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Part I.

I.

Coefficients of weak dependence and convergence of
integrated empirical process

Michal Houda Weak dependence in stochastic programming



Weak dependence
Notation

(Ω,A, P) . . . probability space
(X , B) . . . measurable space (value space)
{ξt}+∞−∞ . . .X -valued stochastic process with discrete or continuous time
Bba . . .σ-algebra generated by events

{ξt1 ∈ At1 , . . . , ξtn ∈ Atn}

where (a ≤) t1 ≤ · · · ≤ tn (≤ b), n are arbitrary, At1 , . . . ,Atn are
B-measurable sets
B1,B2 . . . two arbitrary σ-algebras of subsets of Ω
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Weak dependence
m-dependent process

Definition

The process {ξt} is m-dependent if Ba−∞ and B+∞b are independent
when b − a > m

Example: moving average process MA(m) is (m + 1)-dependent (but not
m-dependent)
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Weak dependence
Strong mixing

Strong mixing (α-mixing) coefficient

α(B1,B2) = sup
A∈B1,B∈B2

|P(A ∩ B)− P(A)P(B)|

α(t) = sup
s

α(Bs−∞,B+∞s+t )

Definition

The process {ξt} is α-mixing if α(t)→ 0 as t → +∞

α-coefficient measures direct covariance dependence

range: α(B1,B2) ≤ 1/4

Example: autoregressive process AR(m) with normal increments is strong
mixing (but not with binomial increments)
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Weak dependence
Absolute regularity

Absolute regularity (β-mixing) coefficient

β(B1,B2) = E esssup
B∈B2

|P(B|B1)− P(B)|

β(t) = sup
s

β(Bs−∞,B+∞s+t )

Definition

The process {ξt} is β-mixing if β(t)→ 0 as t → +∞

β(B1,B2) = sup
{Ai},{Bi}

1
2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj)− P(Ai )P(Bj)|

{Ai} ⊂ B1, {Bi} ⊂ B2 are partitions of Ω
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Weak dependence
ϕ-mixing

*-mixing (ϕ-mixing) coefficient

ϕ(B1,B2) = sup
A∈B1,B∈B2

∣∣∣P(A ∩ B)− P(A)P(B)
P(A)P(B)

∣∣∣
ϕ(t) = sup

s
ϕ(Bs−∞,B+∞s+t )

Definition

The process {ξt} is ϕ-mixing if ϕ(t)→ 0 as t → +∞

Michal Houda Weak dependence in stochastic programming



Weak dependence
φ-mixing

Uniform mixing (φ-mixing) coefficient

φ(B1,B2) = sup
A∈B1,B∈B2

∣∣∣P(A ∩ B)− P(A)P(B)
P(A)

∣∣∣
φ(t) = sup

s
φ(Bs−∞,B+∞s+t )

Definition

The process {ξt} is φ-mixing if φ(t)→ 0 as t → +∞
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Weak dependence
ρ-mixing

Complete regularity (ρ-mixing) coefficient

ρ(B1,B2) = sup
η1,η2

∣∣∣Eη1η2 − Eη1Eη2√
var η1 var η2

∣∣∣
φ(t) = sup

a
ρ({ξs , s ≤ a}, {ξs , s ≥ a+ t})

η1, η2 are B1-, B2-measurable random variables

Definition

The process {ξt} is φ-mixing if φ(t)→ 0 as t → +∞

Michal Houda Weak dependence in stochastic programming



Relationships among mixing conditions

General relationships:

β
ϕ ⇒ φ ⇒ ⇒ α

ρ

Strictly stationnary Gaussian sequences:

m-dep.
m ρ
ϕ ⇒ β ⇒ m
m α
φ
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Relationships among mixing conditions

Various limiting theorems remain valid with weakly dependent sequences.
Example of CLT:

Theorem (Mori, Yoshihara (1986))

Let

{ξi} . . . strong mixing sequence with α(n)

Eξ1 = 0, Eξ21 < +∞
S0 = 0, Sn =

∑n
j=1 ξj

s2n = ES
2
n

Then
Sn
sn
−→d N(0; 1)

iif
{
(Snsn )

2
}+∞
n=1 is uniformly integrable, i.e.,

lim
a→+∞

sup
n≥1

∫
| Snsn |>a

S2n
s2n
dP = 0
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Wasserstein distance
Convergence of integrated empirical process

√
N W (µN , µ) =

∫ +∞

−∞

√
N |FN(t)− F (t)|dt (1)

FN(t) =
1
N

NX
i=1

I(−∞;t](ξi ), t ∈ R . . . empirical distribution function

µN . . . corresponding probability measure

µ . . . probability measure with finite first moment and distribution
function F

ξ1, . . . , ξN . . . iid sample from µ

Classical result for µ uniform distribution on [0; 1]:∫ 1

0

√
N

∣∣∣ 1
N

N∑
i=1

I(0;t](ξi )− F (t)
∣∣∣ dt →d ∫ 1

0
|U(t)|dt (2)

Distribution of RHS is known explicitly in this case.
Shorack, Wellner (1986)
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Wasserstein distance
Convergence of integrated empirical process

General distribution

∫ +∞

−∞

√
N

∣∣∣ 1
N

N∑
i=1

I(−∞;t](ξi )− F (t)
∣∣∣ dt →d ∫ +∞

−∞
|U(F (t))|dt. (3)

Del Barrio, Giné, Matrán (1999): (3) is valid if (and only if)∫ +∞

−∞

√
F (t)(1− F (t))dt < +∞

(In fact: if some processes YN converge weakly in L1(R) to Y , then,
among others, ||YN ||L1 →d ||Y ||L1 where ||g ||L1 =

∫∞
−∞ g(t)dt for each

non-negative g ∈ L1(R).)
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Wasserstein distance
Convergence of integrated empirical process

idea: convergence is proved for iid data, but some weak dependence
property would not make difficulties (as CLT is valid with weak
dependence)

illustration: on simple MA(1) process ξk := 0.5ζk + 0.5ζk−1 with normal
distribution – comparison of independent and weakly dependent and
samples

still to do: AR process (α-mixing for some class of continuous
distributions)

still to do: modify the proof of Del Bario et al. (1999) – involving
the appropriate condition from theory of weakly dependent sequences
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Wasserstein distance
Convergence of integrated empirical process

Convergence of empirical process

n × Wasserstein.metrics
Process value: n=100 (dotted), n=1000 (solid)
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Convergence of empirical process − dependent data

n × Wasserstein.metrics
Process value: n=100 (dotted), n=1000 (solid)
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Part II.

II.

Convexity of chance-constrained programs –
independent and dependent rows
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Chance-constrained programming
Basic formulation of the problem

minF0(x) subject to P
(
h(x ; ξ) ≥ 0)

)
≥ p (4)

x ∈ Rm . . . decision vector
ξ : Ω→ Rs . . . s-dim. random vector defined on (Ω,A, P)
h : Rm × Rs → Rd . . . vector-valued mapping
p ∈ [0; 1] . . . (prescribed) probability level

Denote

µ = P ◦ ξ−1 . . . distribution of ξ

F = Fµ . . . distribution function of ξ

H(x) = {ξ ∈ Rm : h(x ; ξ) ≥ 0)}
M(p) = {x ∈ Rm : P(H(x)) = µ(H(x)) ≥ p} . . . set of feasible decisions
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Chance-constrained programming
Alternative formulations

minF0(x) subject to
∫

Rs
p − χH(x)(ξ) µ(dξ) ≤ 0 (5)

form adapted to the general stability theorem – Henrion, Römisch
(1999)

minF0(x) subject to P(h(x ; ξ) < 0) ≤ ε (6)

ε = 1− p . . . (admissible) level of violation of the constraints
M(1− ε) . . . set of ε-feasible solutions (used in robust programming)
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Convexity of chance constraints: known results
Prékopa (1995)

Key question

When the set M(p) of feasible solutions is convex?

1 Trivial result

If h(·, ξ) is convex for all ξ, M(0), M(1) are convex
2 M(p) is convex if

µ is a log-concave (or r -concave for r ≥ −1/s) measure
(implied by a log-concave, or r

1−rs -concave density)
components of h are quasi-concave (in both variables)
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Parameterization of the concavity

Definition

f : Rd → (0;+∞) is r -concave for r ∈ [−∞; +∞] if

f (λx + (1− λ)y) ≥ [λf r (x) + (1− λ)f r (y)]1/r

cases r = −∞, 0,+∞ by continuity
r = +∞ . . . RHS = max{f (x), f (y)}
r ∈ (1;+∞) . . . f r is concave
r = 1 . . . f is concave
r = 0 . . . f is log-concave (log f is concave):

f (λx + (1− λ)y) ≥ f λ(x)f 1−λ(y)
r < 0 . . . f r is convex
r = −∞ . . . f is quasi-concave: RHS = min{f (x), f (y)}
for all r ≤ r∗, f is r -concave if it is r∗-concave
interesting cases: r ≤ 1
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Special case: random RHS

minF0(x) subject to P
(
g(x) ≥ ξ)

)
≥ p (7)

h(x ; ξ) = g(x)− ξ

M(p) = {x ∈ Rn : F (g(x)) ≥ p}

Required condition: components of h are quasi-concave
Problem: quasi-concavity is not preserved under addition
⇒ we require g(x) to be convex

Idea of Henrion, Strugarek (2006):

relax concavity condition of g ;

make more stringent concavity condition on µ.
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Parameterization of the function decrease

Definition
f : R → R is r -decreasing for r ∈ R if

it is continuous on (0;+∞), and
there exists a threshold t∗ > 0 such that tr f (t) is strictly decreasing
for all t > t∗

r = 0 . . . strictly decreasing (in the classical sense)

for all r ≤ r∗, nonnegative f is r -decreasing if it is r∗-decreasing
key property for marginal densities from the chance-constrained problem

lemma: if F is distribution function with (r + 1)-decreasing density, then
z 7→ F (z−1/r ) is concave on (0; (t∗)−r )
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Convexity of the problem with RHS
Henrion, Strugarek (2006)

Theorem (Henrion, Strugarek (2006))

If
1 gi are −ri -concave,
2 ξi have (ri + 1)-decreasing densities,
3 ξi are independent,

then M(p) is convex for p ≥ maxFi (t∗i )

Notation (i = 1, . . . , s):
gi . . . components of g
ξi . . . components of ξ
Fi . . . components of F
t∗i . . . threshold of ri + 1-decreasing density
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