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Decision making under uncertainty is the real problem
we should all be working on [G.B. Dantzig 2001]

Stochastic Programming on the Web:

= SP Community Home Page http://stoprog.org
= SP E-Print Series

= SP Bibliography + Books on Stochastic Programming

(Mixed-)Integer recourse models

Coping with m random constraints T(w)x > h(w)
Only right-hand side random:

= h(w) = w with known cdf F,

= T(w) = T deterministic

Model
min{cx + Q(x) : Ax > b, x € R*}
where
Q(x) = Ey[v(w = Tx)]
and

v(s) =min{qy : Wy >s, y € Z?}
y

Integer recourse actions y = y(x,w)




Why include integer variables? Modeling power:

= natural integrality of decision variables
e.g. The Allocation of Aircraft to Routes  [Ferguson & Dantzig '56]

= yes/no, on/off decisions

= artificial indicator variables for conditional linear constraints
(LP formulation of CO problems)

0<x< Mz, xeR, ze{0,1}
= satisfy k out of n constraints, e.g. discrete Chance Constraints
Pr{Tx >w}>a€(0,1)
with Pr{w = w®} =p°, s=1,...,S
Why not?
= continuous SLP is already difficult enough
= complexity: 2nd-stage problems NP-hard

[Dyer & Stougie '06] continuous SLP is #P complete
— SMIP not harder (...)

Main issue: integer recourse function @ is non-convex in general

(example from [Schultz et al. '98])

How to solve SMIP?

Borrow from solution approaches for deterministic MILP: e.g.
= (LP + rounding)

= Branch & Bound with LP relaxation

= Benders’ decomposition

= Polyhedral theory: valid inequalities

= Lagrangian relaxation

Combine with SLP algorithms — algorithms for SMIP?

Various authors (+ co-authors):

= Schultz

= Louveaux

= Sen

= Ahmed

= ... seeeg. S(I)P Bibliography and SPePS

Our perspective: SMIP is a battle between
= randomness: Good

= integrality: Bad

Usually, result is Ugly: non-convex, ...

However, sometimes result is Beautiful: convex!




Modification of Recourse Data (VdV 2003)
Recourse data (¢, W, Y, F,)

> structure:
= (g, W) complete / sufficiently expensive recourse, ...
= y € Y: simple bounds, integrality

» distribution

Nice properties for recourse models

» Convexity
» Discrete distribution
» Continuous decision variables

Idea of approach

» Modify data (g, W, Y, F.,) = (g, W, ¥, F.,) so that
= easy to solve
= good approximation

MRD for integer recourse

Expected value function Q(x)

> Q(x) =E. [myin{qy Wy > Ty e ZE}}

with w a continuous random vector

Approximation of VdV (2004)

> Q(x) = E: {myin{qy Wy >E6-Tx, y € Rﬁf}}

with & a discrete random vector

> Special case: (one-sided) Simple Integer Recourse (W = 1)

Special case: Simple integer recourse (W = /)

SR: Modeling linear penalty costs for individual surpluses
(shortages):

v(s)

min{qy 1y >s, y € 2}
y

m
= Z myi_n{ql‘)’i Vi >si, yi €74}
i=1 7

m
= Y qls]|"  (assuming g > 0)
=1

with [x]T :=max{0, [x]}, x e R

SIR value function v is separable
Assume T deterministic — @ separable in tender variables Tx

Special case: Simple integer recourse (W = 1)

Generic one-dimensional expected value function
> Q(z) =E, waz‘ﬁ] ,zeR
» @ is generally non-convex

s

Examples: w discrete (left) and exponentially (right) distributed




SIR function @ is non-convex in general. However:

Theorem [Klein Haneveld, Stougie, VdV '06]
SIR function Q is convex if and only if w ~ pdf f with

f(s)=G(s+1)—G(s), seR

where G is an arbitrary cdf with finite mean
— ldea for MRD:

> Approximate original pdf f,, with
a pdf f that is generated by some cdf G

-approximations
Fix a € [0,1)
Let G be cdf of a discrete r.v. with support in a +7Z :
1. fo(s) = G(s+ 1) — G(s) is constant on
Cl=(a+I-La+l,1€Z
2. For wy ~ fy, P{wy € CL} =P{w e C/}

For later use: analogous for dimension m > 2

a-approximations (2)
— «-approximation Q:

Qa(z) :=E,, [[wa — zTr] , zeR

with w, ~ f, a continuous random variable.

It turns out that
Qul2) == E., [[wa —21*] = / (1- G(x)) dx

= Qu(z) = E¢ [(f fz)+] , zeR
That is: Qq is a continuous expected surplus function (SR)

with discrete random variable ¢ having cdf G.

Theorem [Klein Haneveld, Stougie, VdV '93] —
Every convex SIR function @ with continuous w, can be
represented as an continuous SR function with discrete £

a-approximations (3): MRD for SIR

= Drop integrality in second stage
= Replace w ~ f by a-approximation £ = [w — o] + «
=
1. continuous SR models with discrete [w — o] + «
can be solved efficiently

2. For SIR models a uniform error bound is available for
«a-approximations

Theorem [Klein Haneveld, Stougie, VdV 2006]
For SIR function Q and for all « € [0,1),

sup |Q(z) — Qa(z)| < min {% 1}
zeR 4

with |A|f, := total variation of pdf £,

2

<, increases

Intuition: for unimodal pdf, |A|f, decreases as o




MRD / a-approximation for more general integer recourse

Expected value function Q(z)
> Q(z) =E, {min{qy Wy >w—z,y€ Zf}}
y
MRD: (i) drop integrality, (ii) substitute a-approximation of w
For a € R™, a-approximation Q(z)
> Qu(z) =E, |:min{qy Wy >[w—al+a—z y€ Rf’f}}
y

> @, is a continuous recourse function, convex polyhedral

Consider W complete, Totally Unimodular (TU)

> second-stage problem: IP(s) = LP(s) provided s € Z™

Convex hull
Claim Van der Vlerk (Math Prog, 2004)
» Q. is the convex hull of Q if W is TU
(o* depending on £, only)

Counterexample where the convex hull is not polyhedral # Q-

» Q(z) =E, [[w—2]"]
> w follows a triangular ER
distribution on [0, 1] with
mode 1/2 3|

» Conclusion: Claim needs stronger assumptions

Known results a-approximations of TU integer recourse

> Claim of VdV (2004) holds for uniform distributions
[Romeijnders & VdV '12]

> Q(z) = Qu(z) forze a+2™
Recall: Error bound only for SIR [KH et al. '06]
Alf
> For a € R, sup |Q(z) — Qu(2)] < min {LJ}
zeR 4
> |Alf is the total variation of pdf f
Goal

» Obtain a similar error bound for TU integer recourse

Error bound for a-approximations

New approach for SIR
> Let fy be a pdf with |A|fy = B.

> We are interested in sup,, ,cg |Q(2) — Qu(z)| when w ~ fo

> Key insight: Instead, consider

sup sup sup{|Q(z) — Qu(2)| : |A|f < B}
a€R zeR feF

F is set of ‘nice’ density functions f  (bounded variation, ...

Analysis
1. Round-up functions R(z) := E,[[w —z]], z€ R
2. SIR Q(2) =Ey [[w — z]ﬂ
3. TU integer recourse




Property of total variation Round-up functions

Expected round-up function and a-approximation
o > R(z) = Euf[w - 2]]
Lemma (‘flattening’) > Ru(z) = Eu[[w—a] +a—7]

Let pdf f € F be given.
Let / be a bounded interval and define g € F as

g(X):{ f(x), x¢l
K, xel R(z) — Ra(z) = Ew“wfz}]wa[[wfa]Jrafz]

Error

with K; = |11 [, £(u)du = Eu[t0(w)]

Then |[Alg < |A|f
with difference function

ba,z(x) = (]'x—z-\ +z> - ([x—a] +a>

The difference function ¢,, , The difference function ¢,, ,
> O (X) = ([x—z]+z)—([x—a]+ a) > Oa,(x) = ( [x—z|+ z> - < [x —al] + a>
> Solve ma>;{|Ef[qf>(,>Z(w)]| C|Af < B} » Solve ma>;{|Ef[qf>(,>Z(w)]| C|Af < B}
,z, ,z,
Properties of ¢, , Consequences Properties of ¢, . Consequences
» periodic in x,a, z » Restrict maximization w.r.t. > piecewise constant in x » Restrict maximization w.r.t.
with period 1 « and z to [0,1) > jumps of size +1 at z +7Z f € F to piecewise constant
> da,z(X) = —0za(x) > Maximize Ef[¢q - (w)] > jumps of size —1lat o+ Z densities
instead of |Ef[¢q,-(w)]|




The difference function ¢, ,

> Gaz(x) = ([X -] +Z) N (

(xfa]Jra)

» Solve ma>f<{|]Ef[gZ>u‘Z(w)]| J|A|f < B}

Properties of ¢, »

> [, ba,z(x)dx = 0 for any
interval  of length |/| =1

Consequences

» Optimal f are
(piecewise constant and)
alternating (high — low)

The difference function ¢, ,

> Ga.(x) = ([xfz] +z) - ((xfa] +a>
> Solve $2¥{|Ef[¢u.z(w)]| |Alf < B}

00 05 10 15 20

Properties of ¢, » Consequences

» Optimal f are pc and
alternating

> [, ba,z(x)dx = 0 for any
interval / of length |/| =1

The difference function ¢,, ,

> Gaz(x) = ([x —Z] +z> - <

]'x—oz]-i-a)

> Solve max{|E¢[...(w)]| : |Alf < B}
,z,

Properties of ¢, .

> f, Ga.z(x)dx = 0 for any
interval / of length |/| =1

Consequences

» Optimal f are pc and
alternating

The difference function ¢,, ,

> Oa,(x) = ([x—z] +z> - <]'x—oz] +a>
> Solve max{|Er[¢n 2(w)]| - |AIf < B}

Properties of ¢, . Consequences

» Optimal f are pc and
alternating

> f, Ga.z(x)dx = 0 for any
interval [ of length |/| =1




Round-up functions

This allows to determine, for «, z € R,

‘ . B
Tg{lEf[%z(w)]l SAlf < B} = min{va,z, Ya.z(1 — 'Ya,Z)E}

where 7, :=z4+1—([z —a] +a)e [0,1]

Finally, maximization w.r.t. a and z yields
desired uniform error bound on |R(z) — R.(z)|

Round-up functions

Uniform error bound: for o« € R
|Alf

> sup[R(z) — Ra(2)] < ——

zeR 8

2
» In fact, for |A|f > 4, sup |R(z) — Ra(2)| <1 - ——
zeR |Alf

Simple integer recourse

» The same error bound holds for

SIR: Q(2) = Ey[[w — z]7] 2|

Alf .
» sup|Q(2) — Qu(z)] < 2T d
zeR 8 .
» Bound is sharp; improvement of Y
[KH et al. 06] by factor 2 =1/

Similar approach for recourse with TU matrix W

Second-stage value function v: for s € R™

v(s) = myin{qy Wy >s, yeZP}
= min{qy : Wy > [s], y € 27}
= min{qy: Wy > [s], y € RY}
= mAax{)\(ﬂ AW < g, AeRT}

(because W is TU)

(by strong LP duality)

» Dual feasible region: A:={A e RT : AW < q}
> v(s) is finite for all s € R™ = A is non-empty and bounded
» Extreme points of A: A\, k=1,....K

TU recourse matrix W

Expected recourse function Q: for z € R™

MRD: (i) drop integrality, (ii) substitute a-approximation of w
For a € [0,1)™

,,,,,

Q(z) similar to expected round-up functions A\¥E,,[[w — Z]]

—> ‘same’ analysis (...) yields error bound for |Q(z) — Qa(2)]




First error bound for TU integer recourse

Error bound when components of w are independent

L Alf
> sup |Q(z) — Qu(2)] < A=
09 10 - Q) <315
> with A} 1= . Mmax 2K

eeey

» Special case: simple integer recourse
> Approximation is good when all total variations are small

First error bound for TU integer recourse

Notation: x(jy = (X1,. .., Xi—1,Xi41, -+ Xn)

Error bound when components of w are dependent

mo \A\ﬁ(-IW(i))}
> — Qa < NEoyy | —
10 19(2) = Qa2 <3 m[ 8

> with fi(-|w(;)) a conditional density function

» Special case: independent random vectors

Example:

Bivariate normal distribution with correlation p.
If variances are sufficiently large and |p| < .4
then EB(dep.) < 1.1 EB(indep.)

Future research

Construct convex hull of integer recourse models

Extending MRD / a-approximations to

> General integer recourse (non TU)

v

Mixed-integer recourse
» Multi-stage recourse
> Binary recourse variables

> ..

Approximation by piecewise constant densities
also promising in other context




