
Similarities and differences between stochastic programming,
dynamic programming and optimal control

Václav Kozḿık

Faculty of Mathematics and Physics
Charles University in Prague

11 / 1 / 2012

Stochastic Optimization

� Different communities focus on special applications in mind
� Therefore they build different models
� Notation differs even for the terms that are in fact same in all

communities

� The communities are starting to merge
� Ideas and algorithms may be useful in all communities

� We will focus on:
� Stochastic programming
� Dynamic programming
� Optimal control

Stochastic programming

� Basic model (Shapiro et al., 2009)

min
x1∈X1

f1(x1) + E
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[

inf
x3∈X3(x2,ξ3)

f3(x3, ξ3) + · · ·

+ · · · E
[

inf
xT∈XT (xT−1,ξT)

fT (xT , ξT)

]]]
� Decisions xt are typically real-valued vectors

� Integer values are possible, but significantly harder to solve

� Decisions xt do not influence probability distributions of ξt′ ∀t ′

� We require nonanticipativity: xt is measurable w.r.t. σ(ξ[t])

Stochastic programming

� We can develop dynamic programming equations

min
x1

f1(x1) + E [Q2(x1, ξ2)]

s.t. x1 ∈ X1

Qt(xt−1, ξt) = inf
xt

ft(xt , ξt) + E
[
Qt+1(xt , ξ[t+1])|ξ[t]

]
s.t. xt ∈ Xt(xt−1, ξt)

Dynamic programming

� Basic model (Puterman, 1994)
� Decision epochs t = 1, . . . ,N or t = 1, 2, . . .
� Set of possible system states: S
� Set of possible actions in the state s ∈ S : As

� Reward function for choosing an action a ∈ As in the state s: rt(s, a)
� Transition probabilities for the next state of the system pt(·|s, a)
� We maximize the expected value of all rewards

� Set of states S is usually finite

� Sets of actions As are usually finite

� Extensions to countable, compact or complete spaces S and As are
possible

� We usually seek Markov decision rules dt : S → As

� Decisions can be also random and history dependent

� Rewards and transition probabilities are typically stationary

Dynamic programming

� Denote random sequence of states Xt

� X1 deterministic or specified by a probability distribution

� Following a decision rule dt we select sequence of actions
Yt = dt(Xt)

� Decisions affect the transition probabilities for following period

� We seek policy π consisting of decision rules dt :

maxπ E

[∞∑
1

λt−1rt(Xt ,Yt)

]

� Discount factor λt ∈ (0, 1]
� In the finite case we have salvage value rN(s) and maximize

E
[∑N

1 rt(Xt ,Yt) + rN(XN)
]

Optimal control

� Initial state X (0) = x0
� State evolves according to stochastic differential equation:

dX (t) = f (t,X (t), u(t))dt + σ(t,X (t), u(t))dW (t)

� Set of possible controls U
� Basic model (Fleming, Soner (2006))

min
u∈U

E
∫ T

0
L(t,X (t), u(t))dt + ψ(X (T))

or infinite horizon discounted cost problem β ≥ 0

min
u∈U

E
∫ ∞
0

exp−βt L(X (t), u(t))dt

� Discontinuous control u can be also admitted

Decision epochs

� Stochastic programming
� Discrete time steps
� Two-stage problems or problems with modest number of stages

(hundreds) are usual

� Dynamic programming
� Discrete time steps
� Usually infinite horizon problems with discount
� Also finite horizon problems with large number of stages can be solved

� Optimal control
� Continuous time
� Both finite horizon and infinite horizon problems

� Random horizon (Markov time) also possible = Optimal stopping

State variable

� Usually models resource state, information state or knowledge
about unknown parameters

Definition (Powell (2011))

A state variable s is the minimally dimensioned function of history
that is necessary to compute the decision function, the transition
function and the contribution function.

� Every dynamic program is Markovian provided that the state
variable is complete

� In stochastic programming, the decision vector x is the state
variable
� Decisions and states are coupled together

� State vector x in optimal control

Decisions / Actions / Controls

� Different notations:
� Stochastic programming: decision x
� Dynamic programming: action a
� Optimal control: control u

� Typical shape differs (provided by different applications):
� Decision x is usually high-dimensional vector
� Action a refers to discrete (or discretized) actions
� Control u is used for low-dimensional (continuous) vectors

� Stochastic programming puts focus on the first stage decision x1
� Optimal control community develop controls for the complete

horizon

� Both cases are present in dynamic programming

Exogenous information

� Stochastic programming
� Modeled by scenarios ξ
� Scenarios influence the constraints of the model
� Usually ξt is assumed to be know at stage t
� Scenario probabilities are not influenced by our decisions

� Or: decisions determine when uncertainty is resolved (Grossman, 2006)

� Dynamic programming
� Exogenous information is encoded in the transition function pt(·|s, a)

� Called transition kernel in the continuous case

� Direct observation of the exogenous inputs is possible by including
them into the state variables

� Optimal control
� Random variable Wt , usually Wiener process

� Not known at time t
� Natural due to the continuous nature of the problems

� Not influenced by our decisions

Transition function

� Stochastic programming
� Transition encoded into the program constraints
� Usually linear equations of the form

Btxt−1 + Atxt = bt

� Dynamic programming
� Model-based problems - the transition matrix is known
� Model-free problems - complex systems

� Transition function is known, but the probability law for the exogenous
information is not known

� Optimal control
� Generic transition functions

� Too general to be used in stochastic programming
� Usually in the form of stochastic differential equation

Objective function

� Stochastic programming
� Objective function usually linear or convex

f1(x1)+E
[
f2(x2, ξ2) + E

[
f3(x3, ξ3) + · · ·+ E

[
fT (xT , ξT)|ξ[T−1]

]
· · · |ξ[2]

]]
� Does not have to be additive or linear

� Dynamic programming & Optimal Control
� Usually infinite horizon discounted problem

E

[∞∑
1

λt−1rt(Xt ,Yt)

]
or

∫ ∞
0

exp−βt L(X (t), u(t))dt

� Alternatively finite horizon with a terminal cost
� Additivity is important

Stochastic programming - solution approach

� We usually solve SAA versions of the continuous problems
� Simple problems can be solved directly with simplex method

� Exploit the special problem structure
� Recourse functions are polyhedral in the case of linear programs and

finite number of scenarios
� More generally, we rely on the convexity property
� Lower bounding cuts of the recourse function are constructed to

obtain approximate solution
� Benders’ decomposition, L-shaped method
� Stochastic decomposition

� Decompose the problem by scenarios
� We solve the problem scenario by scenario and iteratively find solution

by penalizing anticipative solutions
� Progressive hedging (Lagrangian relaxation)
� Well suited for mixed integer stochastic programs (nonconvex)

Stochastic programming - solution approach

� For multistage programs we have extensions to the classic
algorithms:
� Nested Benders’ decomposition
� Multistage Stochastic decomposition

� But we usually hit the curse of dimensionality
� Number of scenarios grows exponentially with the number of stages
� Special algorithms usually rely on stage independence assumption

� Exogeneous inputs are supposed independent
� Stochastic Dual Dynamic Programming algorithm

Dynamic programming - solution approach

� Focus on deterministic Markov policies
� They are optimal under various conditions

� Finite horizon problems
� Backward induction algorithm
� Enumerates all system states

� Infinite horizon problems
� Bellmann’s equation for value function v

v∗(s) = max
a∈As

{
r(s, a) + λ

∑
s′∈S

p(s ′|s, a)v∗(s ′)

}

� Optimal solution guaranteed by fixed-point theorems:

v = max
d∈D
{rd + λPdv} = Lv

Dynamic programming - solution approach

� Value iteration
� Start with arbitrary v0

� Iterate while the value function improves significantly

vn+1(s) = max
a∈As

{
r(s, a) + λ

∑
s′∈S

p(s ′|s, a)vn(s ′)

}
� Policy iteration

� Start with arbitrary decision d0 ∈ D
� Policy evaluation - obtain vn

(I − λPdn)v = rdn

� Policy improvement - find dn+1

dn+1 ∈ arg max
d∈D
{rd + λPdv

n}

� Combination of above - modified policy iteration

Dynamic programming - solution approach

� Generalized notation
� Reward function r(s, a, ω)
� Transition function f (s, a, ω)
� For a given realization ω: Yt = dt(Xt), Xt+1 = f (Xt ,Yt , ω)

� Q-factors
� Bellman’s equation with Q∗ as the optimal Q-factor:

v∗(s) = max
a∈As

{Q∗(s, a)}

Q∗(s, a) = E
[
r(s, a, ω) + λ max

a′∈As′
Q∗(s ′, a′)

]
� Once Q-factors are known optimization is model-free

Dynamic programming - solution approach

� Approximation in value space
� Approximation architecture: consider only v(s) from a parametric

class v(s, r)
� Training the architecture: determine optimal r ∈ Rm

� Context-dependent features (basis functions) φ(s)
� Polynomial approximation, kernels, interpolation, . . .
� Special features, for example in chess: material balance, safety, mobility

� Linear architecture: φ(s)>r

� Approximate Value iteration
� Select small subset Sn ⊂ S and compute ∀s ∈ Sn:

ṽn+1(s) = max
a∈As

{
r(s, a) + λ

∑
s′∈S

p(s ′|s, a)ṽn(s ′)

}

� Fit the function ṽn+1(s) ∀s ∈ S to the set Sn

Dynamic programming - solution approach

� Approximate Policy iteration
� Guess initial policy
� Evaluate approximate cost using simulation, ṽ(s) = φ(s)>r

� Cost samples obtained by simulation
� Weights r optimized through least squares

� Generate improved policy using linear approx. of the value function
� Exploration issue - cost samples biased by current optimal policy

� Randomization, mixture of policies

� Q-learning
� Sampling: select pairs (sk , ak) and select s ′k according to p(·|sk , ak)
� Iteration: update just Q(sk , ak) with γk ∼ 1/k

Q(sk , ak) = (1− γk)Q(sk , ak) + γk

(
r(sk , ak , s

′
k) + λ max

a′∈As′
Q(s ′k , a

′)

)
� model-free: need only simulator to generate next state and cost

Optimal control - solution approach

� Define cost-to-go function J(t,X (t))

J(t,X (t)) = min
u(t)∈U

E
∫ T

t
L(t,X (t), u(t))dt + ψ(X (T))

� Hamilton-Jacobi-Bellman equation:

∂J(t, x)

∂t
+ min

u(t)∈U

{
L(t, x , u) +

∂J(t, x)

∂x
f (t, x , u)

+
1

2
tr

{
σ(t, x , u)σ>(t, x , u)

∂2J(t, x)

∂x2

}}
= 0

J(T ,X (T)) = ψ(X (T))

� Explicit solutions are rarely found
� Numerical solutions for differential equations

Optimal control - solution approach

� Differential of J(t,X (t)) is important only in values along the
optimal path

p(t) = J∗x (t, x∗(t))

� Define Hamiltonian function H(t, x , u, p, px):

H(t, x , u, p, px) = L(t, x , u)+f (t, x , u)>p+
1

2
tr
{
pxσ(t, x , u)σ>(t, x , u)

}
� Pontryagin principle:

dx∗ = H∗pdt + σdW
dp∗ = −H∗x dt + pxσdW
x∗(0) = x0
p∗(T) = ψx(T ,X (T))
H∗(t,X (t), u(t), p(t), px(t)) = minu H(t,X (t), u, p(t), px(t))

� We usually need to prove optimality

References

� Bertsekas, D. P. (2012): Dynamic Programming and Optimal
Control, Vol. II, 4th Edition: Approximate Dynamic Programming.
Athena Scientific, ISBN 1-886529-44-2.

� Fleming, W. H., Soner, H. M. (2006): Controlled Markov
Processes and Viscosity Solutions

� Goel, V., Grossmann, I. (2006): A Class of Stochastic Programs
with Decision Dependent Uncertainty

� Powell, W. B. (2012): AI, OR and Control Theory: A Rosetta
Stone for Stochastic Optimization

� Puterman, M. L. (1994): Markov Decision Processes: Discrete
Stochastic Dynamic Programming

� Shapiro, A., Dentcheva, D., Ruszczynski A. (2009): Lectures on
Stochastic Programming: Modeling and Theory

Conclusion

Thank you for your attention!

Václav Kozḿık
vkozmik@gmail.com

