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Outline

� Risk-Averse optimization
� Mean-risk objectives with CVaR are often used
� To solve complex models, we need to use approximations

� Monte-Carlo methods

� Standard estimators are not convenient for mean-CVaR operators
� They lead to high variance, due to the properties of CVaR
� We propose a sampling scheme based on importance sampling

� Analytically evaluated under the assumption of normal distribution
� For general setup, algorithm is given to find a suitable sampling scheme

� We validate our results with a numerical example, which uses
Stochastic Dual Dynamic Programming algorithm



Basic model

� CVaR formula:

CVaRα [Z ] = min
u

(
u +

1

α
E [Z − u]+

)
� Consider following mean-risk functional:

Qα [Z ] = (1− λ)E [Z ] + λCVaRα [Z ]

� Z represents random losses
� convex sum: λ ∈ [0, 1]
� suppose that Z follows a pdf f

� Such functionals are present in many types of models,
static cases, multistage cases
� Wide range of applications of our sampling scheme



Standard Monte Carlo

� Standard Monte Carlo approach is not convenient for estimation of
CVaR

Example
Consider the following estimator of CVaRα [Z ], where Z 1,Z 2, . . . ,ZM are
independent and identically distributed (i.i.d.) from the distribution of Z :

min
u

u +
1

αM

M∑
j=1

[
Z j − u

]
+

 .

If α = 0.05 only about 5% of the samples contribute nonzero values to this

estimator of CVaR.



Importance sampling

� Aims to solve the issues mentioned in previous example

� Suppose we want to compute E [Q(x,Z )] with respect to the pdf f
of the random variable Z

� Therefore: Ef [Q(x,Z )] =
∫∞
−∞Q(x, z)f (z)dz

� Choose another pdf g of some random variable and compute:∫ ∞
−∞
Q(x, z)f (z)dz =

∫ ∞
−∞
Q(x, z)

f (z)

g(z)
g(z)dz = Eg

[
Q(x,Z )

f (Z )

g(Z )

]
� Therefore

Ef [Q(x,Z )] = Eg

[
Q(x,Z )

f (Z )

g(Z )

]



Importance sampling

� In the context of Monte Carlo, Ef [Q(x,Z )] is replaced with:
� Sample Z 1,Z 2, . . . ,ZM from distribution with pdf f
� Compute

1

M

M∑
j=1

Q(x,Z j)

� The importance sampling scheme is as follows:
� Sample Z 1,Z 2, . . . ,ZM from distribution with pdf g
� Compute

1

M

M∑
j=1

Q(x,Z j)
f (Z j)

g(Z j)

� Function g should be chosen such that the variance of the
sum above is minimal



Further variance reduction

� The term w j = f (Z j )
g(Z j )

could be considered as a weight:

1

M

M∑
j=1

Q(x,Z j)w j

� In expectation, we have E
[
w j
]

= 1, but the term itself is random
and has nonzero variance

� Replace the M = E
[∑M

j=1 w j
]

with the actual value:

1∑M
j=1 w j

M∑
j=1

Q(x,Z j)w j



Further variance reduction

� We no longer have the expectation equality:

Eg

 1∑M
j=1 w j

M∑
j=1

Q(x,Z j)w j

 6= Ef

 1

M

M∑
j=1

Q(x,Z j)


� But we can show consistency:

Eg

 1∑M
j=1 w j

M∑
j=1

Q(x,Z j)w j

→ Ef [Q(x,Z )] , w .p. 1,

as M →∞.

� The benefit is usually significant variance reduction
over the standard importance sampling scheme



Mean-CVaR estimation

� What is a suitable importance sampling scheme for mean-CVaR?

Qα [Z ] = (1− λ)E [Z ] + λCVaRα [Z ]

� The functional clearly depends on all outcomes of Z
� We have observed that CVaR is hard to estimate with standard Monte

Carlo approach
� We will divide the support of the distribution into two atoms:

� “CVaR” atom
� “non-CVaR” atom

� We can select the same weight for both atoms, but is it a reasonable
choice?



Mean-CVaR estimation

� Since CVaRα [Z ] = E [Z |Z > VaRα [Z ]], we can easily define the
“CVaR” atom

� Using the pdf f , we compute the value at risk uZ = VaRα [Z ]
� the threshold can be also estimated using sampling

� The proposed importance sampling pdf is, with β ∈ (0, 1):

g(z) =


β

α
f (z), if z ≥ uZ

1− β
1− α

f (z), if z < uZ

� We are more likely to draw sample observations above VaRα [Z ]

� Suitable choice of β should be tailored to the
values of α and λ



Variance reduction

� We define:

Qs = (1− λ) Z + λ

(
uZ +

1

α
[Z − uZ ]+

)
Q i =

f

g

(
(1− λ) Z + λ

(
uZ +

1

α
[Z − uZ ]+

))
� It clearly holds Q = Eg

[
Q i
]

= Ef [Qs ]

� Our aim is to minimize variance, e.g. finding suitable parameter β,
so that varg

[
Q i
]
< varf [Qs ]

� With another random variable, we will write Qs
X ,Q

i
X , etc.



Basic properties

� The variance of our importance sampling estimator is invariant to
addition of a constant and scales well with transformations

Proposition

Let X ,Y be random variables, Y = X + µ, µ ∈ R , fX and fY the
corresponding pdfs. Suppose that their importance sampling versions
gX and gY are defined using the same value of parameter β. Then
vargY

[
Q i

Y

]
= vargX

[
Q i

X

]
.

Proposition

Let X ,Y be random variables, Y = σX , σ > 0, fX and fY the
corresponding pdfs. Suppose that their importance sampling versions
gX and gY are defined using the same value of parameter β. Then
vargY

[
Q i

Y

]
= σ2 vargX

[
Q i

X

]
.



Normal distribution

� We will now suppose that the losses follow normal distribution,
with φ(x) as its pdf and Φ(x) its distribution function

Proposition

Let Z ∼ N (µ, σ2) be a random variable. In order to minimize the
variance varg

[
Q i

Z

]
the optimal value of the importance sampling

parameter β can be obtained by solving the quadratic equation:

∂

∂β

(
varg

[
Q i

Z

])
= 0



Normal distribution

∂

∂β
(. . .) =

1− α
(1− β)2

(1− λ)2 (1− α− uZφ(uZ ))

− α

β2
(1− λ)2 (α + uZφ(uZ ))

− λ2

αβ2
(
α− uZφ(uZ ) + u2

Zα
)

+ λ2u2
Z

(
(1− α)2

(1− β)2
− α2

β2

)
− 2

λ(1− λ)α

β2
+ 2λuZ (1− λ)φ(uZ )

(
− α

β2
− 1− α

(1− β)2

)
+ 2

λ2

β
uZ (φ(uZ )− αuZ )



Example - normal distribution with λ = 0.5

0

10

20

30

40

50

60

70

80

0,
01

0,
05

0,
09

0,
13

0,
17

0,
21

0,
25

0,
29

0,
33

0,
37

0,
41

0,
45

0,
49

0,
53

0,
57

0,
61

0,
65

0,
69

0,
73

0,
77

0,
81

0,
85

0,
89

0,
93

0,
97

Va
ria

nc
e

Beta

Variance as a function of beta



Example - normal distribution
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Other distributions

� For other distributions, the same analysis can be performed and
the derivative computed

� If this is not possible due to the complexity of the evaluations, we
can estimate the suitable β by sampling
� We choose a mesh of possible values, e.g. B = {0.01, 0.02, . . . , 0.99}
� For each of them, we sample prescribed number of scenarios, Z j

� We compute the mean and variance of the values Q j given by Z j

� The lowest variance is selected as a suitable choice of β

� In general, the solutions depend on the distribution parameters



Example - lognormal distribution
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Risk-averse multistage model

� Inspired by Ruszczynski and Shapiro

� Given risk coefficients λt and random loss variable Z we define:

ρt,ξ[t−1]
[Z ] = (1− λt)E

[
Z |ξ[t−1]

]
+ λt CVaRαt

[
Z |ξ[t−1]

]
� Nested model can be written:

min
A1x1=b1,x1≥0

c>1 x1 + ρ2,ξ[1]

[
min

B2x1+A2x2=b2,x2≥0
c>2 x2 + · · ·

· · ·+ ρT ,ξ[T−1]

[
min

BT xT−1+AT xT=bT ,xT≥0
c>TxT

]]
� Convex optimization problem

� We assume feasibility, relatively complete recourse
and finite optimal value



Model properties

� Allows to develop dynamic programming equations, using:

CVaRα [Z ] = min
u

[
u +

1

α
E [Z − u]+

]
� Denote Qt(xt−1, ξt), t = 2, . . . ,T as the optimal value of:

min
xt ,ut

c>t xt + λt+1ut +Qt+1(xt , ut)

s.t. Btxt−1 + Atxt = bt

xt ≥ 0

� Recourse function is given by (QT+1(·) ≡ 0):

Qt+1(xt , ut) =E
[
(1− λt+1) Qt+1(xt , ξt+1)+

+
λt+1

αt+1

[
Qt+1(xt , ξt+1)− ut

]
+

]



Asset allocation model

� At stage t we observe the price ratio between the new price and
the old price pt

� xt contains the optimal allocation (in USD, say)

� The total portfolio value is tracked as a multiple of the initial value

� Dynamic programming equations are very simple:

min
xt ,ut

− 1>xt + λt+1ut +Qt+1(xt , ut)

s.t. p>t xt−1 − 1>xt = 0

xt ≥ 0



SDDP algorithm properties

� First designed to solve hydro-scheduling problems

� Relies on the stage-independence assumption

� Each iteration runs with linear complexity
� Provides approximate solution using Benders’ cuts

� Cuts provide polyhedral approximation of the recourse function
� LP duality - subgradient computed from the dual variables
� Lower bound

� Policy evaluation procedure
� Upper bound

� Upper bound requires estimation
� Precise calculation fails to scale with T
� Algorithm stops if lower bound is close enough to confidence

interval for the upper bound
� rarely done in a statistically rigorous manner



SDDP scheme

stage 1 stage 2 stage 3 stage 4

Forward pass
Backward pass



SDDP algorithm outline

� Because of the stage independence, cuts collected at any node
from the stage t are valid for all nodes from that stage

� Algorithm consists of forward and backward iterations
� Forward iteration

� Samples ξ1, . . . , ξJ sample paths
� Policy is evaluated using all the cuts collected so far
� Value of the policy gives the upper bound

� Backward iteration
� Subset of the scenarios from the forward iteration is chosen
� For every chosen node the Benders’ cut is calculated

� Using all of its immediate descendants (not just scenarios from the
forward pass)

� Optimal value of the root problem gives the lower bound

� The bounds are compared and the process is repeated



Inter-stage independence

� In order to use SDDP some form of independence is required
� Efficient algorithms usually rely on an inter-stage independence

assumption
� Otherwise, memory issues arise even for modest number of stages

� This assumption can be weakened
� One extension is to incorporate an additive dependence model

� See Infanger & Morton [1996]

� Another approach to bring dependence into the model is the use of a
Markov chain in the model
� See Philpott & Matos [2012]

� Yet another approach couples a “small” scenario tree with general
dependence structure with a second tree that SDDP can handle
� See Rebennack et al. [2012]



Upper bound overview

� Risk-neutral problems
� The value of the current optimal policy can be estimated easily
� Expectation at each node can be estimated by single chosen

descendant

� Risk-averse problems
� To estimate the CVaR value we need more descendants in practice
� Leads to intractable estimators with exponential computational

complexity

� Current solution (to our knowledge)
� Run the risk-neutral version of the same problem and determine the

number of iterations needed to stop the algorithm, then run the same
number of iterations on the risk-averse problem

� Inner approximation scheme proposed by Philpott et al. [2013]
� Works with different policy than the outer approximation
� Probably the best alternative so far



Our SDDP implementation

� Using own software developed in C++

� CPLEX and COIN-OR used as solvers for the LPs

� Stock assets allocation problem used as the example

� SDDP applied to a sampled tree from the continuous problem
� The algorithm can be implemented for parallel processing

� We have not done so

� Testing data from US stock indices

� Log-normal distribution of returns is assumed

� Risk aversion coefficients set to λt = t−1
T

� Tail probability for CVaR set to 5% for all stages



Exponential estimator scheme

stage 1 stage 2 stage 3 stage 4



Exponential estimator

� Described by Shapiro

� For stages t = 2, . . . ,T , we form:

v̂t(ξ
i
t−1) =

1

Mt

Mt∑
j=1

[
(1− λt)

(
(cjt)

>xjt + v̂t+1(ξjt)
)

+

+λtu
i
t−1 +

λt
αt

[
(cjt)

>xjt + v̂t+1(ξjt)− ui
t−1

]
+

]
� v̂T+1(ξiT ) ≡ 0

� The final cost is estimated by:

Ue = (c1)>x1 + v̂2



Exponential estimator results

� Results for the exponential estimator:
� ∼ 1, 000 LPs solved to obtain the estimator (∼ 20, 000 for T = 10)
� As number of stages grows so does bias (and variance)
� z denotes the lower bound

T desc./node Mt z Ue (s.d.)

2 50,000 1,000 -0.9518 -0.9518 (0.0019)

3 1,000 32 -1.8674 -1.8013 (0.0302)

4 100 11 -2.7811 -2.6027 (0.0883)

5 50 6 -3.6794 -2.9031 (0.5207)

10 50 3 -7.6394 1.5 × 107 (1.3 × 106)



Upper bound enhancements

� We would like an estimator with linear complexity

� Ideally it should be unbiased, or in practice, have small bias
� We will incorporate two ideas:

� Linear estimator from the risk-neutral case
� Importance sampling, with an additional assumption needed

Assumption

Let ht(xt−1, ξt) approximate the recourse value of our decisions xt−1
after the random parameters ξt have been observed, and let
ht(xt−1, ξt) be cheap to evaluate.

� For example in our portfolio model:
ht(xt−1, ξt) = −ξ>t xt−1 = −p>t xt−1



Importance sampling example

CVaR node
standard node

decision x = [0.25, 0.75]

p = [2, 4]
v = 3.5

p = [6, 2]
v = 3.0

p = [4, 6]
v = 5.5

p = [4, 4]
v = 4.0

p .. price scenario
v .. portfolio value

 ...  ...  ...



Importance sampling

� We start with standard pmf, all probabilities equal for Dt scenarios:

ft(ξt) =
1

Dt
I
[
ξt ∈

{
ξ1t , . . . , ξ

Dt
t

}]
� We change the measure to put more weight to the CVaR nodes:

gt(ξt |xt−1) =


βt
αt

ft , if ht ≥ VaRαt [ht(xt−1, ξt)]

1− βt
1− αt

ft , if ht < VaRαt [ht(xt−1, ξt)]

� We select forward nodes according to this measure

� Eft [Z ] = Egt

[
Z ft

gt

]
� w(ξj) =

∏T
t=2

ft(ξt)
gt(ξt |xt−1)



Linear estimator scheme

stage 1 stage 2 stage 3 stage 4

CVaR node
standard node



Linear estimators

� The nodes can be selected randomly from the standard i.i.d.
measure or from the importance sampling measure

� For stages t = 2, . . . ,T is given by:

v̂t(ξ
jt−1

t−1) = (1− λt)
(

(cjtt )>xjtt + v̂t+1(ξjtt )
)

+

+ λtu
jt−1

t−1 +
λt
αt

[
(cjtt )>xjtt + v̂t+1(ξjtt )− u

jt−1

t−1

]
+

� v̂T+1(ξjTT ) ≡ 0

� Along a single path for scenario j the cost is estimated by:

v̂(ξj) = c>1 x1 + v̂2



Linear estimators

� For scenarios selected via the original pmf we have the naive
estimator

Un =
1

M

M∑
j=1

v̂(ξj)

� With weights again defined via

w(ξj) =
T∏
t=2

ft(ξt)

gt(ξt |xt−1)

� For scenarios selected via the IS pmf we have the IS estimator

U i =
1∑M

j=1 w(ξj)

M∑
j=1

w(ξj)v̂(ξj)



Linear estimator results

� Results for both linear estimators—with and without importance
sampling (β = 0.5)
� ∼ 1, 000 LPs solved to obtain the estimator, ∼ 10, 000 for T = 10
� Still fails for bigger setups - for 10 stages the bias grows large

T z Un (s.d.) U i (s.d.)

2 -0.9518 -0.9515 (0.0020) -0.9517 (0.0012)

3 -1.8674 -1.8300 (0.0145) -1.8285 (0.0108)

4 -2.7811 -2.4041 (0.1472) -2.3931 (0.1128)

5 -3.6794 -3.4608 (0.1031) -3.4963 (0.1008)

10 -7.6394 9.3× 104 (1.4× 104) 9.0× 104 (8.7× 104)



Upper bound enhancements

� The reason for the bias of the estimator comes from poor
estimates of CVaR
� Once the cost estimate for stage t exceeds ut−1 the difference is

multiplied by α−1t
� When estimating stage t − 1 costs in the nested model we sum stage

t − 1 costs and stage t estimate which means that we usually end up
with costs greater than ut−2 so another multiplication occurs

� This brings both bias and large variance

Assumption

For every stage t = 2, . . . ,T and decision xt−1 the approximation
function ht satisfies:

Qt ≥ VaRαt [Qt ] if and only if ht ≥ VaRαt [ht ] .



Improved estimator

� Provided that the equivalence assumption holds we can reduce the
bias of the estimator
� The positive part operator in the equation is used only in the case of

CVaR node

� For stages t = 2, . . . ,T we have

v̂ht (ξ
jt−1

t−1) = (1− λt)
(

(cjtt )>xjtt + v̂ht+1(ξjtt )
)

+ λtu
jt−1

t−1+

+ I[ht > VaRαt [ht ]]
λt
αt

[
(cjtt )>xjtt + v̂ht+1(ξjtt )− u

jt−1

t−1

]
+

� v̂hT+1(ξjTT ) ≡ 0
�

Uh =
1∑M

j=1 w(ξj)

M∑
j=1

w(ξj)v̂h(ξj)



Improved estimator results

� Results compared to exponential estimator

T z Ue (s.d.) Uh (s.d.)

2 -0.9518 -0.9518 (0.0019) -0.9517 (0.0011)

3 -1.8674 -1.8013 (0.0302) -1.8656 (0.0060)

4 -2.7811 -2.6027 (0.0883) -2.7764 (0.0126)

5 -3.6794 -2.9031 (0.5207) -3.6731 (0.0303)

10 -7.6394 NA -7.5465 (0.2562)

15 -11.5188 NA -11.0148 (0.6658)

� For problems with up to 5 stages ∼ 1, 000 LPs solved
� For 10 stages 10, 000 LPs, for 15 stages 50, 000 LPs
� We test challenging instances in terms of risk coefficients λt



Improved estimator results

T z Un (s.d.) U i (s.d.) Uh (s.d.) Ue (s.d.)

2 -0.9518 -0.9515 (0.0020) -0.9517 (0.0012) -0.9517 (0.0011) -0.9518 (0.0019)

3 -1.8674 -1.8300 (0.0145) -1.8285 (0.0108) -1.8656 (0.0060) -1.8013 (0.0302)

4 -2.7811 -2.4041 (0.1472) -2.3931 (0.1128) -2.7764 (0.0126) -2.6027 (0.0883)

5 -3.6794 -3.4608 (0.1031) -3.4963 (0.1008) -3.6731 (0.0303) -2.9031 (0.5207)

10 -7.6394 9.3× 104 (1.4× 104) 9.0× 104 (8.7× 104) -7.5465 (0.2562) 1.5× 107 (1.3× 106)

15 -11.5188 NA NA -11.0148 (0.6658) NA

� For T = 2, . . . , 5 variance reduction of Uh relative to Ue:
3 to 25 to 50 to 300.

� Computation time for Un for T = 5, 10, 15:
8.7 sec. to 31.6 sec. to 67.4 sec.

� Computation time for Uh for T = 5, 10, 15:
6.8 sec. to 30.0 sec. to 66.5 sec.



Computational setup for variance reduction

� Risk aversion coefficients set to λt = 1
2

� Tail probability for CVaR set to 5% for all stages

� We formed 100 i.i.d. replicates of the estimators with approx.
10, 000 LPs solved for each of them

� All 100 replicates used the same single run of SDDP

� Large-scale problems, T = 5; 10 and 15

� 50 descendant scenarios per node



Suitable β

� Our random inputs are supposed to have log-normal distribution
� The portfolio value is a sum of log-normal distributions

� We don’t have exact analytical form of the resulting distribution
� It’s sometimes approximated with log-normal distribution

� But, what does the convex combination of expectation and CVaR
do with the distribution?

� Nested structure of the model brings additional complex
transformations

� Different values of β should be selected for every stage, as the
parameters of the distributions also vary

� For small ratios of standard deviation over the mean, log-normal
distribution can be approximated by normal distribution, see Hald
[1952]

� We have used β = 0.3 which came out from our
normal-distribution analysis for λ = 0.5



Results

� Standard Monte Carlo setup Q̂s (βt = αt = 0.05)

� Improved estimator Q̂i with βt = 0.3

� Lower bound z

T total scenarios z Q̂s (s.d.) Q̂i (s.d.)

5 6, 250, 000 -3.5212 -3.5166 (0.0168) -3.5158 (0.0042)

10 ≈ 1014 -7.3885 -7.2833 (0.2120) -7.2741 (0.0315)

15 ≈ 1025 -10.4060 -10.1482 (0.8184) -10.1246 (0,1266)

� Variance reduction by a factor between 4 and 7

� Negligible effect on computation times



Conclusion

� We propose a new approach to estimate functionals that
incorporate risk via CVaR
� Allows to tweak existing procedures which rely on sampling in

estimation of mean-risk objectives
� Significantly smaller variance than a standard Monte Carlo estimator
� Negligible effect on computation times in optimization problems

� Future research
� Applications such as hydroelectric scheduling under inflow uncertainty
� Other risk measures, different importance sampling pdfs
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