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CZ-182 08 Praha 8, Czech Republic.

ABSTRACT: Models of shape-memory alloys can be based on a continuum-mechanical descrip-
tion of the stored energy (having a multi-well character giving rise to microstructures) and of the
dissipated energy (giving rise to hysteresis in stress/strain response). The multi-well stored en-
ergy is related to austenite and particular martensitic variants. The dissipation potential has a
homogeneous degree-1 term, corresponding to (possibly rate-independent) activated processes. The
configuration can be described either conventionally in terms of mere displacements or by displace-
ments combined with special gradient Young measures to reflect better a multiscale character of the
problem. Basic mathematical and numerical analysis accompany both sort of models. Isothermal
computational 3D simulations with NiMnGa or CuAlNi single crystals have been done by such mod-
els. Anisothermal extension are possible in the former class of models. Selected preprints available
at http://www.karlin.mff.cuni.cz/˜roubicek/multimat.htm

1 INTRODUCTION, MENAGERIE OF MODELS

Shape-memory alloys (=SMAs) belong to so-called smart materials which enjoy important
applications. SMAs exhibit specific, hysteretic stress/strain/temperature response and a
so-called shape-memory effect. The mechanism behind it is quite simple: atoms tend to be
arranged in several crystalographical configuration having different symmetry groups: higher
symmetrical one (referred to as the austenite phase, typically cubic) has higher thermal
capacity while lower symmetrical one (called the martensite phase, typically tetragonal,
orthorhombic, or monoclinic) has lower thermal capacity and may exist, by symmetry, in
several variants (typically 3, 6, or 12, respectively). We refer to [5, 30] for a thorough survey.

In contrast to atomistic models, this exposition focuses on models that departs from
the continuum-thermomechanics description where the state of material is described by the
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displacement and temperature, yielding a coupled system of partial-differential equations or
inequalities.

Other models involve further internal variables like volume fractions etc. A particular
class of such models exploits configurations described unconventionally in terms of displace-
ments combined with special gradient Young measures to reflect better a multiscale character
of the problem. For a survey of various other models, see [34].

2 CONTINUUM THERMODYNAMICS OF SMAs

We consider a bounded Lipschitz domain Ω ⊂ R
3 as a reference configuration (canonically

the stress-free austenite). The state variables will be the displacement u : Ω → R
3 and

temperature θ : Ω → R; then y : Ω → R
3 defined as y(x) = x + u(x), x ∈ Ω, denotes the

deformation. Hence the deformation gradient equals F = ∇y = I + ∇u, where I ∈ R
3×3

denotes the identity matrix. Thermomechanical response is phenomenologically described
by a specific free energy ψ̂ = ψ̂(F, θ). The frame-indifference, i.e. ψ̂(F, θ) = ψ̂(RF, θ) for

any R ∈SO(3), the group of orientation-preserving rotations, requires that ψ̂(·, θ) in fact

depends only on the (right) Cauchy-Green stretch tensor C := FTF . Often, ψ̂ is considered
in a simplified form, partly decoupled and linearized around a reference temperature θr
(=usually the equilibrium temperature between austenite and martensite), namely:

ψ̂(F, θ) := φ̂0(F ) + (θ − θr)φ̂1(F )− cθ ln
( θ
θr

)
, (1)

with frame-indifferent C1-functions φ̂0, φ̂1 : R3×3 → R and with c > 0 a fixed heat capacity.
We abbreviate

ψ(·, θ) := ψ̂(I+ · , θ) , φ0(·) := φ̂0(I+ · ) , φ1(·) := φ̂1(I+ · ) . (2)

The overall free energy related to a profile of u and θ is considered as

Ψ(u, θ) :=

∫

Ω

ψ
(
∇u, θ

)
+
µ

2

∣∣∇mu
∣∣2 dx (3)

where µ > 0 denotes the capillarity-like coefficient and m ≥ 2 is an integer. A certain
justification of higher-order capillarity/viscosity was done, as so-called multipolar materials,
in [24, 38]. The Gibbs’ relation then defines specific entropy

s = −
∂ψ

∂θ
= c

(
1 + ln

( θ
θr

))
− φ1(F ) (4)

and the entropy equation is then

θ
∂s

∂t
− div(κ∇θ) = ξ (5)

where κ > 0 denotes the heat conductivity and ξ is a dissipation rate to be still specified.
This represents another phenomenology in the model, reflecting e.g. various impurities and
dislocations in the atomic grid that may influence dissipation, as advocated, beside [1, 16,
19, 31, 32, 34, 36, 37], essentially also e.g. in [3, 9, 11, 12, 33, 40, 42]. We consider ξ as

ξ := δ∗K(θ)

(∂L(∇u)
∂t

)
+ µv(θ)

∣∣∣∇n ∂u

∂t

∣∣∣
2

(6)
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where L := L̂(I + ·) is a bounded C1-function resulted from a frame-indifferent function

L̂ : R3×3 → R
L which distinguishes particular phases or phase variants from each other, δ∗K(θ)

the conjugate to the indicator function δK(θ) of a convex bounded setK(θ) ⊂ R
L determining

(possibly temperature-dependent) stresses to activate particular phase transformations or,
equally, the specific energies dissipated by them; the term δ∗K(θ) is degree-1 homogeneous

and is related with the activated character of phase transformations; we refer to the original
concept [34, Formula (33)] further developed in [1, 16, 31, 32, 35] for more details. This term
in (6) thus allows for reflecting the concept that the energy dissipated during transformation
process depends (counting phenomenologically, beside possible rank-one connections, with
various impurities) on the departing and the final (phase)variants only; this (simplifying)
concept has been adopted also in [14, 29, 40, 41, 42].

Further, µv = µv(θ) ≥ ν0 > 0 in (6) is a (possibly temperature-dependent) viscosity co-
efficient, and n ≥ 2 is an integer. The dissipation rate ξ plays the role of a (pseudo)potential
of dissipative forces and then, by the Hamilton principle extended for dissipative systems
and involving the Lagrangean Lθ(u,

∂u
∂t ) := Ψ(u, θ)− ̺

2

∫
Ω |∂u∂t |

2 dx, one derives the evolution
equation for u in the form

̺
∂2u

∂t2
− div

(
σp+φ

′

0(∇u)+(θ−θr)φ
′

1(∇u)
)
+ µv(−1)n∆n ∂u

∂t
+ µ(−1)m∆mu = f (7)

where ̺ > 0 is the mass density, f the external volume forces, and σp the so-called back

stress which is to satisfy the inclusion

σp ∈ ∂δ∗K(θ)

( ∂
∂t

L(∇u)
)
L′(∇u) or equally σp ∈ NK(θ)

(
L′(∇u) :∇

∂u

∂t

)
L′(∇u) (8)

where “∂” stands for the subdifferential and NK for the normal cone to K. By standard
thermodynamical procedure, (5) with (6) yields the heat equation for temperature

c
∂θ

∂t
− div(κ∇θ) = δ∗K

(
L′(∇u) :∇

∂u

∂t

)
+ µv

∣∣∣∇n ∂u

∂t

∣∣∣
2

+ θφ′1(∇u) :∇
∂u

∂t
(9)

where the right-hand side contains, beside ξ from (6), also the adiabatic heat θφ′1(∇u) :∇
∂u
∂t ;

this just gives the correct energy balance, see (15) below. Also, (9) is compatible with
the non-negativity of temperature and then, at least formally in an isolated system, the
Clausius-Duhem inequality holds:

d

dt

∫

Ω

s dx =

∫

Ω

div
(
κ
∇θ

θ

)
+ κ

|∇θ|2

θ2
+
ξ

θ
dx =

∫

Ω

κ
|∇θ|2

θ2
+
ξ

θ
dx ≥ 0. (10)

Existence of a weak solution of a initial-boundary-value problem for the overall coupled
system (7)–(9) was proved in [36] for the case n ≥ m, n ≥ 3 with µv and K independent of
θ. Generalization of µv and K continuously dependent on temperature is relatively routine.
Making sophisticated a-priori estimate of∇θ ∈ L5/4−ǫ(Q;R3) simultaneously for meachnical
and heat part would allow even for n ≥ 2.

Models with K = {0} (i.e. σp = 0) and µ, µv > 0, n = 1, m = 2 was studied in
[13, 25, 26, 27]. Models with no viscosity-like term, i.e. µv = 0, have been studied in
[10, 39], cf. also [6, Chap.5].

3 ISOTHERMAL EVOLUTION OF SHAPE-MEMORY ALLOYS

The isothermal variant of the above model, i.e. (7)–(8) with θ constant and (9) omitted, is
justified only for infinitesimally slow processes where the released/absorbed heat during the
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PTs can be stabilized through the environment to keep temperature constant. Although
this severe restrictions, isothermal models received substantial attention mainly because of
their higher amenability for theoretical analysis than anisothermal ones.

First existence results for (7)–(8) are in [31]. Vanishing-viscosity analysis has been made
in [32]. For K = {0} (i.e. σp = 0), it was shown in [32] that, if m ≥ 2 and µv → 0, the
corresponding weak solutions uµv

converge (in terms of subsequences) to a solution u of
the inviscid hyperbolic system (7) with µv = 0. Such inviscid models have been studied in

[10, 39], cf. also [6, Chap.5]. Moreover, [32] shows that, ifm ≥ 3, then even
∫ T

0

∫
Ω ξµv

dxdt =∫ T

0

∫
Ω µv|∇

n ∂
∂tuµv

| dxdt → 0, i.e. the system with the capillarity term stops dissipating
energy for infinitesimally small viscosity. Again, as in Sect. 2, phenomenological modelling
of hysteretic response can be just made by the back stress σp from (8) and then, if m ≥ 3,
the solutions uµv

to (7)–(8) converge for µv → 0 (in terms of subsequences) to a solution u
of the inviscid hyperbolic system (7)–(8).

Numerical simulation with such model of tenstion/compression experiments with NiM-
nGa single-crystals undergoing cubic/tetragonal transformation has been performed in [1].

4 MICROSTRUCTURES, YOUNG-MEASURES

Considering θ constant as in Sect. 3 and an abstract loading F = F (t) acting on u, due
to the multiwell character of ϕ(·) = ψ(·, θ) and (here unspecified) boundary conditions in
singlecrytals or intergranular interactions in polycrystals, the deformation gradient ∇u of
configurations mininimizing the stored energy Φµ(t, u) = Ψ(u, θ)−〈F (t), u〉 with Ψ from (1)
usually tends to develop fast spatial oscillations if µ→ 0 (by scalling arguments it means in
large bulks) like minimizing sequences of Φ0 do, see [4, 5]. This results to a microstructure

that can effectively be described by so-called gradient Young measures, which are measurably
parameterized probability measures x 7→ νx on R

3×3 that can be attained by gradients in
the sense that limk→∞

∫
Ω g(x)v(∇uk) =

∫
Ω g(x)

∫
R3×3 v(A) νx( dA) dx for some sequence

{yk}k∈N ⊂ W 1,p(Ω;R3) and all g ∈ L∞(Ω) and v ∈ C0(R
3×3), see [28]. Let us denote the

set of all such parameterized measures by Gp(Ω;R3×3). The naturally extended (so-called
relaxed) stored energy is then

Φ̄(t, u, ν) =

∫

Ω

∫

R3×3

ϕ(A) νx( dA) dx −
〈
F (t), u

〉
. (11)

The pair of “macroscopical” displacement u and the gradient Young measures ν represents
a quite natural mesoscopical description of the state of the body. The “kinematically”
admissible pairs (u, ν) are ultimately in the nonconvex set

Q :=
{
(u, ν)∈W 1,p(Ω;R3)×Gp(Ω;R3×3);

∫

R3×3

Aνx( dA)=∇u(x) for a.a. x
}
. (12)

Within microstructure evolution due to time-varying loading F , the rate-independent dissi-
pation again comes into play. Ispired by (6) with µv = 0, we put

R(ν) :=

∫

Ω

δ∗K(λ(x)) dx with λ(x) =

∫

R3×3

L(A) νx( dA) dx. (13)

The quantity λ plays the role of a macroscopical volume fraction assigned through (13) to
the microstructure described by ν.

Neglecting kinetic energy and based on minimum-stored-energy principle competing with
maximum-dissipation (or rather realizability [17]) principle, makes a relevant base for mi-
crostructure evolution modelling provided a global stability

∀t ≥ 0, ∀(ũ, ν̃) ∈ Q : Φ̄
(
t, u(t), ν(t)

)
≤ Φ̄(t, ũ, ν̃) +R

(
ν(t) − ν̃

)
(14)
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can be accepted as relevant. Requiring still, for any 0 ≤ t1 < t2, the energy equality

Φ̄
(
t2, u(t2), ν(t2)

)
+VarR(ν; s, t) = Φ̄

(
t1, u(t2), ν(t2)

)
−

∫ t2

t1

〈∂F (t)
∂t

, u
〉
dt (15)

where VarR(ν; t1, t2) denotes the total variation over [t1, t2] of ν(·) with respect to R from
(13). Introduced in [18, 22, 23], (14)–(15) is a so-called energetic formulation of the relaxed
problem.

Analysis of it in the context of SMA modelling is in [20] provided Φ̄ is still regularized
by counting energy of possible spatial variations in λ, as proposed in [9, p.364]. For com-
putational implementation, additional discretization of the set Q is necessary. Canonical
approach is to apply P1-finite elements on a triangulation of a polyhedral domain Ω for
discretization of u and element-wise constant (=homogeneous) so-called laminates (see [28])
to discretize ν, see also [2, 15]. Computational simulation of experiments on NiMnGa and
CuAlNi singlecrystals are in [16, 37].
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[29] Petryk, H.: Thermodynamic conditions for stability in materials with rate-independent dissi-

pation. Phil. Trans. Roy. Soc. A 363 (2005). 2479–2515.
[30] Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals.

Chapman & Hall, Boca Raton, 2003.
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