivalence relation
on a set M . Given an element a ∈ M , the block of a is the set

[a] := {b ∈ M | aE b}.
Before understanding the structure of blocks of an equivalence re-

lation, we define a partition of a set M as a collection P of pairwise
disjoint subsets of M such that

∪
P = M .

Lemma 1.1. Let E be an equivalence on a set M . For ever a, b ∈ M ,

[a] = [b] ⇐⇒ [a] ∩ [b] ̸= ∅.
Proof. It is clear that [a] = [b] =⇒ [a] ∩ [b] ̸= ∅. In order to prove
the opposite implication, assume that [a] ∩ [b] ̸= ∅. Then we can pick
c ∈ [a] ∩ [b]. For every d ∈ [a], we have dE a, aE c, and cE b, due to
symmetry. Applying transitivity of E, we conclude that dE b, which
says that d ∈ [b]. Thus [a] ⊆ [b]. The opposite inclusion is proved
similarly. �

Observe that Lemma 1.1 says that the blocks of an equivalence re-
lation on a set M form a partition of M , indeed, it follows that they
are pairwise disjoint and as a ∈ [a], their union is the entire M . On
the other hand, a partition P of a set M gives rise to a relation, say
E, defined by aE b if and only if a and b belong to the same block
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of P . It is straightforward to verify that E is reflexive, transitive and
symmetric. The outcome of this discussion shall be the observation
that equivalence relations on a set M correspond to partitions of M .

Exercise 1.3. Prove that the composition E◦F of equivalence relations
E and F on a set M is an equivalence on M if and only if E◦F = F◦E.

1.4. Orders and quasi-orders. First observe that every partial order
on a set M correspond to a unique strict order on M . In particular,
given an order R on a set M , the corresponding strict order is R \ ∆
while a strict order S correspond to a partial order S ∪∆.

Let us see that a quasi-order on a set M decomposes into an equiva-
lence relation on M and an order relation on the corresponding parti-
tion. Let Q be a quasi-order on M . We denote by E the binary relation
on M defined by

aE b ⇐⇒ aQ b and bQ a,

that is, E := Q ∩QT .

Lemma 1.2. The relation E is an equivalence on M .

Proof. Since Q is reflexive (by the definition), E is reflexive as well.
Suppose that aE b and bE c for some a, b, c ∈ M . Then aQ b and bQ c,
whence aQ c, due to the transitivity of Q. The symmetry of E implies
that bQ a and cQ b, and so cQ a, due to transitivity of Q. Since both
aQ c and cQ a, we conclude that aE c. This proves that E is transitive.
Symmetry of E is seen readily from its definition. These guarantee that
E is an equivalence on M . �

Let P denote the partition oof the set M corresponding to the equiv-
alence relation E.

Lemma 1.3. Let aE a′ and bE b′ for some a, a′, b, b′ ∈ M . Then aQ b
if and only if a′ Q b′.

Proof. Suppose that aQ b. From aE a′ we have that a′ Q a and from
bE b′ we get that bQ b′. The transitivity of Q implies that a′ Q b′. The
opposite implication is proven similarly. �

Lemma 1.3 allow us to define a relation R on P by [a] R[b] if aQ b,
for all a, b ∈ M .

Lemma 1.4. The relation R on P is reflexive, transitive and anti-
symmetric, that is, it is a partial order on P.

Proof. The reflexivity and the transitivity of R follows readily from the
reflexivity and the transitivity of Q. In order to prove that R is anti-
symmetric, suppose that, for some a, b ∈ M , [a] R[b] and [b] R[a]. The
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definition of R gives that aQ b and bQ a, which means that aE b, that
is, [a] = [b]. This shows that R is anti-symmetric. �


