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Stochastic Optimization

= Different communities focus on special applications in mind
O Therefore they build different models

0 Notation differs even for the terms that are in fact same in all
communities

® The communities are starting to merge
O ldeas and algorithms may be useful in all communities
= We will focus on:

O Stochastic programming
0 Dynamic programming
O Optimal control




Stochastic programming

® Basic model (Shapiro et al., 2009)
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B Decisions x; are typically real-valued vectors
O Integer values are possible, but significantly harder to solve

® Decisions x; do not influence probability distributions of &,/ Vt/

= We require nonanticipativity: x; is measurable w.r.t. (&)




Stochastic programming

® We can develop dynamic programming equations

min fi(x1) + E[Q(x1,&)]

st.xy € X
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Dynamic programming

® Basic model (Puterman, 1994)
O Decision epochs t =1,... ., Nort=1,2,...
O Set of possible system states: S
0 Set of possible actions in the state s € S: A
0 Reward function for choosing an action a € A in the state s: r.(s, a)
0 Transition probabilities for the next state of the system p:(:|s, a)
O We maximize the expected value of all rewards

m Set of states S is usually finite
m Sets of actions A are usually finite

® Extensions to countable, compact or complete spaces S and A; are
possible

®m We usually seek Markov decision rules d; : S — As
0 Decisions can be also random and history dependent

B Rewards and transition probabilities are typically stationar




Dynamic programming

® Denote random sequence of states X;
0 X; deterministic or specified by a probability distribution
® Following a decision rule d; we select sequence of actions
Ye = di(Xt)
® Decisions affect the transition probabilities for following period
m We seek policy m consisting of decision rules d;:

o0

Z )\t_lrt(Xt, Yt)
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0 Discount factor A; € (0, 1]
0 In the finite case we have salvage value ry(s) and maximize

E [zfv re(Xe, Ye) + rN(XN)}




Optimal control

® Initial state X(0) = xo
m State evolves according to stochastic differential equation:
dX(t) = f(t, X(t), u(t))dt + o(t, X(t), u(t))dW(t)

m Set of possible controls U
= Basic model (Fleming, Soner (2006))

uel

.
min E/ L(t, X(t), u(t))dt + (X(T))
0

or infinite horizon discounted cost problem 5 >0

min IE/ exp~ P L(X(£), u(t))dt
uel 0

® Discontinuous control v can be also admitted




Decision epochs

® Stochastic programming

O Discrete time steps

O Two-stage problems or problems with modest number of stages

(hundreds) are usual

® Dynamic programming

O Discrete time steps

O Usually infinite horizon problems with discount

O Also finite horizon problems with large number of stages can be solved
= Optimal control

o Continuous time

0 Both finite horizon and infinite horizon problems

B Random horizon (Markov time) also possible = Optimal stopping




State variable

® Usually models resource state, information state or knowledge
about unknown parameters

Definition (Powell (2011))

A state variable s is the minimally dimensioned function of history
that is necessary to compute the decision function, the transition
function and the contribution function.

® Every dynamic program is Markovian provided that the state
variable is complete

® In stochastic programming, the decision vector x is the state
variable

O Decisions and states are coupled together

m State vector x in optimal control




Decisions / Actions / Controls

Different notations:

O Stochastic programming: decision x

o Dynamic programming: action a

0 Optimal control: control u

Typical shape differs (provided by different applications):
O Decision x is usually high-dimensional vector

0 Action a refers to discrete (or discretized) actions

0 Control u is used for low-dimensional (continuous) vectors

Stochastic programming puts focus on the first stage decision x;

Optimal control community develop controls for the complete
horizon

Both cases are present in dynamic programming




Exogenous information

® Stochastic programming
O Modeled by scenarios &
O Scenarios influence the constraints of the model
O Usually &; is assumed to be know at stage t
0 Scenario probabilities are not influenced by our decisions
B Or: decisions determine when uncertainty is resolved (Grossman, 2006)
® Dynamic programming
0 Exogenous information is encoded in the transition function p;(:|s, a)
B Called transition kernel in the continuous case
O Direct observation of the exogenous inputs is possible by including
them into the state variables
= Optimal control
O Random variable W, usually Wiener process
B Not known at time t
B Natural due to the continuous nature of the problems
O Not influenced by our decisions




Transition function

® Stochastic programming

O Transition encoded into the program constraints
O Usually linear equations of the form

Bixt—1 + Aexe = b

® Dynamic programming
0 Model-based problems - the transition matrix is known
O Model-free problems - complex systems

B Transition function is known, but the probability law for the exogenous
information is not known

= Optimal control
0 Generic transition functions

B Too general to be used in stochastic programming
B Usually in the form of stochastic differential equation




Objective function

® Stochastic programming
O Objective function usually linear or convex

A(x)+E [R(x, &) + E [f(xs, &) + - + E [fr(xr, &n) -] - €] ]

O Does not have to be additive or linear
® Dynamic programming & Optimal Control
O Usually infinite horizon discounted problem

E or / " exp P L(X(8), u(t))dt

Z )\t_lrt(Xt’ Ye)
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O Alternatively finite horizon with a terminal cost
O Additivity is important




Stochastic programming - solution approach

® We usually solve SAA versions of the continuous problems
O Simple problems can be solved directly with simplex method
® Exploit the special problem structure
O Recourse functions are polyhedral in the case of linear programs and
finite number of scenarios

O More generally, we rely on the convexity property
O Lower bounding cuts of the recourse function are constructed to
obtain approximate solution

B Benders' decomposition, L-shaped method
B Stochastic decomposition
B Decompose the problem by scenarios
0 We solve the problem scenario by scenario and iteratively find solution
by penalizing anticipative solutions
01 Progressive hedging (Lagrangian relaxation)
0 Well suited for mixed integer stochastic programs (nonconvex




Stochastic programming - solution approach

B For multistage programs we have extensions to the classic
algorithms:

O Nested Benders' decomposition
O Multistage Stochastic decomposition
® But we usually hit the curse of dimensionality
O Number of scenarios grows exponentially with the number of stages
O Special algorithms usually rely on stage independence assumption

B Exogeneous inputs are supposed independent
B Stochastic Dual Dynamic Programming algorithm




Dynamic programming - solution approach

® Focus on deterministic Markov policies
O They are optimal under various conditions
® Finite horizon problems

0 Backward induction algorithm
0 Enumerates all system states

® Infinite horizon problems

0 Bellmann's equation for value function v

s’eS

* — )\ / * ()
v (s) ggf{r(s,an S pls'ls, v (s)}
0 Optimal solution guaranteed by fixed-point theorems:

v = Teag{rd + APyv}=Lv




Dynamic programming - solution approach

= Value iteration
0 Start with arbitrary v°

O lterate while the value function improves significantly

viti(s) = max {r(s, a)+ A Z p(s'|s, a)v"(s’)}

s'esS
® Policy iteration

0 Start with arbitrary decision dy € D
O Policy evaluation - obtain v”

(/ — /\Pdn)v = rd,,
o Policy improvement - find d)11

d AP4v"
nt1 € arg Teag{fd + APgv"}

= Combination of above - modified policy iteration




Dynamic programming - solution approach

® Generalized notation

0 Reward function r(s, a,w)
0 Transition function f(s, a,w)

0 For a given realization w: Y: = de(X), Xep1 = (X, Ye,w)
m Q-factors

O Bellman's equation with Q* as the optimal Q-factor:

v¥(s) = max{Q*(s,a)}

acAs

Q*(s,a) =E |r(s,a,w) + A max Q*(s',a)

0 Once Q-factors are known optimization is model-free




Dynamic programming - solution approach

® Approximation in value space

0 Approximation architecture: consider only v(s) from a parametric
class v(s,r)

O Training the architecture: determine optimal r € R”

0 Context-dependent features (basis functions) ¢(s)

B Polynomial approximation, kernels, interpolation, ...
B Special features, for example in chess: material balance, safety, mobility

o Linear architecture: ¢(s) "
= Approximate Value iteration
0 Select small subset S,, C S and compute Vs € S,;:

~n+1 _ )\
vH(s) g&%{ s,a)+ Z

s'€S

0 Fit the function ¥"T1(s) Vs € S to the set S,




Dynamic programming - solution approach

® Approximate Policy iteration
O Guess initial policy
0 Evaluate approximate cost using simulation, ¥(s) = ¢(s)r
B Cost samples obtained by simulation
B Weights r optimized through least squares

Generate improved policy using linear approx. of the value function
Exploration issue - cost samples biased by current optimal policy
B Randomization, mixture of policies

m Q-learning

O Sampling: select pairs (s, ax) and select s according to p(-|sk, ax)
O lteration: update just Q(sk, ax) with v, ~ 1/k

Q(sk, ak) = (1 — k) Q(s«, ak) + v« (r(sk, ak, S) + Aar,ga}‘x, Q(st, a’))

O model-free: need only simulator to generate next state and cost



Optimal control - solution approach

m Define cost-to-go function J(t, X(t))
T
SeX(0) = min B [ L X(0. u(0)de+ v(X(T))
u(t)e t
® Hamilton-Jacobi-Bellman equation:

0J(t,x)

ot UE?)'QU {L(t’x’ u)+

2 J(t, x
+% tr {O'(t,X, u)o ! (t, x, u)%}} =0
J(T,X(T)) = v(X(T))

8J(1X) f(t,x,u)

® Explicit solutions are rarely found
O Numerical solutions for differential equations




Optimal control - solution approach

= Differential of J(t, X(t)) is important only in values along the
optimal path

p(t) = Je(t,x*(t))
m Define Hamiltonian function H(t, x, u, p, px):

1
H(t,x,u,p,px) = L(t,x,u)+f(t,x, u)Tp—i—E tr {pxa(t,x, u)o ' (t, x, u)}
® Pontryagin principle:
dx* = Hpdt + odW
dp* = —H;dt + pxodW
x*(0) = xo
p*(T) = vx(T,X(T))
H*(t, X(t), u(t), p(t), px(t)) = miny H(t, X(t), u, p(t), px(t))
® We usually need to prove optimality
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Conclusion
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