Modification of Recourse Data for Integer Recourse Models

Maarten H. van der Vlerk jointly with Ward Romeijnders & Willem K. Klein Haneveld www.rug.nl/feb/mhvandervlerk

University of Groningen, Netherlands (est. 1614)

Charles University, Prague (est. 1348) November 8, 2012

Outline

- (Mixed-)Integer recourse: definition
- Motivation
- Modification of Recourse Data
- Convex α -approximations for SIR & TU recourse
- Error bounds

4 D > 4 D > 4 E > E > 9 Q O

Decision making under uncertainty is the real problem we should all be working on [G.B. Dantzig 2001]

Stochastic Programming on the Web:

- SP Community Home Page http://stoprog.org
- SP E-Print Series
- $\hbox{ \begin{tabular}{l} \blacksquare SP Bibliography + Books on Stochastic Programming \\ \end{tabular} }$

(Mixed-)Integer recourse models

Coping with m random constraints $T(\omega)x \ge h(\omega)$

Only right-hand side random:

- $h(\omega) = \omega$ with known cdf F_{ω}
- $T(\omega) = T$ deterministic

Model

$$\min_{x} \{ cx + Q(x) : Ax \ge b, \ x \in \mathbb{R}^{n_1}_+ \}$$

where

$$Q(x) = \mathbb{E}_{\omega}[v(\omega - Tx)]$$

and

$$v(s) = \min_{y} \{qy : Wy \ge s, \ y \in \mathbb{Z}_+^{n_2}\}$$

Integer recourse actions $y = y(x, \omega)$

(ロ) (레) (토) (토) 토 (194)

4□ > 4∰ > 4 ½ > 4 ½ > ½ 90

Why include integer variables? Modeling power:

- natural integrality of decision variables
 e.g. The Allocation of Aircraft to Routes [Ferguson & Dantzig '56]
- yes/no, on/off decisions
- artificial indicator variables for conditional linear constraints (LP formulation of CO problems)

$$0 \leq x \leq \mathit{Mz}, \quad x \in \mathbb{R}, \quad z \in \{0,1\}$$

ullet satisfy k out of n constraints, e.g. discrete Chance Constraints

$$\Pr\{Tx \ge \omega\} \ge \alpha \in (0,1)$$

with
$$\Pr\{\omega=\omega^s\}=p^s$$
, $s=1,\ldots,S$

Why not?

- continuous SLP is already difficult enough
- complexity: 2nd-stage problems NP-hard

[Dyer & Stougie '06] continuous SLP is #P complete \longrightarrow SMIP not harder (...)

→□ト→□ト→□ト→□ト □ のQで

How to solve SMIP?

Borrow from solution approaches for deterministic MILP: e.g.

- (LP + rounding)
- Branch & Bound with LP relaxation
- Benders' decomposition
- Polyhedral theory: valid inequalities
- Lagrangian relaxation

Combine with SLP algorithms \longrightarrow algorithms for SMIP?

Various authors (+ co-authors):

- Schultz
- Louveaux
- Sen
- Ahmed
- ... see e.g. S(I)P Bibliography and SPePS

Our perspective: SMIP is a battle between

randomness: Good

integrality: Bad

Usually, result is *Ugly*: non-convex, . . .

However, sometimes result is Beautiful: convex!

Modification of Recourse Data (VdV 2003)

Recourse data (q, W, Y, F_{ω})

- structure:
 - (q, W) complete / sufficiently expensive recourse, . . .
 - $y \in Y$: simple bounds, integrality
- ► distribution

Nice properties for recourse models

- Convexity
- ► Discrete distribution
- ► Continuous decision variables

Idea of approach

- ▶ Modify data $(q, W, Y, F_\omega) \rightarrow (\tilde{q}, \tilde{W}, \tilde{Y}, \tilde{F}_\omega)$ so that
 - easy to solve
 - good approximation

MRD for integer recourse

Expected value function Q(x)

 $Partial Q(x) = \mathbb{E}_{\omega} \left[\min_{y} \{ qy : Wy \geq \omega - Tx, \ y \in \mathbb{Z}_{+}^{n_2} \} \right]$ with ω a continuous random vector

Approximation of VdV (2004)

- $\hat{Q}(x) = \mathbb{E}_{\xi} \left[\min_{y} \{ qy : Wy \ge \xi Tx, \ y \in \mathbb{R}^{n_2}_+ \} \right]$ with ξ a discrete random vector
- ▶ Special case: (one-sided) Simple Integer Recourse (W = I)

ロト 4回 × 4 差 × 4 差 × 差 ・ 9 Q ()

Special case: Simple integer recourse (W = I)

SR: Modeling linear penalty costs for individual surpluses (shortages):

$$\begin{aligned} v(s) &= & \min_{y} \{qy : y \geq s, \ \underline{y} \in \mathbb{Z}_{+}^{m}\} \\ &= & \sum_{i=1}^{m} \min_{y_{i}} \{q_{i}y_{i} : y_{i} \geq s_{i}, \ y_{i} \in \mathbb{Z}_{+}\} \\ &= & \sum_{i=1}^{m} q_{i} \lceil s_{i} \rceil^{+} \qquad (\text{assuming } q \geq 0) \end{aligned}$$

with
$$[x]^+ := \max\{0, [x]\}, x \in \mathbb{R}$$

SIR value function v is separable

Assume T deterministic $\longrightarrow Q$ separable in tender variables Tx

Examples: ω discrete (left) and exponentially (right) distributed

Special case: Simple integer recourse (W = I)

Generic one-dimensional expected value function

► $Q(z) = \mathbb{E}_{\omega} \left[\left\lceil \omega - z \right\rceil^+ \right], z \in \mathbb{R}$ ► Q is generally non-convex

< □ > → □ > → 글 > → 글 > → 의 (

SIR function Q is non-convex in general. However:

Theorem [Klein Haneveld, Stougie, VdV '06] SIR function Q is convex if and only if $\omega \sim \operatorname{pdf} f$ with

$$f(s) = G(s+1) - G(s), \quad s \in \mathbb{R}$$

where G is an arbitrary cdf with finite mean

- → Idea for MRD:
 - ► Approximate original pdf f_{ω} with a pdf \hat{f} that is generated by some cdf G

(D) (B) (E) (E) E 990

α -approximations

Fix $\alpha \in [0,1)$

Let ${\it G}$ be cdf of a discrete r.v. with support in $\alpha+\mathbb{Z}$:

1.
$$f_{\alpha}(s) = G(s+1) - G(s)$$
 is constant on $C_{\alpha}^{l} := (\alpha + l - 1, \alpha + l], l \in \mathbb{Z}$

2. For
$$\omega_{\alpha} \sim f_{\alpha}$$
, $\mathbb{P}\{\omega_{\alpha} \in C_{\alpha}^{l}\} = \mathbb{P}\{\omega \in C_{\alpha}^{l}\}$

For later use: analogous for dimension $m \geq 2$

α -approximations (2)

 $\longrightarrow \alpha$ -approximation Q_{α} :

$$Q_{\alpha}(z) := \mathbb{E}_{\boldsymbol{\omega}_{\boldsymbol{\alpha}}} \left[\left\lceil \boldsymbol{\omega}_{\boldsymbol{\alpha}} - z \right\rceil^{+} \right], \quad z \in \mathbb{R}$$

with $\omega_{\alpha} \sim f_{\alpha}$ a continuous random variable.

It turns out that

$$Q_{\alpha}(z) := \mathbb{E}_{\omega_{\alpha}} \left[\left[\omega_{\alpha} - z \right]^{+} \right] = \int_{z}^{\infty} \left(1 - G(x) \right) dx$$
$$\Rightarrow Q_{\alpha}(z) = \mathbb{E}_{\xi} \left[(\xi - z)^{+} \right], \quad z \in \mathbb{R}$$

That is: Q_{α} is a continuous expected surplus function (SR) with discrete random variable ξ having cdf G.

Theorem [Klein Haneveld, Stougie, VdV '93] \longrightarrow Every convex SIR function Q with continuous ω , can be represented as an continuous SR function with discrete ξ

(ロ) (個) (量) (量) (量) の(の)

α -approximations (3): MRD for SIR

- Drop integrality in second stage
- Replace $\omega \sim f$ by α -approximation $\xi = \lceil \omega \alpha \rceil + \alpha$ \Rightarrow
- 1. continuous SR models with discrete $\lceil \omega \alpha \rceil + \alpha$ can be solved efficiently
- 2. For SIR models a uniform error bound is available for α -approximations

Theorem [Klein Haneveld, Stougie, VdV 2006] For SIR function Q and for all $\alpha \in [0, 1)$,

$$\sup_{z\in\mathbb{R}}|Q(z)-Q_{\alpha}(z)|\leq \min\left\{\frac{|\Delta|f_{\omega}}{4},1\right\}$$

with $|\Delta|f_\omega:=$ total variation of pdf f_ω

Intuition: for unimodal pdf, $|\Delta|f_{\omega}$ decreases as σ_{ω}^2 increases

MRD / α -approximation for more general integer recourse

Expected value function Q(z)

MRD: (i) drop integrality, (ii) substitute $\alpha\text{-approximation of }\omega$

For $\alpha \in \mathbb{R}^m$, α -approximation $Q_{\alpha}(z)$

$$\qquad \qquad \mathbf{Q}_{\alpha}(z) = \mathbb{E}_{\omega} \left[\min_{y} \{ qy : Wy \ge \lceil \omega - \alpha \rceil + \alpha - z, \ y \in \mathbb{R}^{n_2}_+ \} \right]$$

 $ightharpoonup Q_{\alpha}$ is a continuous recourse function, convex polyhedral

Consider W complete, Totally Unimodular (TU)

lacktriangledown second-stage problem: $\mathsf{IP}(s) = \mathsf{LP}(s)$ provided $s \in \mathbb{Z}^m$

Convex hull

Claim Van der Vlerk (Math Prog, 2004)

▶ Q_{α^*} is the convex hull of Q if W is TU $(\alpha^*$ depending on f_{ω} only)

Counterexample where the convex hull is not polyhedral $eq Q_{\alpha^*}$

$$\qquad \qquad \mathsf{Q}(z) = \mathbb{E}_{\omega} \left[\lceil \omega - z \rceil^+ \right]$$

 \blacktriangleright ω follows a triangular distribution on [0,1] with mode 1/2

► Conclusion: Claim needs stronger assumptions

Known results α -approximations of TU integer recourse

- Claim of VdV (2004) holds for uniform distributions [Romeijnders & VdV '12]
- $ightharpoonup Q(z) = Q_{\alpha}(z) \text{ for } z \in \alpha + \mathbb{Z}^m$

Recall: Error bound only for SIR [KH et al. '06]

- $\qquad \qquad \mathsf{For} \; \alpha \in \mathbb{R}, \; \sup_{z \in \mathbb{R}} |Q(z) Q_{\alpha}(z)| \leq \min \left\{ \frac{|\Delta|f}{4}, 1 \right\}$
- $\blacktriangleright |\Delta| f$ is the total variation of pdf f

Goal

▶ Obtain a similar error bound for TU integer recourse

Error bound for α -approximations

New approach for SIR

- ▶ Let f_0 be a pdf with $|\Delta|f_0 = B$.
- ▶ We are interested in $\sup_{\alpha,z\in\mathbb{R}}|Q(z)-Q_{\alpha}(z)|$ when $\omega\sim f_0$
- ► Key insight: Instead, consider

$$\sup_{\alpha \in \mathbb{R}} \sup_{z \in \mathbb{R}} \{ |Q(z) - Q_{\alpha}(z)| : |\Delta|f \leq B \}$$

 \mathcal{F} is set of 'nice' density functions f (bounded variation, ...)

Analysis

- 1. Round-up functions $R(z) := \mathbb{E}_{\omega}[\lceil \omega z \rceil], \ z \in \mathbb{R}$
- 2. SIR $Q(z) = \mathbb{E}_{\omega} \left[\left[\omega z \right]^+ \right]$
- 3. TU integer recourse

Property of total variation

Lemma ('flattening')

Let $pdf f \in \mathcal{F}$ be given.

Let I be a bounded interval and define $g \in \mathcal{F}$ as

$$g(x) = \begin{cases} f(x), & x \notin I \\ K_I, & x \in I \end{cases}$$

with $K_I := |I|^{-1} \int_I f(u) du$

Then $|\Delta|g \leq |\Delta|f$

4□ > 4∰ > 4 ½ > 4 ½ > ½ 9 Q €

Round-up functions

Expected round-up function and α -approximation

$$ightharpoonup R(z) := \mathbb{E}_{\omega}[\lceil \omega - z \rceil]$$

$$ightharpoonup R_{\alpha}(z) := \mathbb{E}_{\omega}[\lceil \omega - \alpha \rceil + \alpha - z]$$

Error

$$R(z) - R_{\alpha}(z) = \mathbb{E}_{\omega} \Big[[\omega - z] \Big] - \mathbb{E}_{\omega} \Big[[\omega - \alpha] + \alpha - z \Big]$$
$$= \mathbb{E}_{\omega} \Big[\phi_{\alpha, z}(\omega) \Big]$$

with difference function

$$\phi_{\alpha,z}(x) := (\lceil x - z \rceil + z) - (\lceil x - \alpha \rceil + \alpha)$$

The difference function $\phi_{\alpha,z}$

- $\begin{array}{l} \blacktriangleright \ \phi_{\alpha,\mathbf{z}}(\mathbf{x}) := \Big(\lceil \mathbf{x} \mathbf{z} \rceil + \mathbf{z} \Big) \Big(\lceil \mathbf{x} \alpha \rceil + \alpha \Big) \\ \blacktriangleright \ \mathsf{Solve} \max_{\alpha,\mathbf{z},f} \{ |\mathbb{E}_f[\phi_{\alpha,\mathbf{z}}(\omega)]| : |\Delta|f \leq B \} \end{array}$

Properties of $\phi_{\alpha,z}$

- ▶ periodic in x, α, z with period 1

Consequences

- ► Restrict maximization w.r.t. α and z to [0,1)
- Maximize $\mathbb{E}_f[\phi_{\alpha,z}(\omega)]$ instead of $|\mathbb{E}_f[\phi_{\alpha,z}(\omega)]|$

The difference function $\phi_{\alpha,z}$

- $\begin{array}{l} \blacktriangleright \ \phi_{\alpha,\mathbf{z}}(\mathbf{x}) := \left(\lceil \mathbf{x} \mathbf{z} \rceil + \mathbf{z} \right) \left(\lceil \mathbf{x} \alpha \rceil + \alpha \right) \\ \blacktriangleright \ \ \mathsf{Solve} \ \max_{\alpha,\mathbf{z},f} \{ |\mathbb{E}_f[\phi_{\alpha,\mathbf{z}}(\omega)]| : |\Delta|f \leq B \} \end{array}$

Properties of $\phi_{\alpha,z}$

- piecewise constant in x
- lacktriangle jumps of size +1 at $z+\mathbb{Z}$
- ▶ jumps of size -1 at $\alpha + \mathbb{Z}$

Consequences

► Restrict maximization w.r.t. $f \in \mathcal{F}$ to piecewise constant densities

The difference function $\phi_{\alpha,z}$

Properties of $\phi_{\alpha,z}$

► $\int_I \phi_{\alpha,z}(x) dx = 0$ for any interval I of length |I| = 1

Consequences

ightharpoonup Optimal f are (piecewise constant and) alternating (high - low)

The difference function $\phi_{\alpha,z}$

Properties of $\phi_{\alpha,z}$

• $\int_I \phi_{\alpha,z}(x) dx = 0$ for any interval I of length |I| = 1

Consequences

ightharpoonup Optimal f are pc and alternating

The difference function $\phi_{\alpha,z}$

- $\begin{array}{l} \blacktriangleright \ \phi_{\alpha,\mathbf{z}}(\mathbf{x}) := \left(\lceil \mathbf{x} \mathbf{z} \rceil + \mathbf{z} \right) \left(\lceil \mathbf{x} \alpha \rceil + \alpha \right) \\ \blacktriangleright \ \ \mathsf{Solve} \ \max_{\alpha,\mathbf{z},f} \{ |\mathbb{E}_f[\phi_{\alpha,\mathbf{z}}(\omega)]| : |\Delta|f \leq B \} \end{array}$

Properties of $\phi_{\alpha,z}$

• $\int_I \phi_{\alpha,z}(x) dx = 0$ for any interval I of length |I| = 1

Consequences

ightharpoonup Optimal f are pc and alternating

The difference function $\phi_{\alpha,z}$

- $\begin{array}{l} \blacktriangleright \ \phi_{\alpha,\mathbf{z}}(\mathbf{x}) := \left(\lceil \mathbf{x} \mathbf{z} \rceil + \mathbf{z} \right) \left(\lceil \mathbf{x} \alpha \rceil + \alpha \right) \\ \blacktriangleright \ \ \mathsf{Solve} \ \max_{\alpha,\mathbf{z},f} \{ |\mathbb{E}_f[\phi_{\alpha,\mathbf{z}}(\omega)]| : |\Delta|f \leq B \} \end{array}$

Properties of $\phi_{\alpha,z}$

• $\int_I \phi_{\alpha,z}(x) dx = 0$ for any interval I of length |I| = 1

Consequences

ightharpoonup Optimal f are pc and alternating

Round-up functions

This allows to determine, for $\alpha, z \in \mathbb{R}$,

$$\max_{f \in \mathcal{F}} \{ |\mathbb{E}_{\mathbf{f}}[\phi_{\alpha,\mathbf{z}}(\omega)]| : |\Delta|f \leq B \} = \min\{\gamma_{\alpha,\mathbf{z}},\gamma_{\alpha,\mathbf{z}}(1-\gamma_{\alpha,\mathbf{z}})\frac{B}{2} \}$$

where
$$\gamma_{\alpha,z} := z + 1 - (\lceil z - \alpha \rceil + \alpha) \in [0,1]$$

Finally, maximization w.r.t. α and z yields desired uniform error bound on $|R(z) - R_{\alpha}(z)|$

Round-up functions

Uniform error bound: for $\alpha \in \mathbb{R}$

▶ In fact, for
$$|\Delta|f \ge 4$$
, $\sup_{z \in \mathbb{R}} |R(z) - R_{\alpha}(z)| \le 1 - \frac{2}{|\Delta|f}$

Simple integer recourse

- ▶ The same error bound holds for SIR: $Q(z) = \mathbb{E}_{\omega}[\lceil \omega - z \rceil^+]$
- $\sup_{z \in \mathbb{R}} |Q(z) Q_{\alpha}(z)| \leq \frac{|\Delta|f}{8}$
- ▶ Bound is sharp; improvement of [KH et al. '06] by factor 2

Similar approach for recourse with TU matrix W

Second-stage value function v: for $s \in \mathbb{R}^m$

$$\begin{split} v(s) &:= & \min_{y} \{qy: Wy \geq s, \ y \in \mathbb{Z}_{+}^{n_2} \} \\ &= & \min_{y} \{qy: Wy \geq \lceil s \rceil, \ y \in \mathbb{Z}_{+}^{n_2} \} \\ &= & \min_{y} \{qy: Wy \geq \lceil s \rceil, \ y \in \mathbb{R}_{+}^{n_2} \} \\ &= & \max_{\lambda} \{\lambda \lceil s \rceil : \lambda W \leq q, \ \lambda \in \mathbb{R}_{+}^{m} \} \end{split} \qquad \text{(because W is TU)}$$

- ▶ Dual feasible region: $\Lambda := \{\lambda \in \mathbb{R}_+^m : \lambda W \le q\}$ ▶ $\nu(s)$ is finite for all $s \in \mathbb{R}^m \Rightarrow \Lambda$ is non-empty and bounded
- ▶ Extreme points of Λ : λ_k , k = 1, ..., K

$$v(s) = \max_{k=1,\dots,K} \lambda^k \lceil s \rceil$$

TU recourse matrix W

Expected recourse function Q: for $z \in \mathbb{R}^m$

$$Q(z) = \mathbb{E}_{\omega}\left[v(\omega-z)\right] = \mathbb{E}_{\omega}\left[\max_{k=1,\ldots,K}\lambda^k\left\lceil\omega-z
ight
ceil
ight]$$

MRD: (i) drop integrality, (ii) substitute $\alpha\text{-approximation of }\omega$ For $\alpha \in [0,1)^m$

$$Q_{\alpha}(z) = \mathbb{E}_{\omega} \left[\max_{k=1,...,K} \lambda^{k} (\lceil \omega - \alpha \rceil + \alpha - z) \right]$$

Q(z) similar to expected round-up functions $\lambda^k \mathbb{E}_{\omega}[\lceil \omega - z \rceil]$

 \longrightarrow 'same' analysis (\dots) yields error bound for $|Q(z)-Q_{lpha}(z)|$

First error bound for TU integer recourse

Error bound when components of ω are independent

$$\sup_{z \in \mathbb{R}^m} |Q(z) - Q_{\alpha}(z)| \le \sum_{i=1}^m \lambda_i^* \frac{|\Delta|f_i}{8}$$

$$\text{with } \lambda_i^* := \max_{k=1,\dots,K} \lambda_i^k$$

- ► Special case: simple integer recourse
- ▶ Approximation is good when all total variations are small

First error bound for TU integer recourse

Notation: $x_{(i)} = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$

Error bound when components of ω are dependent

$$\sum_{z \in \mathbb{R}^m} |Q(z) - Q_{\alpha}(z)| \leq \sum_{i=1}^m \lambda_i^* \mathbb{E}_{\omega_{(i)}} \left[\frac{|\Delta| f_i(\cdot|\omega_{(i)})}{8} \right]$$

- with $f_i(\cdot|\omega_{(i)})$ a conditional density function
- ► Special case: independent random vectors

Example:

Bivariate normal distribution with correlation ρ . If variances are sufficiently large and $|\rho| \leq .4$ then $EB(dep.) \leq 1.1 EB(indep.)$

Future research

Construct convex hull of integer recourse models

Extending MRD / α -approximations to

- ► General integer recourse (non TU)
- ► Mixed-integer recourse
- ▶ Multi-stage recourse
- ► Binary recourse variables

Approximation by piecewise constant densities also promising in other context