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TOMÁŠ ROUB́IČEK

A note about relaxation

of vectorial variational problems

1. Introduction; the original variational problem and its relaxation.

The contribution deals with a vectorial variational problem

(VP)
∫

Ω

ϕ(x, y(x),∇y(x))dx → inf, y ∈ W 1,p(Ω; IRm) ,

where Ω ⊂ IRn is a Lipschitz bounded domain and ϕ : Ω×IRm×IRn×m → IR is a potential density,

supposed to be coercive Carathéodory function with a p-growth, 1 < p < +∞. The pecularity of
the problem is that ϕ(x, r, ·) : IRn×m → IR is not supposed to be quasiconvex so that (VP) need

not possess any solution and its extension (=relaxation) must be done.
We will basically use a continuous extension like the Young-measure setting, cf. [2, 3, 4]. We

employ a suitable convex locally compact hull of Lp(Ω; IRn×m), constructed as follows: Let us de-
fine the linear space of integrands Carp(Ω; IRn×m) = {h :Ω×IRn×m → IR Carathéodory; |h(x,A)| ≤

a(x) + b|A|p, a ∈ L1(Ω), b ∈ IR}, equiped with the natural norm ‖h‖ = inf{‖a‖L1(Ω) +
b; |h(x,A)| ≤ a(x) + b|A|p}. Furthermore, let us take a suitable (typically separable) subspace H

of Carp(Ω; IRn×m), and define the (norm,weak*)-continuous imbedding iH : Lp(Ω; IRn×m) → H∗ :

u 7→ (h 7→
∫

Ω h(x, u(x))dx). Supposing, as we may, that H contains a coercive integrand (i.e.
h = |A|p ∈ H), we may define

Y p
H(Ω; IR

n×m) = w*-cl iH(L
p(Ω; IRn×m)) ,

which is a convex, closed, locally compact, σ-compact hull of Lp(Ω; IRn×m) if H∗ is considered in

its weak* topology. It is natural to address the elements of Y p
H(Ω; IR

n×m) as “generalized Young
functionals” because, for H = L1(Ω;C0(IR

n×m)) with C0 denoting continuous functions vanishing

at infinity, this set contains basically the funtionals introduced by L.C.Young in [20], which can be

in this case identified with special elements of L∞
w (Ω;M(IRn×m)) ∼= L1(Ω;C0(IR

n×m))∗, called the
Young measures; cf. [19] or also [1, 7, 17]. Nevertheless, the choice H = L1(Ω;C0(IR

n×m)) is not

much suitable because such H cannot not contain coercive integrands. A more suitable example
is rather the measures developed by DiPerna and Majda [8].
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Now we can made readily a continuous extension of (VP). For η ∈ H∗ and h ∈ H let us define
h • η ∈ M(Ω̄) ∼= C(Ω̄)∗ by 〈h • η, g〉 = 〈η, g ·h〉 to be valid for all g ∈ C(Ω̄). Furthemore, let us

define the set of “gradient generalized Young functionals” by

Gp
H(Ω; IR

n×m) = {η ∈ Y p
H(Ω; IR

n×m); ∃yξ ∈ W 1,p(Ω; IRm) : iH(∇yξ) → η weakly*} .

We will suppose that ϕ is coercive in the sense

ϕ(x, r, s) ≥ a(x) + b|s|p (1)

with some a ∈ L1(Ω) and b positive, and that ϕ satisfies

∀y ∈ Lq(Ω; IRm) : ϕ ◦ y ∈ H , (2)

∃a1 ∈ L1(Ω) ∃b1, c1 ∈ IR+ : |ϕ(x, r, s)| ≤ a1(x) + b1|r|
q + c1|s|

p , (3)

∃a2 ∈ Lq/(q−1)(Ω) ∃b2, c2 ∈ IR+ :

|ϕ(x, r1, s)−ϕ(x, r2, s)| ≤ (a2(x) + b2|r1|
q−1 + b2|r2|

q−1 + c2|s|
p(q−1)/q)|r1−r2|







(4)

with some 1 ≤ q < np/(n − p) or 1 ≤ q arbitrary provided p ≥ n (so that W 1,p(Ω; IRm) is

compactly imbedded into Lq(Ω; IRm)). Note that the assumptions (2)–(4) quarantees that the
mapping (y, η) 7→ 〈η, ϕ ◦ y〉 is (weak×weak*)-continuous. The relaxed problem will look like:

(RP)



















minimize 〈η, ϕ ◦ y〉

subject to (1⊗ id) • η = ∇y ,

y ∈ W 1,p(Ω; IRm) , η ∈ Gp
H(Ω; IR

n×m),

where we suppose ϕ ◦ y ∈ H , with [ϕ ◦ y](x,A) = ϕ(x, y(x), A), and id: IRn×m → IRn×m being

the identity. It can be shown (see [14]) that (RP) is actually a proper relaxation of (VP) in the

sense that it has always a solution, inf(VP) = min(RP), every solution to (RP) is attainable by
a minimizing net for (VP) and, conversely, every minimizing net (esp. sequence) for (VP) has a

cluster point and each such a cluster point solves (RP).
The aim of this short note is to discuss various possibilities of a numerical approximation of

the relaxed problem (RP) which has been also tested by computer experiments, though the results
will not be presented here.

2. A finite-element approximation.

A first step in a numerical approximation of (RP) which we can certainly do quite easily consists

in a finite-element approximation of (RP). Let us take a triangulation Td of Ω, d > 0 being a
mesh size, and put Vd = {y ∈ W 1,p(Ω; IRm); y piecewise affine on Td} and Yd ⊂ Y p

H(Ω; IR
n×m)

defined by Yd = A∗
d(Y

p
H(Ω; IR

n×m)) where Pd : Carp(Ω; IRn×m) → Carp(Ω; IRn×m) : h 7→ hd with
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hd(x,A) =
∫

△ h(x̃, A)dx̃/meas(△) for x ∈ △ ∈ Td; cf. also [13] for details. It allows us to define
the approximate relaxed problem:

(RPd)



















minimize 〈η, ϕ ◦ y〉

subject to (1⊗ id) • η = ∇y ,

y ∈ Vd , η ∈ Gp
H(Ω; IR

n×m) ∩ Yd ,

Proposition 1. Let ϕ satisfy (1)–(4). Then (RPd) converges to (RP) in the sense:

lim
d→0

min(RPd) = min(RP) , Limsup
d→0

Argmin(RPd) ⊂ Argmin(RP) ,

where “Limsup” (i.e. the upper Kuratowski limit) denotes the set of all cluster points of selected

nets, and “Argmin” stands for the set of solutions to the problem indicated.

Sketch of the proof. Since apparently the set of admissible pairs for (RPd) is smaller than for (RP),

we have min(RPd) ≥ min(RP).
Now we want to prove that every (y, η) admissible for (RP) can be approximated by suitable

admissible pairs for (RPd) when d → 0. We can easily see that there is a net {yι}ι∈I ∈ W 1,p(Ω; IRm)
such that yι → y weakly in W 1,p(Ω; IRm) and iH(∇yι) → η weakly* in H∗. Moreover, mollifing (if

necessary) suitably this net, we can even suppose that yι ∈ C∞(Ω̄). Let Πdyι ∈ Vd be the linear
interpolant of yι on the triangulation Td. For ι fixed and d → 0, we have Πdyι → yι strongly in

W 1,p(Ω; IRm) because of the regularity of yι. Therefore iH(∇Πdyι) → iH(∇yι) weakly* in H∗. At
the same time, the pair (Πdyι, iH(∇Πdyι)) is admissible for (RPd), and therefore

〈iH(∇Πdyι), ϕ ◦ Πdyι〉 ≥ min(RPd) ≥ min(RP) .

Supposing that (y, η) is a solution of (RP), we get by the continuity argument (because (2)–(4)
makes the mapping (y, η) 7→ 〈η, ϕ ◦ y〉 weakly×weakly* continuous; cf. [17, Lemma 4.3.6]) that

lim
ι∈I

lim
d→0

〈iH(∇Πdyι), ϕ ◦ Πdyι〉 = 〈y, η ◦ y〉 = min(RP) ,

so that min(RPd) → min(RP) for d → 0.
The rest of the assertion follows immediately by the standard compactness arguments, taking

into account the coercivity of the problem. 2

3. A further approximation of (RPd).

The essential problem is that an explicit description of Gp
H(Ω; IR

n×m) is generally not known,

which implies that the admissible domain of (RPd), i.e.

D(RPd) = {(y, η) ∈ Vd × (Gp
H(Ω; IR

n×m) ∩ Yd); (1⊗ id) • η = ∇y} ,
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is not effectively defined. A certain way to handle this problem is to confine ourselves to approxi-
mations of D(RPd). In principle, one can think either of an inner or of an outer approximation of

it.
An inner approximations of D(RPd) has been recently proposed by Nicolaides and Walkington

[11]. Namely, for k ∈ IN they defined

Dk(RPd) = {(y, η) ∈ Vd × Yd; (1⊗ id) • η = ∇y,

〈η, h〉 =
2k
∑

i=1

∫

Ω
λi(x)h(x, ui(x))dx, λi, ui elementwise constant,

λi =
k
∏

j=1

λ[i/j]+1,j, ui = Aik, λ2i,jA2i,j + λ2i−1,jA2i−1,j = Ai,j−1,

λ2i,j + λ2i−1,j = 1, λ2i,j, λ2i−1,j ≥ 0, Rank(A2i,j − A2i−1,j) ≤ 1,

i = 1, ..., 2j−1, j = 1, ..., k, Ai,1 = ∇y} .

In other words, the approximation Dk(RPd) ⊂ D(RPd) consists of “element-wise constant” gener-

alized Young functionals composed, on each element, from 2k pairwise rank-1 connected matrices,
which can be certainly reached by gradients. The essential theoretical disadvantage of this ap-

proximation is that, in general,
⋃

k∈N Dk(RPd) 6= D(RPd) because otherwise the minimum of the
functional (y, η) 7→ 〈η, ϕ ◦ y〉 over Dk(RPd) would have to approach min(RP) for k → ∞ but,

as shown by Dacorogna [7, Sect.5.1.1.2], it converges from above only to Rank-1 envelope of
(VP). Therefore, if ϕ(x, r, ·) has a quasiconvex envelope which is not rank-1 convex, then the

approximation proposed by Nicolaides and Walkington cannot converge.
Nevertheless, we can also use an outer approximation of D(RPd). Let us put Ξ = {ξ =

(v1, ..., vk); k ∈ IN, vj : IRn×m → IR quasiconvex, |vj(s)| ≤ o(|s|p)}, ordered by the inclusion.
This makes Ξ a directed set so that we can use it to index generalized sequences (=nets). For any

ξ ∈ Ξ we put

Dξ(RPd) = {(y, η) ∈ Vd × Yd; ∀v ∈ ξ : (1⊗ v) • η ≥ v(∇y)} .

Always, Dξ(RPd) ⊃ D(RPd) and, as a consequence of recent results by Kinderlehrer and Pedregal

[10], also D(RPd) ⊃
⋂

ξ∈ΞD
ξ(RPd)∩ {η ∈ Y p

H(Ω; IR
n×m) is p-nonconcentrating}, where “p-noncon-

centrating” means that η ∈ Y p
H(Ω; IR

n×m) is attainable by a sequence {iH(uk)}k∈IN such that the set

{|uk|}k∈IN is relatively weakly compact in L1(Ω). This result suggests the following approximate
problem:

(RPξ
d) Minimize 〈η, ϕ ◦ y〉 s.t. (y, η) ∈ Dξ(RPd) .

Proposition 2. Let ϕ satisfy (1)–(4), H be separable and there is G ⊗ V dense in H with

G ⊂ L∞(Ω) and V ⊂ C(IRn×m), and ∀v ∈ V ∃vl ∈ V with a growth strictly less than p such that
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vl → v uniformly on bounded subsets of IRn×m. Then

lim
ξ∈Ξ

min(RPξ
d) = min(RPd) , Limsup

ξ∈Ξ
Argmin(RPξ

d) ⊂ Argmin(RPd) .

In other words, if (yξ, ηξ) solves (RPξ
d), then the net {(yξ, ηξ)}ξ∈Ξ has a (weak×weak*)-cluster

point (y, η) in W 1,p(Ω; IRm)×H∗ and each such a cluster point solves (RPd).

Sketch of the proof. As min(RPξ
d) is certainly bounded from above (e.g. by 〈iH(0), ϕ◦0〉 < +∞) and

the coercivity (1) is assumed, the net in question is bounded and therefore it has a (weak×weak*)-
cluster point (y, η). We want to show that (y, η) must solve the auxiliary problem

(APd)



















minimize 〈η, ϕ ◦ y〉

subject to (1⊗ v) • η ≥ v(∇y) ∀v quasiconvex with a growth < p,

y ∈ Vd , η ∈ Yd .

As certainly min(RPξ
d) ≤ min(APd) and the mapping ξ 7→ min(RPξ

d) is nondecreasing, we have

guaranteed limξ∈Ξ min(RPξ
d) ≤ min(APd). Supposing limξ∈Ξmin(RPξ

d) < min(APd), by the coer-
civity of the problem we could choose a finer net than {(yξ, ηξ)}ξ∈Ξ converging to some (y0, η0)

satisfying all the constraints involved in (AP) but such that 〈η0, ϕ ◦ y0〉 < min(APd), which is a
contradiction. Therefore, limξ∈Ξmin(RPξ

d) = min(APd) and then also (y, η) must solve (APd).

Then η must be p-nonconcentrating in the sense that there is a net {uα} bounded in
Lp(Ω; IRn×m) such that iH(uα) → η and the set {|uα|

p} is relatively weakly compact in L1(Ω).

Indeed, if it would not be the case, the p-nonconcentrating modification of η would reach a strictly
lower cost than η and all the constraints of (APd) would by satisfied as well, which is a contradic-

tion; we refer to [16] for details.

As p > 1 is supposed, the inequality constraints of (APd) include, in particular, also the
constraint (1⊗ id) • η = ∇y involved in (RPd). Therefore, to prove that (y, η) solves also (RPd), it

suffices to show that min(APd) ≤ min(RPd) (which, however, follows immediately from D(APd) ⊃
D(RPd)) and that η ∈ Gp

H(Ω; IR
n×m).

First, we can localize our considerations on a current element so that it suffices to investigate
only homogeneous Young functionals. As in [13], one can show that η cannot be separated from

the set My = {η ∈ Gp
H(Ω; IR

n×m); (1⊗ id)•η = ∇y} by any test function with the growth strictly
less than p. However, taking a general 1⊗ v and vl with growth strictly less than p and such that

vl → v uniformly on bounded sets in IRn×m, then one can show that 〈η, 1 ⊗ vl〉 → 〈η, 1 ⊗ v〉 for
any η ∈ Y p

H(Ω; IR
n×m) p-nonconcentrating; cf. [13, Example 3.1]. This shows that η in question

cannot be separated from the closed convex set My by any test function of the form 1 ⊗ v, and
therefore also by any

∑

finite gi ⊗ vi, so that it must belong to Gp
H(Ω; IR

n×m) which is closed. 2

Though having a convergence guaranteed, the fatal disadvantage of the previous method is that
the index set Ξ is very large and not effectively defined, so that it has a theoretical significance

only.
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Anyhow, both approximate methods mentioned above certainly give a general two-side esti-
mate:

min
(y,η)∈Dξ(RPd)

〈η, ϕ ◦ y〉 ≤ min(RPd) ≤ min
(y,η)∈Dk(RPd)

〈η, ϕ ◦ y〉 . (5)

Nevertheless, for practically reasonable indices ξ ∈ Ξ and k ∈ IN, this estimate might be still very

rough. Therefore, it is reasonable to inquire special situations where possibly the equalities for ξ
or k large enough can appear.

As an example let us mention the case ξ = {±adjl; l = 1, ...,min(n,m)}. Then the first
equality in (5) takes place provided ϕ(x, r, ·) : IRn×m → IR has a polyconvex quasiconvexification.

In this case, one can even derive (cf. [15]) optimality conditions for (RPξ
d), which takes the form

Hy,λ • η = max
A∈IRn×m

Hy,λ(x,A)

with the “discrete Hamiltonian” Hy,λ(x,A) = −Pdϕ(x, y(x), A) +
∑min(n,m)

l=1 λl(x)·adjlA
and with λl ∈ Lp/l(Ω; IRσ(l)), σ(l) = (ml )(

n
l ), satisfying

div





min(n,m)
∑

l=1

λl ·
∂adjl
∂A

(∇y)



 = (
∂ϕ

∂y
◦ y) • η .

From these conditions we can deduce that there always exists a minimizer in the form of a convex

combinations of at most
∏min(n,m)

l=1 σ(l) + 2 atoms on each element, which eventually allows an
effective computer implementation of (RPξ

d).

Remark 1. The requirement on ϕ(x, r, ·) to have a polyconvex quasiconvexification is certainly not

realistic in a general case so that one is forced to try to take larger indices ξ. Each such a choice
gives some problem whose minimum is in between the polyconvexified problem and inf(VP). This

is philosophically similar to the approach by Firoozye [9] who also proposed some envelope with
such property.

Remark 2. A general feature of the resulted approximate problems is that they admit a partial
decomposition, having always the form of a co-operative Stackelberg game. Namely, the leader

controls the displacement y, seeking the minimum of the total energy, while the followers (one on
each element) seek the minimum of the deformation energy on a current element for ∇y set up

by the leader. Thus each follower is to solve repeatedly convex problems parametrized by ∇y.

Remark 3. If H is small enough it may happen that, for every solution (y, η) to (RPξ
d), η belongs

to Gp
H(Ω; IR

n×m). It immediately implies that (y, η) solves also (RPd) provided ξ contains at least

linear functions adj1. For example, if ϕ(x, r, s) = v0(s) with v0 having a polyconvex quasiconvex-

ification, then this feature takes place if H = G⊗ V with V being contained in the linear hull of
all minors and v0; cf. [13].
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