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Tomáš Roub́ıček1,2
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Abstract. A model of a fluid mixture of incompressible chemically reacting charged constituents
in Prigogine’s description (i.e. balancing the barycentric momentum but not momenta of par-
ticular constituents) is presented. Under the volume-additivity hypothesis, incompressibility of
all constituents, and some other simplifying assumptions, the model combines the Navier-Stokes
equation together with the Nernst-Planck equation with advection for the concentrations of the
particular mutually reacting constituents, the heat equation, and finally the Poisson equation for
the self-induced quasistatic electric field. The isothermal variant is analyzed by Galerkin’s method.
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1 Introduction

Various complicated processes in biology on a (sub-)cellular level can use a framework of
chemically reacting mixtures of ionic constituents, cf. [6,8]. Although theory of mixtures has
undergone an intensive scrutiny during many decades, there is still no description that would
be thermodynamically undoubtless, practically implementable as far as data accessibility
concerns, and mathematically justified at least as far as mere existence of a weak solution
concerns (although the last requirement is often over-ambitious).

Two mainstreams in the theory of mixtures can be distinguished. First, a so-called Trues-
dell’s description balances momenta for each constituent separately. Proposed in Truesdell
et al. [22,23], it has been further developed in particular in [2,5,9–11,13,14,17–19,21]. It ex-
hibits great rigor (although its thermodynamics is also not entirely complete) and suppresses
phenomenology to minimum but involves, in concrete problems usually unknown, interac-
tion terms between the particular constituents and richer investigations can be done rather
in two-component mixtures only, cf. [2,9] and [13, Chapter 7]. The second mainstream,
called Prigogine’s [12] concept, balances the momentum of barycenter only and postulates
phenomenological fluxes of particular constituents. Introducing such a phenomenology al-
lows for a better applicability but exhibits difficulties with a definition of an entropy that
would satisfy the Clausius-Duhem inequality. In the compressible case, this barycentric
concept has been developed among others in [1,3,4,7].

The model suggested here compromises the thermodynamical rigor with mathematical
amenability with the aim to provide as much thermodynamical consistency as possible and
simultaneously to allow for rigorous mathematical analysis at least in important special
cases and for expectedly easy computational implementation, and also to keep a high com-
plexity of the model which would not restrict desirable biological applications. This led to
a choice of Prigogine’s description in the incompressible Newtonian framework. The incom-
pressibility refers here both to each particular constituent and, through volume-additivity
hypothesis as in e.g. [9,14], also to the overall mixture. This incompressibility is definitely
a simplifying assumption to be subjected to a discussion because it brings “traditional”
difficulties in the Clausius-Duhem inequality as well as in the definition of the electro-
chemical potential but, on the other hand, it just allows for a relatively simple mathemat-
ical/numerical treatment. Substantial feature is that the self-induced electrostatic field is
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considered and the electro-neutrality hypothesis is not assumed. This hypothesis is indeed
not realistic in certain biological applications: the electrostatic potential of each cell is of
the order 100 mV while thickness of its membrane is of the order 10 nm, which obviously
leads to a tremendous intensity of the electric field (of the order 10 MV/m) on each cell
membrane, i.e. e.g. in each ionic channel, although intensities inside fluidic media occurring
in biological systems are certainly smaller. However, many simplifications are adopted in
the presented model, too. In particular, we consider small electric currents (i.e. magnetic
field is neglected), adopt the mentioned volume-additivity assumption, assume the diffusion
fluxes independent of other constituent’s gradients (cross-effects are neglected) as well as
of the temperature gradient (i.e. Soret’s effect is neglected) and (in agreement with On-
sager’s reciprocity principle) also the heat flux independent of the concentration gradients
(i.e. Dufour’s effect is neglected), and finally the diffusion and mobility coefficients and
mass densities that are the same for each constituents. This contribution, beside reviewing
(and slightly expanding) the main results from [16], proposes the Galerkin approximation
of the isothermal case that is conceptually amenable for computer implementation.

2 Formulation of an Anisothermal Model

Although biological processes on cellular and sub-cellular level can well be considered as
isothermal (i.e. temperature is only a constant given parameter), for theoretical reason it
is worth formulating the model anisothermally. We consider a mixture of L constituents
occupying a bounded fixed domain Ω ⊂ IR3 with a boundary Γ := ∂Ω. Our model consists
of a system of 3+L+2 differential equations combining the Navier-Stokes system (1a), the
Nernst-Planck equation generalized for moving media (1b), the Poisson equation (1c), and
the heat equation (1d):

%
∂v

∂t
+ %(v ·∇)v − div(ν(c, θ)∇v) + ∇p = −q∇φ, div(v) = 0 , c = (c1, ..., cL), (1a)

∂c`
∂t

+ div
(

j`+c`v
)

= r`(c, θ), j` = −d(c, θ)∇c` −m(c, θ)c`e`∇φ+m(c, θ)c`fR, (1b)

ε∆φ = −q, q =

L
∑

`=1

e`c` , (1c)

cv
∂θ

∂t
− div

(

κ∇θ+cvvθ
)

= ν(c, θ)|∇v|2 +
L

∑

`=1

(

f` · j`−h`(θ)r`(c, θ)
)

, f` = −e`∇φ, (1d)

where ` = 1, ..., L in (1b) and where “·” means the scalar product between vectors. The
meaning of the variables is:

v barycentric velocity,
p pressure,
c` concentration of `th-constituent, presumably to satisfy

∑L
`=1 c` = 1, c` ≥ 0,

φ electrostatic potential,
θ temperature,
q the total electric charge.

The data are: % > 0 mass density both of the mixture and of the constituents, i.e. % does not
depend on c = (c1, ..., cL), further ν(c, θ) > 0 denotes the viscosity of the mixture, e` valence
(i.e. electric charge) of `th-constituent, ε > 0 permittivity, r`(c, θ) production rate of the
`th-constituent by chemical reactions, h`(θ) the enthalpy contained in the `th-constituent,
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f` = −e`∇φ body force acting on `th-constituent, j` phenomenological flux of `th-constituent
given in (1b), d(c, θ), m(c, θ) > 0 diffusion and mobility coefficients, respectively, cv > 0
specific heat (within constant volume), κ > 0 heat conductivity. A bit speculative force fR

acting equally on each constituent is to hold the volume-additivity constraint

L
∑

`=1

c` = 1, (2)

assuming naturally that also the initial and boundary conditions (6)–(7) below satisfy
it, cf. the assumption (20d). In view of (2) and the constraint c` ≥ 0, the variables
c = (c1, ..., cL) can also be called volume fractions; as all constituents are assumed in-
compressible, c`’s are simultaneously mass fractions. Summing (1b) for ` = 1, ..., L and
using (8) below, one gets ∂

∂t
σ+v·∇σ = −div

∑L
`=1 j` with σ :=

∑L
`=1 c`, hence the key to

hold σ constant as required in (2) is to ensure that the sum of diffusive fluxes vanishes, i.e.,

L
∑

`=1

j` = 0. (3)

Now we can postulate the force fR as a reaction force holding (3), which (assuming (2) for
a moment), gives

L
∑

`=1

j` = m(c, θ)
L

∑

`=1

c`fR −m(c, θ)
(

L
∑

`=1

c`e`

)

∇φ− d(c, θ)∇
(

L
∑

`=1

c`

)

= m(c, θ)
(

fR−q∇φ
)

, (4)

hence, if (3) is to be satisfied, we obtain

fR = q∇φ. (5)

Usually, fR is small because |q| is much smaller in comparison with max`=1,...,L |e`|. Some
other models postulate even the electro-neutrality assumption q = 0, which obviously makes
this reaction force zero. Let us also remark that, in very diluted water solutions of salts, an
alternative option is to consider velocity of water as the referential velocity instead of the
barycentric one as used here. This is sometimes called Hittorf’s referential system. Then,
assuming again that diffusivity and mobility coefficients do not depend on a particular
constituent and after suitable simplification relying on small concentrations of non-water
constituents, the “reaction force” fR = q∇φ arises simply by transformation from the
Hittorf’s system to the barycentric one; see [17,20].

Eventually, the initial conditions are assumed:

v(0, ·) = v0 , c`(0, ·) = c0` , θ(0, ·) = θ0 on Ω. (6)

We have still to consider some boundary conditions, e.g. a closed thermally isolated con-
tainer which in some simplified version leads, for a.a. t ≥ 0, to:

v = 0, c` = cΓ` , ε
∂φ

∂n
= α(φΓ − φ),

∂θ

∂n
= 0 on Γ, (7)

where n denotes the unit outward normal to the boundary Γ and the coefficient α > 0 can
be interpreted as a “surface permittivity” of the boundary and φΓ is an outer potential. Yet,
more sophisticated conditions are definitely to be used for nontrivial biological applications
in cell biology.
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3 Discussion of the Model and Its Thermodynamics

Derivation of the model is briefly motivated as follows: The Navier-Stokes equation (1a)
is based on Hamilton’s dissipation principle generalized for dissipative systems, cf. [5];
the body force q∇φ =

∑L
`=1 f` is due to the electrostatic interaction of the charge e` when

assuming that the velocities of particles and the rate of the electric field are small so that the
magnetic effects are negligible, as it is certainly the case in usual applications in biology. The
equation (1b) balances concentration of the particular constituents as usual in the Nernst-
Plank equation but here completed with the advection term div(c`v) related with moving
medium in Eulerian coordinates, while (1c) is the rest from the full electro-magnetical
Maxwell’s system which remains if assuming relatively slow movements of electric charges
and small electric currents which do not create any fast variation of electric fields and any
substantial magnetic field, and eventually (1d) is the usual heat equation balancing energy
again in a moving medium in Eulerian coordinates, see e.g. [1,7]. The volume-additivity
assumption (2) is often accepted in the theory of mixtures, although it should be emphasized
that it is only a certain approximation of reality; cf. the discussion in [13, Sect. 2.8].

To show conservation of the total energy, we naturally assume the mass and elec-
tric charge conservation in all chemical reactions and nonnegative production of the `th-
constituent if its concentration vanishes, i.e.,

L
∑

`=1

r`(c, θ) = 0,
L

∑

`=1

e`r`(c, θ) = 0, r`(c1, ..., c`−1, 0, c`+1, ...cL, θ) ≥ 0. (8)

Let us first calculate the rate of the electrostatic energy (i.e. its power), using (1c) and (1b)
together with the electric-charge-preservation assumption (8) and twice Green’s formula
counting also with the boundary conditions (7):

d

dt

(

∫

Ω

ε

2
|∇φ|2dx+

∫

Γ

α

2
(φ− φΓ )2dS

)

=

∫

Ω

ε∇φ·∇
∂φ

∂t
dx+

∫

Γ

α(φ− φΓ )
∂(φ− φΓ )

∂t
dS

=

∫

Ω

ε∇φ·∇
∂φ

∂t
dx−

∫

Γ

ε(φ− φΓ )
∂

∂t

(∂φ

∂n

)

dS

= −

∫

Ω

εφ∆
∂φ

∂t
dx+

∫

Γ

εφΓ
∂

∂t

(∂φ

∂n

)

dS

=

∫

Ω

φ
L

∑

`=1

e`
∂c`
∂t

dx+

∫

Γ

εφΓ
∂

∂t

(∂φ

∂n

)

dS

=

∫

Ω

φ
L

∑

`=1

e`

(

r`(c, θ) − div(j` + c`v)
)

dx+

∫

Γ

εφΓ
∂

∂t

(∂φ

∂n

)

dS

= −

∫

Ω

φ

L
∑

`=1

e`div(j` + c`v)dx+

∫

Γ

εφΓ
∂

∂t

(∂φ

∂n

)

dS

=

∫

Ω

∇φ ·
L

∑

`=1

e`(j` + c`v)dx+

∫

Γ

(

εφΓ
∂

∂t

(∂φ

∂n

)

− φ
L

∑

`=1

e`j` · n

)

dS. (9)
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Testing (1a) by v, we obtain the rate of the kinetic energy

d

dt

∫

Ω

%
|v|2

2
dx =

∫

Ω

L
∑

`=1

c`(f` · v) − %
(

(v · ∇)v
)

· v − ν(c, θ)|∇v|2 dx

= −

∫

Ω

ν(c, θ)|∇v|2 +
L

∑

`=1

c`e`∇φ · v dx. (10)

The rate of the thermal part of the internal energy can be obtained simply by integration of
(1d) over Ω and using Green’s theorem with the considered boundary conditions ∂θ/∂n = 0:

d

dt

∫

Ω

cv θdx =

∫

Ω

ν(c, θ)|∇v|2 −
L

∑

`=1

(

e`j` · ∇φ+ h`(θ)r`(c, θ)
)

dx. (11)

Altogether, summing (9)–(11) and using also (1b) integrated over Ω and Green’s formula,
we obtain the following balance:

d

dt

(
∫

Ω

(%

2
|v|2 +

ε

2
|∇φ|2 + cvθ

)

dx+

∫

Γ

α

2
(φ− φΓ )2dS

)

= −

∫

Ω

L
∑

`=1

h`(θ)r`(c, θ)dx+

∫

Γ

(

εφΓ
∂

∂t

(∂φ

∂n

)

− φ

L
∑

`=1

e`j` · n

)

dS (12)

where we used the boundary conditions (7). Hence, (12) just says that the total energy
rate, i.e. the rate of the sum of the kinetic, the electrostatic, and the internal energies
1
2
%|v|2 + 1

2
ε|∇φ|2 + cvθ over Ω and the electrostatic energy 1

2
α(φ− φΓ )2 deposited on Γ is

balanced with the enthalpy production rate
∑L

`=1 h`r` over Ω and the flux of an electro-
energy through the boundary Γ (i.e. power of the outer voltage φΓ ).

Another interesting observation is how the heat sources in (1d) look like. When substi-
tuting f` and j` from (1a)–(1b), the right-hand side of (1d) equals

f(v, c, φ, θ) := ν(c, θ)|∇v|2 + d(c, θ)∇q ·∇φ

+

L
∑

`=1

m(c, θ)c`e
2
` |∇φ|

2 −m(c, θ)q2|∇φ|2 −

L
∑

`=1

h`(θ)r`(c, θ). (13)

The first term in (13) represents the heat production due to a loss of kinetic energy by
viscosity. The second one is the power (per unit volume) of the electric current arising by
the diffusion flux, which can create local cooling effects as well as a global cooling effect
seems possible via interaction with the environment if α 6= 0, expectedly related with the
so-called Peltier effect. In some special occasions, namely d constant and α = 0, one can
even see an interesting phenomenon, namely that the overall production due to this term
over Ω is nonnegative: indeed, by using Green’s formula twice, we get

∫

Ω

d∇q · ∇φ dx = ε

∫

Ω

−d∇(∆φ) · ∇φ dx

= ε

∫

Ω

d|∆φ|2 dx− ε

∫

Γ

d∆φ
∂φ

∂n
dS ≥

∫

Γ

dqα(φΓ − φ)dS = 0. (14)

The third term in (13) is the power of Joule’s heat produced by the electric currents j`.
The fourth term is the rate of cooling by the force which balances the volume-additivity
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constraint, and its influence is presumably very small as usually |q| << max`=1,...,L |e`|.

Besides, Joule’s heat always dominates this cooling effect because
∑L

`=1 c`e
2
` ≥

(
∑L

`=1 c`e`

)2

if
∑L

`=1 c` = 1 and all c`’s are non-negative, cf. [16, Remark 2.2]. The last term in (13) is
the heat produced or consumed by chemical reactions.

The specific entropy s is then defined by the Gibbs’ relation s := −∂ψ/∂θ and, when
we define standardly the specific Helmholtz’ free energy ψ(v, φ, c, θ) = 1

2
ε|∇φ|2 − cvθln(θ),

we come to s = cv(1 + ln(θ)). The internal energy is then e := ψ + θs = cvθ + 1
2
ε|∇φ|2.

The requirement of preservation of total energy (i.e. the sum of the kinetic and the internal
ones) leads to the energy balance

θ
[ ∂

∂t
+ v · ∇

]

(s) + div j = f (15)

where the heat flux j is subjected to Fourier’s law j = −κ∇θ and f = f(v, c, φ, θ) is the dissi-
pation rate identified in (13); note that (15) is just (1d). Formally, the non-negativity of θ can
be ensured by a physically (not mathematically!) acceptable requirement limθ→0+ d(c, θ) = 0
and limθ→0+ r`(c, θ) = 0. Another physically natural assumption is

∑L
`=1 h`(θ) r`(c, θ)/θ ≥ 0,

i.e. the chemical-reaction rates do not to consume entropy. Then, if even θ > 0, one could
claim the Clausius-Duhem inequality

d

dt

∫

Ω

s dx =

∫

Ω

(f(v, c, φ, θ)

θ
+ div

(κ∇θ

θ

)

+ κ
|∇θ|2

θ2

)

dx ≥ 0 (16)

if one would prove still non-negativity of the “Peltier-effect” term
∫

Ω
∇q · ∇φ/θ dx; let us

note that
∫

Ω
div

(

κ∇θ/θ
)

dx = −
∫

Γ
κθ−1∂θ/∂n dS = 0 due to the isolation on the boundary

(7). The mentioned non-negativity of the Peltier-like term is, however, not obvious. On the
other hand, as the electro-neutrality deviation (i.e. the overall charge q) is usually small, the
violation of the entropy balance is presumably also small, if any at all, and may be related
with the idealization of the incompressibility of all constituents and volume-additivity of
the mixture; note that this term is just to hold the volume-additivity (4). In addition, in
isolated and spatially isothermal systems (which is well satisfied in living biological systems
on cellular level), the Clausius-Duhem inequality is satisfied due to the calculations (14).

4 Analysis of the Isothermal Case by Galerkin’s Method

The mere existence of a weak solution of the full model (1a)–(1d) with (5) and with the
initial/boundary conditions (6)–(7), likely needed regularity of Navier-Stokes system in the
3-dimensional case, seems to be difficult. A special “laminar” case (i.e. with the convective
term %(v · ∇v)v in (1a) neglected) has been treated in [16] for ν, d and m constant and Ω
smooth. The generalization for d and m continuously dependent on (c, θ) as considered here
would be a relatively simple modification, contrary to ν whose constancy makes possible to
employ regularity results for the 3D Stokes problem, as used in [16].

Here we focus on another special case, namely the “isothermal” one, i.e. θ constant
and fixed, and (1d) neglected. It should be emphasized that in biological application on
a (sub)cellular level, the simplifying assumption of a constant temperature is very well
acceptable. This has been treated in [16] for ν, d and m constant by the Schauder fixed-
point theorem. Here we outline this isothermal case allowing, in addition, for ν, d and
m continuously dependent on the volume fractions c = (c1, ..., cL) by using the Galerkin
method, which constructively suggests numerical implementation at least on a conceptual
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level, i.e. neglected numerical integration that would be desirable to implement the scheme
(18a)–(18c) below.

Let, for simplicity, Ω be polyhedral and discretized by a nested sequence of simplectic
triangulations Th, h > 0 being a mesh parameter, and let Vh := {v∈W 1,2(Ω); ∀S∈Th :
v|S affine}. Let us agree to extend, if need be, the nonlinearities ν, d, m, and r` on the whole
affine manifold M := {ξ∈IRL;

∑L
`=1 ξ` = 1}, although eventually only their values for non-

negative arguments will matter. We define a retract K : M → {ξ∈M : ξ` ≥ 0, ` = 1, ..., L}
by

K`(ξ) := ξ+
` /

(

L
∑

l=1

ξ+
l

)

, ξ+
` := max(ξ`, 0). (17)

Note that K is continuous and bounded. We consider a fixed finite time horizon T > 0,
and define the Galerkin approximate solution (vh, φh, ch) such that [(vh, φh, ch)](t, ·) ∈ V 3

h ×
Vh × V L

h for a.a. t ∈ [0, T ], vh(0, ·) = v0, ch(0, ·) = c0, div vh = 0, ch|Γ (t, ·) = cΓ` , and the
following identities hold for a.a. t ∈ [0, T ]:

∀z∈Vh :

∫

Ω

ε∇φh · ∇z − qhz dx =

∫

Γ

α(φΓ−φh)z dS, qh =
L

∑

`=1

e`K`(ch) , (18a)

∀z∈V 3
h , div z = 0 :

∫

Ω

%
(∂vh

∂t
+ (vh·∇)vh

)

·z + ν(ch)∇vh:∇z − qh ∇φh·z dx = 0, (18b)

∀z∈Vh, z|Γ = 0 :

∫

Ω

∂ch`

∂t
z +

(

d(ch)∇ch` − ch`vh

)

·∇z dx =

∫

Ω

r`(ch)z

−m(ch)K`(ch)(e`−qh)∇φh·∇z dx, (18c)

with ` = 1, .., L in (18c). For further analysis, we define seminorms on the linear spaces
L4/3([0, T ];W 1,2

0,DIV
(Ω; IR3)∗) and L4/3([0, T ];W 1,2(Ω)∗) respectively by:

∣

∣ξ
∣

∣

DIV,h
= sup

z(t,·)∈V 3
h for a.a. t∈[0,T ]

‖z‖
L4([0,T ];W

1,2
0,DIV

(Ω;IR3))
≤1

∫ T

0

〈ξ(t, ·), z(t, ·)〉dt, (19a)

∣

∣ξ
∣

∣

h
= sup

z(t,·)∈Vh for a.a. t∈[0,T ]
‖z‖

L4([0,T ];W
1,2
0 (Ω))

≤1

∫ T

0

〈ξ(t, ·), z(t, ·)〉dt. (19b)

Let us assume

ν, d,m, r` : M → IR continuous, bounded, nonnegative, (20a)

νm := inf
c∈M

ν(c) > 0, dm := inf
c∈M

d(c) > 0, (20b)

∃h0 > 0 : v0∈V
3
h0
, c0∈V

L
h0
, cΓ (t, ·)∈V L

h0
|Γ for a.a. t ∈ [0, T ], (20c)

L
∑

`=1

c0` = 1, c0` ≥ 0,

L
∑

`=1

cΓ` = 1, cΓ` ≥ 0. (20d)
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Lemma 1. Let (8), and (20a)–(20d) hold. The equations (18a)–(18c) have a solution
(vh, φh, ch) which satisfies the following a-priori bounds:

∥

∥φh

∥

∥

L∞([0,T ];W 1,2(Ω))
≤ C, (21a)

∥

∥vh

∥

∥

L2([0,T ];W 1,2(Ω;IR3))∩L∞([0,T ];L2(Ω;IR3))
≤ C,

∣

∣

∣

∂vh

∂t

∣

∣

∣

DIV,h0

≤ C, (21b)

∥

∥ch`

∥

∥

L2([0,T ];W 1,2(Ω))∩L∞([0,T ];L2(Ω))
≤ C,

∣

∣

∣

∂ch`

∂t

∣

∣

∣

h0

≤ C, (21c)

with the constant C independent of h and h0 provided h ≤ h0. Besides, ch satisfies the
volume-additivity constraint

∑L
`=1 ch` = 1 (but not necessarily ch` ≥ 0).

Sketch of the proof. Existence of the Galerkin’s solution is due to standard arguments from
ODEs (after elimination of the linear algebraic system arising from (18a) with a regular
matrix) with subsequent prolongation due to the L∞-estimates derived below.

The important fact is that the constraint
∑L

`=1 ch` = 1 is satisfied. To show it, let us

abbreviate σh(t, ·) :=
∑L

`=1 ch`(t, ·) ∈ Vh. By summing (18c) for ` = 1, ..., L, one gets

∫

Ω

∂σh

∂t
z dx =

∫

Ω

( L
∑

`=1

r`(ch)

)

z −

( L
∑

`=1

m(ch)K`(ch)
(

e` −
L

∑

l=1

elKl(ch)
)

∇φh

+ d(ch)∇σh − vhσh

)

·∇z dx = −

∫

Ω

d(ch)∇σh·∇z + (vh · ∇σh)z dx (22)

for all z ∈ Vh, where (8) has been used.
Thus (22) results in the corresponding Galerkin approximation of the linear equation

∂
∂t
σh + vh · ∇σh − div(d(ch)∇σh) = 0. We assumed σh|t=0 =

∑L
`=1 c0` = 1 and σh|Σ =

∑L
`=1 c

Γ
` = 1 on Σ, cf. (6) and (7) with (20d), so that the unique solution to this equation

is σh(t, ·) ≡ 1 for any t > 0.
As to (21a), it just suffices to test (18a) by φh itself and to realize that, since we proved

∑L
`=1 ch(t, ·) = 1, it holds |qh(t, ·)| ≤ max`=1,...,L |e`| because then 0 ≤ K`(·) ≤ 1. The

estimate (21b) can be obtained by testing (18b) by vh itself and using that
∫

Ω
(vh · ∇)vh ·

vh dx = 0. The second part of (21b) can be obtained by testing (18b) by a suitable z as
follows:

%
∣

∣

∣

∂vh

∂t

∣

∣

∣

DIV,h0

:= sup
z(t,·)∈V 3

h0
for a.a. t∈[0,T ]

‖z‖
L4([0,T ];W

1,2
0,DIV

(Ω;IR3))
≤1

∫

Q

ν(ch)∇vh:∇z + %(vh·∇)vh·z − qh ∇φh·z dxdt

≤
∥

∥∇vh

∥

∥

L2(Q;IR3×3)

(

T 1/4νM + %N3/2
∥

∥vh

∥

∥

1/2

L2([0,T ];W 1,2(Ω;IR3))
×

×
∥

∥vh

∥

∥

1/2

L∞([0,T ];L2(Ω;IR3))

)

+ 2N max
`=1,..,L

|e`|
∥

∥∇φh

∥

∥

L4/3([0,T ];L6/5(Ω))
(23)

where νM := supc∈M ν(c) and Q := (0, T ) × Ω, and where the convective term has been
interpolated as

∫

Q

(vh · ∇)vh · z dxdt ≤
∥

∥vh

∥

∥

L4([0,T ];L3(Ω;IR3))

∥

∥∇vh

∥

∥

L2(Q;IR3×3)

∥

∥z
∥

∥

L4([0,T ];L6(Ω;IR3))

≤
∥

∥vh

∥

∥

1/2

L2([0,T ];L6(Ω;IR3))

∥

∥vh

∥

∥

1/2

L∞([0,T ];L2(Ω;IR3))

∥

∥∇vh

∥

∥

L2(Q;IR3×3)

∥

∥z
∥

∥

L4([0,T ];L6(Ω;IR3))
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and where N denotes the norm of the embedding W 1,2(Ω) ⊂ L6(Ω). Using the already
obtained estimate (21a) and the first part of (21b), the second part of (21b) follows.

Now we test (18c) by ch` and use Green’s formula for both the left-hand and the right-
hand sides and the identities
∫

Ω

div(ch`vh)ch`dx = −

∫

Ω

ch`vh·∇ch`dx = −

∫

Ω

vh·
∇|ch`|

2

2
dx =

∫

Ω

div(vh)
|ch`|

2

2
dx = 0 (24)

and, when employing the boundary conditions (7), also
∫

Ω

−div
(

m(ch)K`(ch)(eh`−qh)∇φh

)

ch` dx =

∫

Ω

(

m(ch)K`(ch)(e`−qh)∇φh

)

· ∇ch` dx

+

∫

Γ

m(ch)K`(ch)(e`−qh)α(φh−φΓ )cΓ` dS. (25)

By this way, denoting mM := supc∈Mm(c) and r`,M := supc∈M r`(c), we obtain the estimate

d

dt
‖ch`‖

2
L2(Ω) + dm‖∇ch`‖

2
L2(Ω;IR3) ≤

∫

Ω

r`(ch)ch` −
(

m(ch)K`(ch)(e`−qh)∇φh

)

· ∇ch` dx

−

∫

Γ

m(ch)K`(ch)(e`−qh)α(φh−φΓ )ch` dS

≤ |Ω|r`,M+‖c`‖
2
L2(Ω)+2

mM

dm
max

l=1,...,L
e2l ‖∇φh‖

2
L2(Ω;IR3) +

dm

2
‖∇c`‖

2
L2(Ω;IR3)

+2mMα max
l=1,...,L

|el|
(

N1‖φh(t, ·)‖W 1,2(Ω) +N2‖φΓ‖W 1/2,2(Γ )

)

(26)

where N1 and N2 denote the norms of the trace operator φ 7→ φ|Γ : W 1,2(Ω) → L1(Γ )
and the embedding W 1/2,2(Γ ) ⊂ L1(Γ ), respectively. Note that we used a trivial estimate
‖e` − q‖L∞(Ω) ≤ 2 maxl=1,...,L |el|. Altogether, the first estimate (21c) follows by Gronwall’s
inequality. The second estimate in (21c) can be obtained by testing (18c) by a suitable
z ∈ L2([0, T ];W 1,2(Ω)) as follows:
∣

∣

∣

∂ch`

∂t

∣

∣

∣

h0

:= sup
z(t,·)∈Vh0

for a.a. t∈[0,T ]

‖z‖L4([0,T ];W1,2(Ω))≤1

(
∫

Q

d(ch)∇ch` · ∇z − ch`vh · ∇z − r`(ch)z

+m(ch)K`(ch)(e`−qh)∇φh · ∇z dxdt+

∫

Σ

m(ch)αK`(ch)(e`−qh)(φh−φΓ )zdSdt

)

≤ C
(

‖∇ch`‖L2(Q;IR3) + ‖ch`‖L2([0,T ];L6(Ω))‖vh‖
1/2

L2([0,T ];L6(Ω;IR3))
‖vh‖

1/2

L∞([0,T ];L2(Ω;IR3))

+‖∇φh‖L2(Q;IR3) + ‖φh−φΓ‖L2([0,T ];W 1/2(Γ ))

)

(27)

where C = C
(

Ω, sup d(M), mM, α,max` |e`|, T
)

is a constant. Then we use (21b) and the
already proved part of (21c). ut

Note that we did not claim that ch` ≥ 0, which indeed is not obvious because the usual
test by the negative part c−h` is not legal for (18c) as c−h`(t, ·) 6∈ Vh in general. This is also
why we involved the retract K in (18a) and in (18c).

Proposition 1. Let (8) and (20a)–(20d) hold. Then one can select a subsequence of
{(vh, ch, φh)}h>0 converging in the weak* topologies indicated by the a-priori estimates
(21a)–(21c) to some (v, c, φ), and each such triple obtained by this way is a (very) weak
solution to the isothermal variant of the original system (1a)–(1c) with (5), i.e. considered
with θ omitted.
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Sketch of the proof. In view of the a-priori estimates (21a)–(21c), we can select a subsequence
converging as claimed. Realizing that our equations are semilinear (i.e. linear in terms of all
derivatives) and using the Aubin-Lions compact-embedding lemma (modified for a locally-
convex topologies induced by the seminorms (19a)–(19b) as in [15]), one can easily deduce
the convergence to a very weak solution to the isothermal variant of the system (1a)–(1c)
with (5) and with the retract K occurring at the respective spots, namely:

%
∂v

∂t
+ %(v ·∇)v − div(ν(c)∇v) + ∇p = −q̂∇φ, div(v) = 0 , (28a)

∂c`
∂t

− div
(

d(c)∇c` +m(c)K`(c)(e` − q̂)∇φ− c`v
)

= r`(c) , ` = 1, ..., L , (28b)

ε∆φ = −q̂, q̂ =

L
∑

`=1

e`K`(c)∇φ , (28c)

completed naturally by the respective initial and boundary conditions (6)–(7). The adjective
“very weak” refers to the fact that ∂

∂t
c` and ∂

∂t
v is not in any duality with c` and v,

respectively.
The constraint

∑L
`=1 c` = 1 is inherited from (22) for h → 0+, and now, at this limit

point, we have additionally also c`(t, ·) ≥ 0 satisfied for any t. To see this, test (28b) by
the negative part c−` of c`. Realizing K`(c)∇c

−
` = 0 because, for a.a. (t, x) ∈ Q, either

K`(c(t, x)) = 0 (if c`(t, x) ≤ 0) or ∇c`(t, x)
− = 0 (if c`(t, x) > 0), and r`(·)c

−
` ≥ 0 because

of (8), we obtain c−` = 0 a.e. on Q.

The non-negativity of c` together with
∑L

`=1 c` = 1 ensures that c(t, x) ∈ Range(K)
for a.a. (t, x) ∈ Q so that c` = K`(c) and thus the triple (φ, v, c) is a weak solution to
(28a)–(28c) with the retract K omitted, i.e. the isothermal variant of the original system
(1a)–(1c) with (5) when θ is omitted. ut
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A corrigendum:

As pointed out by prof. W.H.Alt, if ν is not constant, only a symmetric part

of ∇v should occure in (1a). The relevant modification of formulae (10), (11),

(13), etc. are obvious. Korn’s enequality is then to be exploited for the esti-

mate of v. This corrigendum unfortunately will not occure in the printed ver-

sion.


