On Variance Reduction of Mean-CVaR Monte Carlo Estimators

Václav Kozmík

Faculty of Mathematics and Physics Charles University in Prague

April 3, 2014

Outline

- Risk-Averse optimization
\square Mean-risk objectives with CVaR are often used
\square To solve complex models, we need to use approximations
- Monte-Carlo methods
- Standard estimators are not convenient for mean-CVaR operators
\square They lead to high variance, due to the properties of CVaR
\square We propose a sampling scheme based on importance sampling
- Analytically evaluated under the assumption of normal distribution
- For general setup, algorithm is given to find a suitable sampling scheme
\square We validate our results with a numerical example, which uses Stochastic Dual Dynamic Programming algorithm

Basic model

- CVaR formula:

$$
\mathrm{CVaR}_{\alpha}[Z]=\min _{u}\left(u+\frac{1}{\alpha} \mathbb{E}[Z-u]_{+}\right)
$$

- Consider following mean-risk functional:

$$
\mathcal{Q}_{\alpha}[Z]=(1-\lambda) \mathbb{E}[Z]+\lambda \mathrm{CVaR}_{\alpha}[Z]
$$

$\square Z$ represents random losses
\square convex sum: $\lambda \in[0,1]$
\square suppose that Z follows a pdf f

- Such functionals are present in many types of models, static cases, multistage cases
\square Wide range of applications of our sampling scheme

Standard Monte Carlo

- Standard Monte Carlo approach is not convenient for estimation of CVaR

Example

Consider the following estimator of $\mathrm{CVaR}_{\alpha}[Z]$, where $Z^{1}, Z^{2}, \ldots, Z^{M}$ are independent and identically distributed (i.i.d.) from the distribution of Z :

$$
\min _{u}\left(u+\frac{1}{\alpha M} \sum_{j=1}^{M}\left[Z^{j}-u\right]_{+}\right) .
$$

If $\alpha=0.05$ only about 5% of the samples contribute nonzero values to this estimator of CVaR .

Importance sampling

- Aims to solve the issues mentioned in previous example
- Suppose we want to compute $\mathbb{E}[\mathcal{Q}(\mathbf{x}, Z)]$ with respect to the pdf f of the random variable Z
- Therefore: $\mathbb{E}_{f}[\mathcal{Q}(\mathbf{x}, Z)]=\int_{-\infty}^{\infty} \mathcal{Q}(\mathbf{x}, z) f(z) \mathrm{d} z$
- Choose another pdf g of some random variable and compute:

$$
\int_{-\infty}^{\infty} \mathcal{Q}(\mathbf{x}, z) f(z) \mathrm{d} z=\int_{-\infty}^{\infty} \mathcal{Q}(\mathbf{x}, z) \frac{f(z)}{g(z)} g(z) \mathrm{d} z=\mathbb{E}_{g}\left[\mathcal{Q}(\mathbf{x}, Z) \frac{f(Z)}{g(Z)}\right]
$$

- Therefore

$$
\mathbb{E}_{f}[\mathcal{Q}(\mathbf{x}, Z)]=\mathbb{E}_{g}\left[\mathcal{Q}(\mathbf{x}, Z) \frac{f(Z)}{g(Z)}\right]
$$

Importance sampling

- In the context of Monte Carlo, $\mathbb{E}_{f}[\mathcal{Q}(\mathbf{x}, Z)]$ is replaced with:
\square Sample $Z^{1}, Z^{2}, \ldots, Z^{M}$ from distribution with pdf f
\square Compute

$$
\frac{1}{M} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right)
$$

- The importance sampling scheme is as follows:
\square Sample $Z^{1}, Z^{2}, \ldots, Z^{M}$ from distribution with pdf g
\square Compute

$$
\frac{1}{M} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right) \frac{f\left(Z^{j}\right)}{g\left(Z^{j}\right)}
$$

- Function g should be chosen such that the variance of the sum above is minimal

Further variance reduction

- The term $w^{j}=\frac{f\left(Z^{j}\right)}{g\left(Z^{j}\right)}$ could be considered as a weight:

$$
\frac{1}{M} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right) w^{j}
$$

- In expectation, we have $\mathbb{E}\left[w^{j}\right]=1$, but the term itself is random and has nonzero variance
- Replace the $M=\mathbb{E}\left[\sum_{j=1}^{M} w^{j}\right]$ with the actual value:

$$
\frac{1}{\sum_{j=1}^{M} w^{j}} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right) w^{j}
$$

Further variance reduction

- We no longer have the expectation equality:

$$
\mathbb{E}_{g}\left[\frac{1}{\sum_{j=1}^{M} w^{j}} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right) w^{j}\right] \neq \mathbb{E}_{f}\left[\frac{1}{M} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right)\right]
$$

- But we can show consistency:

$$
\mathbb{E}_{g}\left[\frac{1}{\sum_{j=1}^{M} w^{j}} \sum_{j=1}^{M} \mathcal{Q}\left(\mathbf{x}, Z^{j}\right) w^{j}\right] \rightarrow \mathbb{E}_{f}[\mathcal{Q}(\mathbf{x}, Z)] \text {, w.p. } 1
$$

as $M \rightarrow \infty$.

- The benefit is usually significant variance reduction over the standard importance sampling scheme

Mean-CVaR estimation

- What is a suitable importance sampling scheme for mean-CVaR?

$$
\mathcal{Q}_{\alpha}[Z]=(1-\lambda) \mathbb{E}[Z]+\lambda \operatorname{CVaR}_{\alpha}[Z]
$$

\square The functional clearly depends on all outcomes of Z
\square We have observed that CVaR is hard to estimate with standard Monte Carlo approach
\square We will divide the support of the distribution into two atoms:

- "CVaR" atom
- "non-CVaR" atom
\square We can select the same weight for both atoms, but is it a reasonable choice?

Mean-CVaR estimation

- Since $\operatorname{CVaR}_{\alpha}[Z]=\mathbb{E}\left[Z \mid Z>\operatorname{VaR}_{\alpha}[Z]\right]$, we can easily define the "CVaR" atom
- Using the pdf f, we compute the value at risk $u_{Z}=\operatorname{VaR}_{\alpha}[Z]$
\square the threshold can be also estimated using sampling
- The proposed importance sampling pdf is, with $\beta \in(0,1)$:

$$
g(z)= \begin{cases}\frac{\beta}{\alpha} f(z), & \text { if } z \geq u_{Z} \\ \frac{1-\beta}{1-\alpha} f(z), & \text { if } z<u_{z}\end{cases}
$$

- We are more likely to draw sample observations above $\mathrm{VaR}_{\alpha}[Z]$
- Suitable choice of β should be tailored to the values of α and λ

Variance reduction

- We define:

$$
\begin{aligned}
Q^{s} & =(1-\lambda) Z+\lambda\left(u_{Z}+\frac{1}{\alpha}\left[Z-u_{Z}\right]_{+}\right) \\
Q^{i} & =\frac{f}{g}\left((1-\lambda) Z+\lambda\left(u_{Z}+\frac{1}{\alpha}\left[Z-u_{Z}\right]_{+}\right)\right)
\end{aligned}
$$

- It clearly holds $\mathcal{Q}=\mathbb{E}_{g}\left[Q^{i}\right]=\mathbb{E}_{f}\left[Q^{s}\right]$
- Our aim is to minimize variance, e.g. finding suitable parameter β, so that $\operatorname{var}_{g}\left[Q^{i}\right]<\operatorname{var}_{f}\left[Q^{s}\right]$
- With another random variable, we will write Q_{X}^{s}, Q_{X}^{i}, etc.

Basic properties

- The variance of our importance sampling estimator is invariant to addition of a constant and scales well with transformations

Proposition

Let X, Y be random variables, $Y=X+\mu, \mu \in \mathbb{R}, f_{X}$ and f_{Y} the corresponding pdfs. Suppose that their importance sampling versions g_{X} and g_{Y} are defined using the same value of parameter β. Then $\operatorname{var}_{g_{Y}}\left[Q_{Y}^{i}\right]=\operatorname{var}_{g_{X}}\left[Q_{X}^{i}\right]$.

Proposition

Let X, Y be random variables, $Y=\sigma X, \sigma>0, f_{X}$ and f_{Y} the corresponding pdfs. Suppose that their importance sampling versions g_{X} and g_{Y} are defined using the same value of parameter β. Then $\operatorname{var}_{g_{Y}}\left[Q_{Y}^{i}\right]=\sigma^{2} \operatorname{var}_{g_{X}}\left[Q_{X}^{i}\right]$.

Normal distribution

- We will now suppose that the losses follow normal distribution, with $\phi(x)$ as its pdf and $\Phi(x)$ its distribution function

Proposition

Let $Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be a random variable. In order to minimize the variance $\operatorname{var}_{g}\left[Q_{Z}^{i}\right]$ the optimal value of the importance sampling parameter β can be obtained by solving the quadratic equation:

$$
\frac{\partial}{\partial \beta}\left(\operatorname{var}_{g}\left[Q_{Z}^{i}\right]\right)=0
$$

Normal distribution

$$
\begin{aligned}
\frac{\partial}{\partial \beta}(\ldots)= & \frac{1-\alpha}{(1-\beta)^{2}}(1-\lambda)^{2}\left(1-\alpha-u_{Z} \phi\left(u_{Z}\right)\right) \\
& -\frac{\alpha}{\beta^{2}}(1-\lambda)^{2}\left(\alpha+u_{Z} \phi\left(u_{Z}\right)\right) \\
& -\frac{\lambda^{2}}{\alpha \beta^{2}}\left(\alpha-u_{Z} \phi\left(u_{Z}\right)+u_{Z}^{2} \alpha\right) \\
& +\lambda^{2} u_{Z}^{2}\left(\frac{(1-\alpha)^{2}}{(1-\beta)^{2}}-\frac{\alpha^{2}}{\beta^{2}}\right) \\
& -2 \frac{\lambda(1-\lambda) \alpha}{\beta^{2}}+2 \lambda u_{Z}(1-\lambda) \phi\left(u_{Z}\right)\left(-\frac{\alpha}{\beta^{2}}-\frac{1-\alpha}{(1-\beta)^{2}}\right) \\
& +2 \frac{\lambda^{2}}{\beta} u_{Z}\left(\phi\left(u_{Z}\right)-\alpha u_{Z}\right)
\end{aligned}
$$

Example - normal distribution with $\lambda=0.5$

Variance as a function of beta

Example - normal distribution

Other distributions

- For other distributions, the same analysis can be performed and the derivative computed
- If this is not possible due to the complexity of the evaluations, we can estimate the suitable β by sampling
\square We choose a mesh of possible values, e.g. $\mathcal{B}=\{0.01,0.02, \ldots, 0.99\}$
\square For each of them, we sample prescribed number of scenarios, Z^{j}
\square We compute the mean and variance of the values Q^{j} given by Z^{j}
\square The lowest variance is selected as a suitable choice of β
- In general, the solutions depend on the distribution parameters

Example - lognormal distribution

Risk-averse multistage model

- Inspired by Ruszczynski and Shapiro
- Given risk coefficients λ_{t} and random loss variable Z we define:

$$
\rho_{t, \boldsymbol{\xi}_{[t-1]}}[Z]=\left(1-\lambda_{t}\right) \mathbb{E}\left[Z \mid \boldsymbol{\xi}_{[t-1]}\right]+\lambda_{t} \operatorname{CVaR}_{\alpha_{t}}\left[Z \mid \boldsymbol{\xi}_{[t-1]}\right]
$$

- Nested model can be written:

$$
\begin{aligned}
& \min _{\mathbf{A}_{1} \mathbf{x}_{1}=\mathbf{b}_{1}, \mathbf{x}_{1} \geq 0} \mathbf{c}_{1}^{\top} \mathbf{x}_{1}+\rho_{2, \boldsymbol{\xi}_{[1]}}\left[\min _{\mathbf{B}_{2} \mathbf{x}_{1}+\mathbf{A}_{2} \mathbf{x}_{2}=\mathbf{b}_{2}, \mathbf{x}_{2} \geq 0} \mathbf{c}_{2}^{\top} \mathbf{x}_{2}+\cdots\right. \\
&\left.\cdots+\rho_{T, \boldsymbol{\xi}_{[T-1]}}\left[\mathbf{B}_{T \mathbf{x}_{T-1}+\mathbf{A}_{T} \mathbf{x}_{T}=\mathbf{b}_{T}, \mathbf{x}_{T} \geq 0} \mathbf{c}_{T}^{\top} \mathbf{x}_{T}\right]\right]
\end{aligned}
$$

- Convex optimization problem
- We assume feasibility, relatively complete recourse and finite optimal value

Model properties

- Allows to develop dynamic programming equations, using:

$$
\mathrm{CVaR}_{\alpha}[Z]=\min _{u}\left[u+\frac{1}{\alpha} \mathbb{E}[Z-u]_{+}\right]
$$

- Denote $Q_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right), t=2, \ldots, T$ as the optimal value of:

$$
\begin{aligned}
& \min _{\mathbf{x}_{t}, u_{t}} \mathbf{c}_{t}^{\top} \mathbf{x}_{t}+\lambda_{t+1} u_{t}+\mathcal{Q}_{t+1}\left(\mathbf{x}_{t}, u_{t}\right) \\
& \text { s.t. } \mathbf{B}_{t} \mathbf{x}_{t-1}+\mathbf{A}_{t} \mathbf{x}_{t}=\mathbf{b}_{t} \\
& \quad \mathbf{x}_{t} \geq 0
\end{aligned}
$$

- Recourse function is given by $\left(\mathcal{Q}_{T+1}(\cdot) \equiv 0\right)$:

$$
\begin{aligned}
\mathcal{Q}_{t+1}\left(\mathbf{x}_{t}, u_{t}\right)= & \mathbb{E}\left[\left(1-\lambda_{t+1}\right) Q_{t+1}\left(\mathbf{x}_{t}, \boldsymbol{\xi}_{t+1}\right)+\right. \\
& \left.+\frac{\lambda_{t+1}}{\alpha_{t+1}}\left[Q_{t+1}\left(\mathbf{x}_{t}, \boldsymbol{\xi}_{t+1}\right)-u_{t}\right]_{+}\right]
\end{aligned}
$$

Asset allocation model

- At stage t we observe the price ratio between the new price and the old price \mathbf{p}_{t}
- \mathbf{x}_{t} contains the optimal allocation (in USD, say)
- The total portfolio value is tracked as a multiple of the initial value
- Dynamic programming equations are very simple:

$$
\begin{aligned}
& \min _{\mathbf{x}_{t}, u_{t}}-\mathbf{1}^{\top} \mathbf{x}_{t}+\lambda_{t+1} u_{t}+\mathcal{Q}_{t+1}\left(\mathbf{x}_{t}, u_{t}\right) \\
& \text { s.t. } \mathbf{p}_{t}^{\top} \mathbf{x}_{t-1}-\mathbf{1}^{\top} \mathbf{x}_{t}=0 \\
& \quad \mathbf{x}_{t} \geq 0
\end{aligned}
$$

SDDP algorithm properties

- First designed to solve hydro-scheduling problems
- Relies on the stage-independence assumption
- Each iteration runs with linear complexity
- Provides approximate solution using Benders' cuts
\square Cuts provide polyhedral approximation of the recourse function
\square LP duality - subgradient computed from the dual variables
\square Lower bound
- Policy evaluation procedure
\square Upper bound
- Upper bound requires estimation
\square Precise calculation fails to scale with T
\square Algorithm stops if lower bound is close enough to confidence interval for the upper bound
- rarely done in a statistically rigorous manner

SDDP scheme

SDDP algorithm outline

- Because of the stage independence, cuts collected at any node from the stage t are valid for all nodes from that stage
- Algorithm consists of forward and backward iterations
- Forward iteration
\square Samples $\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{J}$ sample paths
\square Policy is evaluated using all the cuts collected so far
\square Value of the policy gives the upper bound
- Backward iteration
\square Subset of the scenarios from the forward iteration is chosen
\square For every chosen node the Benders' cut is calculated
- Using all of its immediate descendants (not just scenarios from the forward pass)
\square Optimal value of the root problem gives the lower bound
- The bounds are compared and the process is repeated

Inter-stage independence

- In order to use SDDP some form of independence is required
\square Efficient algorithms usually rely on an inter-stage independence assumption
\square Otherwise, memory issues arise even for modest number of stages
- This assumption can be weakened
\square One extension is to incorporate an additive dependence model
- See Infanger \& Morton [1996]
\square Another approach to bring dependence into the model is the use of a Markov chain in the model
- See Philpott \& Matos [2012]
\square Yet another approach couples a "small" scenario tree with general dependence structure with a second tree that SDDP can handle
- See Rebennack et al. [2012]

Upper bound overview

- Risk-neutral problems
\square The value of the current optimal policy can be estimated easily
\square Expectation at each node can be estimated by single chosen descendant
- Risk-averse problems
\square To estimate the CVaR value we need more descendants in practice
\square Leads to intractable estimators with exponential computational complexity
- Current solution (to our knowledge)
\square Run the risk-neutral version of the same problem and determine the number of iterations needed to stop the algorithm, then run the same number of iterations on the risk-averse problem
\square Inner approximation scheme proposed by Philpott et al. [2013]
- Works with different policy than the outer approximation
- Probably the best alternative so far

Our SDDP implementation

- Using own software developed in C++
- CPLEX and COIN-OR used as solvers for the LPs
- Stock assets allocation problem used as the example
- SDDP applied to a sampled tree from the continuous problem
- The algorithm can be implemented for parallel processing
\square We have not done so
- Testing data from US stock indices
- Log-normal distribution of returns is assumed
- Risk aversion coefficients set to $\lambda_{t}=\frac{t-1}{T}$
- Tail probability for CVaR set to 5% for all stages

Exponential estimator scheme

Exponential estimator

- Described by Shapiro
- For stages $t=2, \ldots, T$, we form:

$$
\begin{aligned}
\hat{\mathfrak{v}}_{t}\left(\xi_{t-1}^{i}\right)=\frac{1}{M_{t}} \sum_{j=1}^{M_{t}} & {\left[\left(1-\lambda_{t}\right)\left(\left(\mathbf{c}_{t}^{j}\right)^{\top} \mathbf{x}_{t}^{j}+\hat{\mathfrak{v}}_{t+1}\left(\xi_{t}^{j}\right)\right)+\right.} \\
& \left.+\lambda_{t} u_{t-1}^{i}+\frac{\lambda_{t}}{\alpha_{t}}\left[\left(\boldsymbol{c}_{t}^{j}\right)^{\top} \mathbf{x}_{t}^{j}+\hat{\mathfrak{v}}_{t+1}\left(\xi_{t}^{j}\right)-u_{t-1}^{i}\right]_{+}\right]
\end{aligned}
$$

- $\hat{\mathfrak{v}}_{T+1}\left(\boldsymbol{\xi}_{T}^{i}\right) \equiv 0$
- The final cost is estimated by:

$$
U^{\mathbf{e}}=\left(\mathbf{c}_{1}\right)^{\top} \mathbf{x}_{1}+\hat{\mathfrak{v}}_{2}
$$

Exponential estimator results

- Results for the exponential estimator:
$\square \sim 1,000$ LPs solved to obtain the estimator ($\sim 20,000$ for $T=10$)
\square As number of stages grows so does bias (and variance)
$\square \underline{z}$ denotes the lower bound

T	desc. $/$ node	M_{t}	\underline{z}	$U^{\text {e }}$ (s.d.)
2	50,000	1,000	-0.9518	$-0.9518(0.0019)$
3	1,000	32	-1.8674	$-1.8013(0.0302)$
4	100	11	-2.7811	$-2.6027(0.0883)$
5	50	6	-3.6794	$-2.9031(0.5207)$
10	50	3	-7.6394	$1.5 \times 10^{7}\left(1.3 \times 10^{6}\right)$

Upper bound enhancements

- We would like an estimator with linear complexity
- Ideally it should be unbiased, or in practice, have small bias
- We will incorporate two ideas:
\square Linear estimator from the risk-neutral case
\square Importance sampling, with an additional assumption needed

Assumption

Let $h_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right)$ approximate the recourse value of our decisions \mathbf{x}_{t-1} after the random parameters $\boldsymbol{\xi}_{t}$ have been observed, and let $h_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right)$ be cheap to evaluate.

- For example in our portfolio model:

$$
h_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right)=-\boldsymbol{\xi}_{t}^{\top} \mathbf{x}_{t-1}=-\mathbf{p}_{t}^{\top} \mathbf{x}_{t-1}
$$

Importance sampling example

decision $\mathrm{x}=[0.25,0.75]$

$$
\begin{array}{cccc}
\mathrm{p}=[2,4] & \mathrm{p}=[6,2] & \mathrm{p}=[4,6] & \mathrm{p}=[4,4] \\
\mathrm{v}=3.5 & \mathrm{v}=3.0 & \mathrm{v}=5.5 & \mathrm{v}=4.0
\end{array}
$$

Importance sampling

- We start with standard pmf, all probabilities equal for D_{t} scenarios:

$$
f_{t}\left(\xi_{t}\right)=\frac{1}{D_{t}} \mathbb{I}\left[\xi_{t} \in\left\{\xi_{t}^{1}, \ldots, \xi_{t}^{D_{t}}\right\}\right]
$$

- We change the measure to put more weight to the CVaR nodes:

$$
g_{t}\left(\xi_{t} \mid \mathbf{x}_{t-1}\right)= \begin{cases}\frac{\beta_{t}}{\alpha_{t}} f_{t}, & \text { if } h_{t} \geq \operatorname{VaR}_{\alpha_{t}}\left[h_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right)\right] \\ \frac{1-\beta_{t}}{1-\alpha_{t}} f_{t}, & \text { if } h_{t}<\operatorname{VaR}_{\alpha_{t}}\left[h_{t}\left(\mathbf{x}_{t-1}, \boldsymbol{\xi}_{t}\right)\right]\end{cases}
$$

\square We select forward nodes according to this measure
$\square \mathbb{E}_{f_{t}}[Z]=\mathbb{E}_{g_{t}}\left[Z \frac{f_{t}}{g_{t}}\right]$
$\square w\left(\xi^{j}\right)=\prod_{t=2}^{T} \frac{f_{t}\left(\xi_{t}\right)}{g_{t}\left(\xi_{t} x_{t-1}\right)}$

Linear estimator scheme

Linear estimators

- The nodes can be selected randomly from the standard i.i.d. measure or from the importance sampling measure
- For stages $t=2, \ldots, T$ is given by:

$$
\begin{aligned}
\hat{\mathfrak{v}}_{t}\left(\boldsymbol{\xi}_{t-1}^{j_{t-1}}\right)=\left(1-\lambda_{t}\right) & \left(\left(\mathbf{c}_{t}^{j_{t}}\right)^{\top} \mathbf{x}_{t}^{j_{t}}+\hat{\mathfrak{v}}_{t+1}\left(\boldsymbol{\xi}_{t}^{j_{t}}\right)\right)+ \\
& +\lambda_{t} u_{t-1}^{j_{t-1}}+\frac{\lambda_{t}}{\alpha_{t}}\left[\left(\mathbf{c}_{t}^{j_{t}}\right)^{\top} \mathbf{x}_{t}^{j_{t}}+\hat{\mathfrak{v}}_{t+1}\left(\xi_{t}^{j_{t}}\right)-u_{t-1}^{j_{t-1}}\right]_{+}
\end{aligned}
$$

- $\hat{\mathfrak{v}}_{T+1}\left(\boldsymbol{\xi}_{T}^{j T}\right) \equiv 0$
- Along a single path for scenario j the cost is estimated by:

$$
\hat{\mathfrak{v}}\left(\xi^{j}\right)=\mathbf{c}_{1}^{\top} \mathbf{x}_{1}+\hat{\mathfrak{v}}_{2}
$$

Linear estimators

- For scenarios selected via the original pmf we have the naive estimator

$$
U^{\mathbf{n}}=\frac{1}{M} \sum_{j=1}^{M} \hat{\mathfrak{v}}\left(\xi^{j}\right)
$$

- With weights again defined via

$$
w\left(\boldsymbol{\xi}^{j}\right)=\prod_{t=2}^{T} \frac{f_{t}\left(\boldsymbol{\xi}_{t}\right)}{g_{t}\left(\boldsymbol{\xi}_{t} \mid \mathbf{x}_{t-1}\right)}
$$

- For scenarios selected via the IS pmf we have the IS estimator

$$
U^{\mathbf{i}}=\frac{1}{\sum_{j=1}^{M} w\left(\xi^{j}\right)} \sum_{j=1}^{M} w\left(\xi^{j}\right) \hat{\mathfrak{v}}\left(\xi^{j}\right)
$$

Linear estimator results

- Results for both linear estimators-with and without importance sampling ($\beta=0.5$)
$\square \sim 1,000$ LPs solved to obtain the estimator, $\sim 10,000$ for $T=10$
\square Still fails for bigger setups - for 10 stages the bias grows large

T	\underline{z}	$U^{\text {n }}$ (s.d.)	$U^{\text {i }}($ s.d. $)$
2	-0.9518	$-0.9515(0.0020)$	$-0.9517(0.0012)$
3	-1.8674	$-1.8300(0.0145)$	$-1.8285(0.0108)$
4	-2.7811	$-2.4041(0.1472)$	$-2.3931(0.1128)$
5	-3.6794	$-3.4608(0.1031)$	$-3.4963(0.1008)$
10	-7.6394	$9.3 \times 10^{4}\left(1.4 \times 10^{4}\right)$	$9.0 \times 10^{4}\left(8.7 \times 10^{4}\right)$

Upper bound enhancements

- The reason for the bias of the estimator comes from poor estimates of CVaR
\square Once the cost estimate for stage t exceeds u_{t-1} the difference is multiplied by α_{t}^{-1}
\square When estimating stage $t-1$ costs in the nested model we sum stage $t-1$ costs and stage t estimate which means that we usually end up with costs greater than u_{t-2} so another multiplication occurs
\square This brings both bias and large variance

Assumption

For every stage $t=2, \ldots, T$ and decision \mathbf{x}_{t-1} the approximation function h_{t} satisfies:

$$
Q_{t} \geq \operatorname{VaR}_{\alpha_{t}}\left[Q_{t}\right] \text { if and only if } h_{t} \geq \operatorname{VaR}_{\alpha_{t}}\left[h_{t}\right] .
$$

Improved estimator

- Provided that the equivalence assumption holds we can reduce the bias of the estimator
\square The positive part operator in the equation is used only in the case of CVaR node
- For stages $t=2, \ldots, T$ we have

$$
\begin{aligned}
\hat{\mathfrak{v}}_{t}^{\mathbf{h}}\left(\xi_{t-1}^{j_{t-1}}\right)= & \left(1-\lambda_{t}\right)\left(\left(\mathbf{c}_{t}^{j_{t}}\right)^{\top} \mathbf{x}_{t}^{j_{t}}+\hat{\mathfrak{v}}_{t+1}^{\mathbf{h}}\left(\xi_{t}^{j_{t}}\right)\right)+\lambda_{t} u_{t-1}^{j_{t-1}}+ \\
& +\mathbb{I}\left[h_{t}>\operatorname{VaR}_{\alpha_{t}}\left[h_{t}\right]\right] \frac{\lambda_{t}}{\alpha_{t}}\left[\left(\mathbf{c}_{t}^{j_{t}}\right)^{\top} \mathbf{x}_{t}^{j_{t}}+\hat{\mathfrak{v}}_{t+1}^{\mathbf{h}}\left(\boldsymbol{\xi}_{t}^{j_{t}}\right)-u_{t-1}^{j_{t-1}}\right]_{+}
\end{aligned}
$$

- $\hat{\mathfrak{v}}_{T+1}^{\mathrm{h}}\left(\xi_{T}^{j_{T}}\right) \equiv 0$

$$
U^{\mathbf{h}}=\frac{1}{\sum_{j=1}^{M} w\left(\xi^{j}\right)} \sum_{j=1}^{M} w\left(\xi^{j}\right) \hat{\mathfrak{v}}^{\mathbf{h}}\left(\xi^{j}\right)
$$

Improved estimator results

- Results compared to exponential estimator

T	\underline{z}	$U^{\mathbf{e}}$ (s.d.)	$U^{\text {h }}$ (s.d.)
2	-0.9518	$-0.9518(0.0019)$	$-0.9517(0.0011)$
3	-1.8674	$-1.8013(0.0302)$	$-1.8656(0.0060)$
4	-2.7811	$-2.6027(0.0883)$	$-2.7764(0.0126)$
5	-3.6794	$-2.9031(0.5207)$	$-3.6731(0.0303)$
10	-7.6394	NA	$-7.5465(0.2562)$
15	-11.5188	NA	$-11.0148(0.6658)$

\square For problems with up to 5 stages $\sim 1,000$ LPs solved
\square For 10 stages 10,000 LPs, for 15 stages 50,000 LPs
\square We test challenging instances in terms of risk coefficients λ_{t}

Improved estimator results

T	\underline{z}	$U^{\text {n }}$ (s.d.)	$U^{\mathbf{i}}($ s.d. $)$	$U^{\text {h }}($ s.d. $)$	$U^{\text {e }}$ (s.d.)
2	-0.9518	$-0.9515(0.0020)$	$-0.9517(0.0012)$	$-0.9517(0.0011)$	$-0.9518(0.0019)$
3	-1.8674	$-1.8300(0.0145)$	$-1.8285(0.0108)$	$-1.8656(0.0060)$	$-1.8013(0.0302)$
4	-2.7811	$-2.4041(0.1472)$	$-2.3931(0.1128)$	$-2.7764(0.0126)$	$-2.6027(0.0883)$
5	-3.6794	$-3.4608(0.1031)$	$-3.4963(0.1008)$	$-3.6731(0.0303)$	$-2.9031(0.5207)$
10	-7.6394	$9.3 \times 10^{4}\left(1.4 \times 10^{4}\right)$	$9.0 \times 10^{4}\left(8.7 \times 10^{4}\right)$	$-7.5465(0.2562)$	$1.5 \times 10^{7}\left(1.3 \times 10^{6}\right)$
15	-11.5188	NA	NA	$-11.0148(0.6658)$	NA

- For $T=2, \ldots, 5$ variance reduction of $U^{\mathbf{h}}$ relative to $U^{\mathbf{e}}$: 3 to 25 to 50 to 300 .
- Computation time for $U^{\mathbf{n}}$ for $T=5,10,15$: 8.7 sec . to 31.6 sec . to 67.4 sec .
- Computation time for $U^{\text {h }}$ for $T=5,10,15$: 6.8 sec . to 30.0 sec . to 66.5 sec .

Computational setup for variance reduction

- Risk aversion coefficients set to $\lambda_{t}=\frac{1}{2}$
- Tail probability for CVaR set to 5% for all stages
- We formed 100 i.i.d. replicates of the estimators with approx. 10, 000 LPs solved for each of them
- All 100 replicates used the same single run of SDDP
- Large-scale problems, $T=5 ; 10$ and 15
- 50 descendant scenarios per node

Suitable β

- Our random inputs are supposed to have log-normal distribution
- The portfolio value is a sum of log-normal distributions
\square We don't have exact analytical form of the resulting distribution
\square It's sometimes approximated with log-normal distribution
- But, what does the convex combination of expectation and CVaR do with the distribution?
- Nested structure of the model brings additional complex transformations
- Different values of β should be selected for every stage, as the parameters of the distributions also vary
- For small ratios of standard deviation over the mean, log-normal distribution can be approximated by normal distribution, see $\mathrm{Hald}_{\mathrm{c}}$ [1952]
- We have used $\beta=0.3$ which came out from our normal-distribution analysis for $\lambda=0.5$

Results

- Standard Monte Carlo setup $\hat{\mathcal{Q}}^{s}\left(\beta_{t}=\alpha_{t}=0.05\right)$
- Improved estimator $\hat{\mathcal{Q}}^{i}$ with $\beta_{t}=0.3$
- Lower bound \underline{z}

T	total scenarios	\underline{z}	$\hat{\mathcal{Q}}^{\text {s }}$ (s.d.)	$\hat{\mathcal{Q}}^{i}$ (s.d.)
5	$6,250,000$	-3.5212	$-3.5166(0.0168)$	$-3.5158(0.0042)$
10	$\approx 10^{14}$	-7.3885	$-7.2833(0.2120)$	$-7.2741(0.0315)$
15	$\approx 10^{25}$	-10.4060	$-10.1482(0.8184)$	$-10.1246(0,1266)$

- Variance reduction by a factor between 4 and 7
- Negligible effect on computation times

Conclusion

- We propose a new approach to estimate functionals that incorporate risk via CVaR
\square Allows to tweak existing procedures which rely on sampling in estimation of mean-risk objectives
\square Significantly smaller variance than a standard Monte Carlo estimator
\square Negligible effect on computation times in optimization problems
- Future research
\square Applications such as hydroelectric scheduling under inflow uncertainty
\square Other risk measures, different importance sampling pdfs

References

- HALD, A. (1952): Statistical Theory with Engineering Applications, John Wiley \& Sons, New York
- INFANGER, G. and MORTON, D. P. (1996): Cut sharing for multistage stochastic linear programs with interstage dependency, Mathematical Programming 75 pp. 241-256.
- KOZMÍK, V. and MORTON, D. (2013): Risk-averse Stochastic Dual Dynamic Programming, Optimization Online
- PEREIRA, M. V. F. and PINTO, L. M. V. G. (1991): Multi-stage stochastic optimization applied to energy planning, Mathematical Programming 52, pp. 359-375. pp. 63-72.

References

- PHILPOTT, A. B., DE MATOS, V. L.: Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. Eur. J. of Oper. Res. 218, pp. 470-483 (2012)
- REBENNACK, S., FLACH, B., PEREIRA, M. V. F., PARDALOS, P. M.: Stochastic hydro-thermal scheduling under CO_{2} emissions constraints. IEEE Transactions on Power Systems 27, pp. 58-68 (2012)
- RUSZCZYNSKI, A. and SHAPIRO, A. (2006): Conditional risk mappings, Mathematics of Operations Research 31, pp. 544-561
- SHAPIRO, A. (2011): Analysis of stochastic dual dynamic programming method, European Journal of Operational Research 209, pp. 63-72.

Conclusion

Thank you for your attention!

Václav Kozmík
vaclav@kozmik.cz

