ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 1 - RELATIONS ON A SET

PAVEL RŮŽIČKA

1.1. Cartesian product and relations. A cartesian product of sets M_1, \ldots, M_n is a set of all *n*-tuples $\langle m_1, \ldots, m_n \rangle$ such that $m_i \in M_i$, for all $i = \{1, 2, \ldots, n\}$. The cartesian product of *n*-copies of a single set M is called a *cartesian power* of M and is be denoted by M^n . In particular, M^1 is just the set M and $M^0 = \{\emptyset\}$ is an one-element set.

An *n*-ary *relation* on a set M is a subset of M^n . For instance, unary relations correspond to subsets of M, binary relations are exactly subsets of $M^2 = M \times M$, etc.

1.2. **Binary relations.** As defined above, a *binary relation* on a set M is a subset of the cartesian power $M^2 = M \times M$. Given such a relation $\mathbb{R} \subset M \times M$, we will usually use the notation $a \mathbb{R} b$ for $\langle a, b \rangle \in \mathbb{R}$, $a, b \in M$. We define the *diagonal relation*, the *transpose* of a binary relation, and the *composition* of binary relations as follows:

• The *diagonal relation* (on M) is the relation

$$\Delta := \{ \langle a, a \rangle \mid a \in M \},\$$

• The transpose of a relation R on M is defined as

$$R^T := \{ \langle b, a \rangle \mid \langle a, b \rangle \in \mathbf{R} \},\$$

• The *composition of relations* R and S on M is the relation

 $\mathbf{R} \circ \mathbf{S} := \{ \langle a, c \rangle \mid (\exists b \in M) (a \, \mathbf{R} \, b \text{ and } b \, \mathbf{S} \, c \}.$

Exercise 1.1. Prove that given binary relations R, S and T on a set M, the following holds true:

- (i) $(\mathbf{R} \circ \mathbf{S}) \circ \mathbf{T} = \mathbf{R} \circ (\mathbf{S} \circ \mathbf{T});$
- (ii) $\mathbf{R} \circ \mathbf{S}^T = \mathbf{S}^T \circ \mathbf{R}^T$;
- (iii) $\mathbf{R}^T \subseteq \mathbf{R} \iff \mathbf{R} \subseteq \mathbf{R}^T \iff \mathbf{R} = \mathbf{R}^T.$

There are some important properties of binary relations, which enable us to define practically useful classes of binary relations as partial orders and equivalences. Let us define some of them: A binary relation R on a set M is said to be

Date: October 6, 2017.

PAVEL RŮŽIČKA

- *reflexive* if $a \operatorname{R} a$, for all $a \in M$;
- *transitive* if $(a \operatorname{R} b \text{ and } b \operatorname{R} c) \implies a \operatorname{R} c$ for all $a, b, c \in M$;
- symmetric if $a \operatorname{R} b \implies b \operatorname{R} a$ for all $a, b \in M$;
- *anti-symmetric* if $(a \operatorname{R} b \text{ and } b \operatorname{R} a) \implies a = b$, for all $a, b \in M$;
- asymmetric if $a \operatorname{R} b \implies \neg(b \operatorname{R} a)$, for all $a, b \in M$.

Exercise 1.2. Prove that a binary relation R on set M is

- (i) reflexive if and only if $\Delta \subseteq \mathbb{R}$,
- (ii) transitive if and only if $R \circ R \subseteq R$,
- (iii) symmetric if and only if $\mathbf{R} = \mathbf{R}^T$,
- (iv) anti-symmetric if and only if $\mathbf{R} \cap \mathbf{R}^T \subseteq \Delta$,
- (v) asymmetric if and only if $\mathbf{R} \cap \mathbf{R}^T = \emptyset$.

Now we are ready to define the most important classes of binary relations. An *equivalence* on a set M is a binary relation on M that is reflexive, transitive and symmetric. A *partial order* on M is a reflexive, transitive, anti-symmetric relation on M while a *strict (partial) order* is a transitive and asymmetric relation on M.

Another important class of binary relations is the smallest class containing all equivalences and orders: By definition, a *quasi-order* is a reflexive and transitive binary relation.

1.3. Equivalences and partitions. Let E be an equivalence relation on a set M. Given an element $a \in M$, the *block of* a is the set

$$[a] := \{ b \in M \mid a \to b \}.$$

Before understanding the structure of blocks of an equivalence relation, we define a *partition* of a set M as a collection \mathcal{P} of pairwise disjoint subsets of M such that $\bigcup \mathcal{P} = M$.

Lemma 1.1. Let E be an equivalence on a set M. For ever $a, b \in M$, $[a] = [b] \iff [a] \cap [b] \neq \emptyset.$

Proof. It is clear that $[a] = [b] \implies [a] \cap [b] \neq \emptyset$. In order to prove the opposite implication, assume that $[a] \cap [b] \neq \emptyset$. Then we can pick $c \in [a] \cap [b]$. For every $d \in [a]$, we have $d \to a$, $a \to c$, and $c \to b$, due to symmetry. Applying transitivity of E, we conclude that $d \to b$, which says that $d \in [b]$. Thus $[a] \subseteq [b]$. The opposite inclusion is proved similarly.

Observe that Lemma 1.1 says that the blocks of an equivalence relation on a set M form a partition of M, indeed, it follows that they are pairwise disjoint and as $a \in [a]$, their union is the entire M. On the other hand, a partition \mathcal{P} of a set M gives rise to a relation, say E, defined by $a \to b$ if and only if a and b belong to the same block

 $\mathbf{2}$

of \mathcal{P} . It is straightforward to verify that E is reflexive, transitive and symmetric. The outcome of this discussion shall be the observation that equivalence relations on a set M correspond to partitions of M.

Exercise 1.3. Prove that the composition $E \circ F$ of equivalence relations E and F on a set M is an equivalence on M if and only if $E \circ F = F \circ E$.

1.4. Orders and quasi-orders. First observe that every partial order on a set M correspond to a unique strict order on M. In particular, given an order R on a set M, the corresponding strict order is $R \setminus \Delta$ while a strict order S correspond to a partial order $S \cup \Delta$.

Let us see that a quasi-order on a set M decomposes into an equivalence relation on M and an order relation on the corresponding partition. Let Q be a quasi-order on M. We denote by E the binary relation on M defined by

$$a \to b \iff a \to Q b \text{ and } b \to Q a$$
,

that is, $\mathbf{E} := \mathbf{Q} \cap \mathbf{Q}^T$.

Lemma 1.2. The relation E is an equivalence on M.

Proof. Since Q is reflexive (by the definition), E is reflexive as well. Suppose that $a \to b$ and $b \to c$ for some $a, b, c \in M$. Then $a \to Q b$ and $b \to Q c$, whence $a \to Q c$, due to the transitivity of Q. The symmetry of E implies that $b \to Q a$ and $c \to Q b$, and so $c \to Q a$, due to transitivity of Q. Since both $a \to Q c$ and $c \to Q a$, we conclude that $a \to c$. This proves that E is transitive. Symmetry of E is seen readily from its definition. These guarantee that E is an equivalence on M.

Let \mathcal{P} denote the partition of the set M corresponding to the equivalence relation E.

Lemma 1.3. Let $a \to a'$ and $b \to b'$ for some $a, a', b, b' \in M$. Then $a \to a'$ if and only if $a' \to b'$.

Proof. Suppose that $a \ Q b$. From $a \ E a'$ we have that $a' \ Q a$ and from $b \ E b'$ we get that $b \ Q b'$. The transitivity of Q implies that $a' \ Q b'$. The opposite implication is proven similarly.

Lemma 1.3 allow us to define a relation R on \mathcal{P} by $[a] \operatorname{R}[b]$ if $a \operatorname{Q} b$, for all $a, b \in M$.

Lemma 1.4. The relation \mathbb{R} on \mathcal{P} is reflexive, transitive and antisymmetric, that is, it is a partial order on \mathcal{P} .

Proof. The reflexivity and the transitivity of R follows readily from the reflexivity and the transitivity of Q. In order to prove that R is anti-symmetric, suppose that, for some $a, b \in M$, [a] R[b] and [b] R[a]. The

PAVEL RŮŽIČKA

definition of R gives that a Q b and b Q a, which means that a E b, that is, [a] = [b]. This shows that R is anti-symmetric.

4