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(Mixed-)Integer recourse: definition

Motivation

Modification of Recourse Data

Convex α-approximations for SIR & TU recourse

Error bounds

Decision making under uncertainty is the real problem
we should all be working on [G.B. Dantzig 2001]

Stochastic Programming on the Web:

SP Community Home Page http://stoprog.org

SP E-Print Series

SP Bibliography + Books on Stochastic Programming

(Mixed-)Integer recourse models

Coping with m random constraints T (ω)x ≥ h(ω)

Only right-hand side random:

h(ω) = ω with known cdf Fω

T (ω) = T deterministic

Model

min
x
{cx + Q(x) : Ax ≥ b, x ∈ R

n1
+ }

where
Q(x) = Eω[v(ω − Tx)]

and
v(s) = min

y
{qy : Wy ≥ s, y ∈ Z

n2
+ }

Integer recourse actions y = y(x , ω)



Why include integer variables? Modeling power:

natural integrality of decision variables
e.g. The Allocation of Aircraft to Routes [Ferguson & Dantzig ’56]

yes/no, on/off decisions

artificial indicator variables for conditional linear constraints
(LP formulation of CO problems)

0 ≤ x ≤ Mz , x ∈ R, z ∈ {0, 1}
satisfy k out of n constraints, e.g. discrete Chance Constraints

Pr{Tx ≥ ω} ≥ α ∈ (0, 1)

with Pr{ω = ωs} = ps , s = 1, . . . , S

Why not?

continuous SLP is already difficult enough

complexity: 2nd-stage problems NP-hard

[Dyer & Stougie ’06] continuous SLP is #P complete
−→ SMIP not harder (. . . )

Main issue: integer recourse function Q is non-convex in general

(example from [Schultz et al. ’98])

How to solve SMIP?

Borrow from solution approaches for deterministic MILP: e.g.

(LP + rounding)

Branch & Bound with LP relaxation

Benders’ decomposition

Polyhedral theory: valid inequalities

Lagrangian relaxation

Combine with SLP algorithms −→ algorithms for SMIP?

Various authors (+ co-authors):

Schultz

Louveaux

Sen

Ahmed

. . . see e.g. S(I)P Bibliography and SPePS

Our perspective: SMIP is a battle between

randomness: Good

integrality: Bad

Usually, result is Ugly: non-convex, . . .

−→

However, sometimes result is Beautiful: convex!



Modification of Recourse Data (VdV 2003)

Recourse data (q,W ,Y , Fω)

� structure:

(q,W ) complete / sufficiently expensive recourse, . . .

y ∈ Y : simple bounds, integrality
� distribution

Nice properties for recourse models

� Convexity
� Discrete distribution
� Continuous decision variables

Idea of approach

� Modify data (q,W ,Y ,Fω) → (q̃, W̃ , Ỹ , F̃ω) so that

easy to solve

good approximation

MRD for integer recourse

Expected value function Q(x)

� Q(x) = Eω

[
min
y
{qy : Wy ≥ ω − Tx , y ∈ Z

n2
+ }

]
with ω a continuous random vector

Approximation of VdV (2004)

� Q̂(x) = Eξ

[
min
y
{qy : Wy ≥ ξ − Tx , y ∈ R

n2
+ }

]
with ξ a discrete random vector

� Special case: (one-sided) Simple Integer Recourse (W = I )

Special case: Simple integer recourse (W = I )

SR: Modeling linear penalty costs for individual surpluses
(shortages):

v(s) = min
y
{qy : y ≥ s, y ∈ Z

m
+}

=
m∑
i=1

min
yi

{qiyi : yi ≥ si , yi ∈ Z+}

=
m∑
i=1

qi�si�+ (assuming q ≥ 0)

with �x�+ := max{0, �x�}, x ∈ R

SIR value function v is separable
Assume T deterministic −→ Q separable in tender variables Tx

Special case: Simple integer recourse (W = I )

Generic one-dimensional expected value function

� Q(z) = Eω

[�ω − z�+] , z ∈ R

� Q is generally non-convex

Examples: ω discrete (left) and exponentially (right) distributed



SIR function Q is non-convex in general. However:

Theorem [Klein Haneveld, Stougie, VdV ’06]

SIR function Q is convex if and only if ω ∼ pdf f with

f (s) = G (s + 1)− G (s), s ∈ R

where G is an arbitrary cdf with finite mean

−→ Idea for MRD:

� Approximate original pdf fω with
a pdf f̂ that is generated by some cdf G

α-approximations
Fix α ∈ [0, 1)
Let G be cdf of a discrete r.v. with support in α+ Z :

1. fα(s) = G (s + 1)− G (s) is constant on
C l
α := (α+ l − 1, α+ l ], l ∈ Z

2. For ωα ∼ fα, P{ωα ∈ C l
α} = P{ω ∈ C l

α}
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For later use: analogous for dimension m ≥ 2

α-approximations (2)
−→ α-approximation Qα:

Qα(z) := Eωα

[�ωα − z�+] , z ∈ R

with ωα ∼ fα a continuous random variable.

It turns out that

Qα(z) := Eωα

[�ωα − z�+] = ∫ ∞

z
(1− G (x)) dx

⇒ Qα(z) = Eξ

[
(ξ − z)+

]
, z ∈ R

That is: Qα is a continuous expected surplus function (SR)
with discrete random variable ξ having cdf G .

Theorem [Klein Haneveld, Stougie, VdV ’93] −→
Every convex SIR function Q with continuous ω, can be
represented as an continuous SR function with discrete ξ

α-approximations (3): MRD for SIR

Drop integrality in second stage
Replace ω ∼ f by α-approximation ξ = �ω − α�+ α

⇒
1. continuous SR models with discrete �ω − α�+ α

can be solved efficiently

2. For SIR models a uniform error bound is available for
α-approximations

Theorem [Klein Haneveld, Stougie, VdV 2006]
For SIR function Q and for all α ∈ [0, 1),

sup
z∈R

|Q(z)− Qα(z)| ≤ min

{ |Δ|fω
4

, 1

}

with |Δ|fω := total variation of pdf fω

Intuition: for unimodal pdf, |Δ|fω decreases as σ2
ω increases



MRD / α-approximation for more general integer recourse

Expected value function Q(z)

� Q(z) = Eω

[
min
y
{qy : Wy ≥ ω − z , y ∈ Z

n2
+ }

]

MRD: (i) drop integrality, (ii) substitute α-approximation of ω

For α ∈ R
m, α-approximation Qα(z)

� Qα(z) = Eω

[
min
y
{qy : Wy ≥ �ω − α�+ α− z , y ∈ R

n2
+ }

]
� Qα is a continuous recourse function, convex polyhedral

Consider W complete, Totally Unimodular (TU)

� second-stage problem: IP(s) = LP(s) provided s ∈ Z
m

Convex hull

Claim Van der Vlerk (Math Prog, 2004)

� Qα� is the convex hull of Q if W is TU
(α� depending on fω only)

Counterexample where the convex hull is not polyhedral 
= Qα�

� Q(z) = Eω

[�ω − z�+]
� ω follows a triangular

distribution on [0, 1] with
mode 1/2
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� Conclusion: Claim needs stronger assumptions

Known results α-approximations of TU integer recourse

� Claim of VdV (2004) holds for uniform distributions
[Romeijnders & VdV ’12]

� Q(z) = Qα(z) for z ∈ α+ Z
m

Recall: Error bound only for SIR [KH et al. ’06]

� For α ∈ R, sup
z∈R

|Q(z)− Qα(z)| ≤ min

{ |Δ|f
4

, 1

}
� |Δ|f is the total variation of pdf f

Goal

� Obtain a similar error bound for TU integer recourse

Error bound for α-approximations

New approach for SIR

� Let f0 be a pdf with |Δ|f0 = B .

� We are interested in supα,z∈R |Q(z)− Qα(z)| when ω ∼ f0
� Key insight: Instead, consider

sup
α∈R

sup
z∈R

sup
f ∈F

{|Q(z)− Qα(z)| : |Δ|f ≤ B}

F is set of ‘nice’ density functions f (bounded variation, . . . )

Analysis

1. Round-up functions R(z) := Eω[�ω − z�], z ∈ R

2. SIR Q(z) = Eω

[�ω − z�+]
3. TU integer recourse



Property of total variation

Lemma (‘flattening’)

Let pdf f ∈ F be given.
Let I be a bounded interval and define g ∈ F as

g(x) =

{
f (x), x /∈ I

KI , x ∈ I

with KI := |I |−1
∫
I f (u)du

Then |Δ|g ≤ |Δ|f

Round-up functions

Expected round-up function and α-approximation

� R(z) := Eω[�ω − z�]
� Rα(z) := Eω[�ω − α�+ α− z ]

Error

R(z)− Rα(z) = Eω

[
�ω − z�

]
− Eω

[
�ω − α�+ α− z

]
= Eω

[
φα,z(ω)

]
with difference function

φα,z(x) :=
(
�x − z�+ z

)
−

(
�x − α�+ α

)

The difference function φα,z

� φα,z(x) :=
(
�x − z�+ z

)
−

(
�x − α�+ α

)
� Solve max

α,z,f
{|Ef [φα,z(ω)]| : |Δ|f ≤ B}

0.0 0.5 1.0 1.5 2.0 2.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Properties of φα,z

� periodic in x , α, z
with period 1

� φα,z(x) = −φz,α(x)

Consequences

� Restrict maximization w.r.t.
α and z to [0, 1)

� Maximize Ef [φα,z(ω)]
instead of |Ef [φα,z(ω)]|

The difference function φα,z

� φα,z(x) :=
(
�x − z�+ z

)
−

(
�x − α�+ α

)
� Solve max

α,z,f
{|Ef [φα,z(ω)]| : |Δ|f ≤ B}
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Properties of φα,z

� piecewise constant in x
� jumps of size +1 at z + Z

� jumps of size −1 at α+ Z

Consequences

� Restrict maximization w.r.t.
f ∈ F to piecewise constant
densities



The difference function φα,z

� φα,z(x) :=
(
�x − z�+ z

)
−

(
�x − α�+ α

)
� Solve max

α,z,f
{|Ef [φα,z(ω)]| : |Δ|f ≤ B}

0.0 0.5 1.0 1.5 2.0 2.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Properties of φα,z

�
∫
I φα,z(x)dx = 0 for any
interval I of length |I | = 1

Consequences

� Optimal f are
(piecewise constant and)
alternating (high – low)

The difference function φα,z

� φα,z(x) :=
(
�x − z�+ z

)
−

(
�x − α�+ α

)
� Solve max

α,z,f
{|Ef [φα,z(ω)]| : |Δ|f ≤ B}
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Properties of φα,z

�
∫
I φα,z(x)dx = 0 for any
interval I of length |I | = 1

Consequences

� Optimal f are pc and
alternating

The difference function φα,z

� φα,z(x) :=
(
�x − z�+ z

)
−

(
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)
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Round-up functions

This allows to determine, for α, z ∈ R,

max
f ∈F

{|Ef [φα,z(ω)]| : |Δ|f ≤ B} = min{γα,z , γα,z(1− γα,z)
B

2
}

where γα,z := z + 1− (�z − α�+ α)∈ [0, 1]

Finally, maximization w.r.t. α and z yields
desired uniform error bound on |R(z)− Rα(z)|

Round-up functions

Uniform error bound: for α ∈ R

� sup
z∈R

|R(z)− Rα(z)| ≤ |Δ|f
8

� In fact, for |Δ|f ≥ 4, sup
z∈R

|R(z)− Rα(z)| ≤ 1− 2

|Δ|f

Simple integer recourse

� The same error bound holds for
SIR: Q(z) = Eω[�ω − z�+]

� sup
z∈R

|Q(z)− Qα(z)| ≤ |Δ|f
8

� Bound is sharp; improvement of
[KH et al. ’06] by factor 2
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New bound
Old bound

Similar approach for recourse with TU matrix W

Second-stage value function v : for s ∈ R
m

v(s) := min
y
{qy : Wy ≥ s, y ∈ Z

n2
+ }

= min
y
{qy : Wy ≥ �s�, y ∈ Z

n2
+ }

= min
y
{qy : Wy ≥ �s�, y ∈ R

n2
+ } (because W is TU)

= max
λ

{λ�s� : λW ≤ q, λ ∈ R
m
+} (by strong LP duality)

� Dual feasible region: Λ := {λ ∈ R
m
+ : λW ≤ q}

� v(s) is finite for all s ∈ R
m ⇒ Λ is non-empty and bounded

� Extreme points of Λ: λk , k = 1, . . . ,K

v(s) = max
k=1,...,K

λk �s�

TU recourse matrix W

Expected recourse function Q: for z ∈ R
m

Q(z) = Eω [v(ω − z)] = Eω

[
max

k=1,...,K
λk �ω − z�

]

MRD: (i) drop integrality, (ii) substitute α-approximation of ω
For α ∈ [0, 1)m

Qα(z) = Eω

[
max

k=1,...,K
λk(�ω − α�+ α− z)

]

Q(z) similar to expected round-up functions λk
Eω[�ω − z�]

−→ ‘same’ analysis (. . . ) yields error bound for |Q(z)− Qα(z)|



First error bound for TU integer recourse

Error bound when components of ω are independent

� sup
z∈Rm

|Q(z)− Qα(z)| ≤
m∑
i=1

λ∗
i

|Δ|fi
8

� with λ∗
i := max

k=1,...,K
λk
i

� Special case: simple integer recourse

� Approximation is good when all total variations are small

First error bound for TU integer recourse

Notation: x(i) = (x1, . . . , xi−1, xi+1, . . . , xn)

Error bound when components of ω are dependent

� sup
z∈Rm

|Q(z)− Qα(z)| ≤
m∑
i=1

λ∗
i Eω(i)

[ |Δ|fi (·|ω(i))

8

]
� with fi (·|ω(i)) a conditional density function

� Special case: independent random vectors

Example:

Bivariate normal distribution with correlation ρ.
If variances are sufficiently large and |ρ| ≤ .4
then EB(dep.) ≤ 1.1 EB(indep.)

Future research

Construct convex hull of integer recourse models

Extending MRD / α-approximations to

� General integer recourse (non TU)

� Mixed-integer recourse

� Multi-stage recourse

� Binary recourse variables

� ...

Approximation by piecewise constant densities
also promising in other context


