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Abstract: An optimal-control problem for the stationary Navier-Stokes system are

investigated. The maximum principle is derived by a suitable relaxation.

Its su�ciency is shown provided data involved in the control problem

are small enough (depending on the Reynolds number). Regularity of

the Navier-Stokes system and its adjoint problem is used.
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Introduction

In this paper we deal with optimization of steady two- and three-

dimensional 
uid 
ows governed by the Navier-Stokes system. Analysis

of the various problems of optimal control of viscous 
ows enjoys recently

signi�cant attention within mathematical comunity. Optimal control

problem of this sort was already studied in [1, 2, 3, 7, 18, 19, 20] and [25,

Section III.11]. For an optimal shape design problem see [21]. Besides,

optimal control of evolutionary Navier-Stokes system was treated in

[4, 5, 8, 9, 10, 11, 12, 13, 14, 22, 29, 32, 33, 34, 35] and also in [25,

Section I.18].

Our main goal is to adapt the relaxation method by convex

compacti�cation [30] for Navier-Stokes equations and to exploit (quite

standard) regularity results for the stationary (linearized) Navier-

Stokes system to derive nontrivial results concerning su�ciency of the

maximum principle.

The scheme of the paper is the following. In Section 1, we specify

an optimal-control problem (P) we will deal with, and in Section 2

we pose the relaxed problem to (P) and show its correctness under

the assumption that a driving force is su�ciently small so that the

state response is uniquely de�ned. In Section 3, we con�ne ourselves
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to a special form of the data and derive the corresponding maximum

principle (i.e. necessary condition of optimality), and show that this

maximum principle forms a su�cient condition provided that the desired

velocity pro�le and the driving force are small enough (depending on

the Reynolds number), which ensures that the relaxed cost functional is

\enough" uniformly convex with respect to the state; cf. Remark 4

below. For this purpose, L

q

-regularity results for a dual (adjoint)

equation to the linearized Navier-Stokes system are exploited.

We wish to remark that the result presented here can be extended to

the power-law-like 
uids in two dimensions (at least for p >

3

2

, where

p denotes the power-law exponent, see [26] for more details). While

the regularity results applied here to the Navier-Stokes system are well

traced in the literature, their extension to the power-law 
uids is possible

because of recent nontrivial C

1;�

-regularity results for this class of 
uids

performed in [24] (see also contribution of the same authors in this

volume); the method is based on the approach introduced in [27] and

[28] but will not be presented in this paper.

1. AN OPTIMAL-CONTROL PROBLEM

We will con�ne ourselves to steady 
ows of an incompressible 
uid in

a two- or three-dimensional bounded domain 
 � IR

n

(i.e. n = 2 or 3)

with no-slip (i.e. homogeneous Dirichlet) boundary condition.

We will �rst deal with the following optimal control problem for 
ows

governed by the Navier-Stokes system:

(P)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Minimize J(z; u) :=

Z




h(x; u(x); z(x)) dx

subject to (u � r)u� ��u+rp = f(�; u; z) on 
;

divu = 0 on 
;

z(x)2S(x) for a.a. x2
;

u2W

1;2

0

(
; IR

n

); p2L

2

0

(
); z2L

q

(
; IR

m

):

Here, z denotes the control, u represents the velocity �eld and p is

the pressure. Not completely rigorous but frequently used notation

(u � r)u means

P

n

k=1

u

k

@u

@x

k

. By � > 0 we denote a 
uid viscosity

which is indirectly proportional to the Reynolds number. Further,

h : 
 � IR

n

� IR

m

! IR and f : 
 � IR

n

� IR

m

! IR

n

are given

Carathéodory functions. Finally, S : 


!

!

IR

m

is a given multi-valued

function forming the control constraints.

We use standard notation of function spaces: C(�) for the spaces

of bounded continuous functions; C

0

(IR

m

) for the space of continuous

functions on IR

m

vanishing at in�nity; L

q

(
), q 2 [1;1], for the
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Lebesgue spaces and W

1;q

0

(
) for the Sobolev spaces having zero trace

at the boundary @
. The corresponding vector-valued spaces are

denoted by L

q

(
; IR

n

) and W

1;q

0

(
; IR

n

), respectively. By (g; f) we

mean

R




g(x) � f(x)dx. Finally we use the shorthand notation L

q

0

(
)

and W

1;q

0;DIV

(
; IR

n

) for subspaces of zero-mean-value functions in L

q

(
)

and divergence-free functions in W

1;q

0

(
; IR

n

), respectively, i.e.

L

q

0

(
) := fp 2 L

q

(
);

Z




pdx = 0g ; (1:1a)

W

1;q

0;DIV

(
; IR

n

) := fu 2W

1;q

0

(
; IR

n

); divu = 0g : (1:1b)

Of course, the solution (u; p) to the Navier-Stokes system in (P) is

understood in the weak sense, which means that u 2 W

1;2

0;DIV

(
; IR

n

)

and, for a given z,

((u � r)u; v) + �(ru;rv) = (f(u; z); v) 8v2W

1;2

0;DIV

(
; IR

n

) : (1:2)

The basic data quali�cation we will need are the following:

jh(x; r; s)j � a

1

(x) + �(jrj) + cjsj

q

; (1:3a)

jh(x; r

1

; s)� h(x; r

2

; s)j

� (~a

1

(x) + �(max(jr

1

j; jr

2

j)) + cjsj

q

)jr

1

� r

2

j; (1:3b)

h(x; r; s) � c

0

jsj

q

; (1:3c)

jf(x; r; s)j � a

2

(x); (1:3d)

jf(x; r

1

; s)�f(x; r

2

; s)j � (~a

2

(x)+�(max(jr

1

j; jr

2

j)))jr

1

�r

2

j; (1:3e)

S admits a measurable q-integrable selection, (1:3f)

where � : IR

+

! IR

+

:= [0;1) is a continuous increasing function with

�(0) = 0, a

1

; ~a

1

2 L

1

(
), a

2

; ~a

2

2 L

2

(
), c 2 IR

+

, and c

0

> 0.

Remark 1. Let us recall that, having a solution u 2 W

1;2

0;DIV

(
; IR

n

)

satisfying (1.2) and assuming that f ful�lls (1.3d), it is standard (see

[35]) to construct the corresponding pressure p 2 L

2

0

(
) such that

((u � r)u; v) + �(ru;rv)� (p;div v) = (f(u; z); v) (1:4)

for all v 2 W

1;2

0

(
; IR

n

). We will involve the pressure only in the

formulations of the theorems and lemmas but not in the proofs,

because p can always be reconstructed uniquely if one knows that

u 2W

1;2

0;DIV

(
; IR

n

) satis�es (1.2),

Remark 2. Note that (1.3d) leads, just by taking v := u in (1.2), to

the energy estimate

kruk

L

2

(
;IR

n�n

)

�

k

0

�

ka

2

k

L

2

(
)

; (1:5)

where the constant k

0

comes from the Poincaré inequality.
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2. RELAXED PROBLEM

We will extend continuously the problem (P) on a suitable convex

locally (sequentially) compact envelope of the set of admissible controls

Z

ad

:= fz2L

q

(
; IR

m

); z(x)2S(x) for a.a. x2
g; (2:1)

note that (1.3f) just means that Z

ad

6= ;. To do this, we take

a suitable linear space of Carathéodory integrands containing all possible

nonlinearities occurring in the problem (P), e.g.

H := span

n

g

1

� (h � u) + g

2

� (f � u);

g

1

2C(

�


); g

2

2L

2

(
; IR

n

); u2W

1;2

(
; IR

n

)

o

; (2:2)

where [g

1

� (h � u)](x; s) := g

1

(x)h(x; u(x); s), and similarly

[g

2

� (f � u)](x; s) := g

2

(x) � f(x; u(x); s). It is natural to equip H by

khk

H

:= inf

fa2L

1

(
); c2IR; 8x2
; s2IR

m

jh(x;s)j�a(x)+cjsj

q

g

kak

L

1

(
)

+ c ; (2:3)

which is a norm (see [30, Example 3.4.13]) making H separable (see [31,

Lemma 1]). Then we imbed L

q

(
; IR

m

) (norm,weak*)-continuously into

H

�

by

i : z 7!

�

h 7!

Z




h(x; z(x)) dx

�

(2:4)

and de�ne the set of the so-called generalized Young functionals by

Y

q

H

(
; IR

m

) :=w*-cl i(L

q

(
; IR

m

)). It is known (cf. [30]) that, as

a consequence of (2.2) with (1.3a{e), Y

q

H

(
; IR

m

) is a convex locally

(sequentially) compact envelope of L

q

(
; IR

m

). The set of admissible

relaxed controls is then de�ned by

�

Z

ad

:= w*-cl i(Z

ad

): (2:5)

Thanks to the special form (2.1), also the set

�

Z

ad

is convex and locally

compact in H

�

if the weak* topology on H

�

is considered.

We will need a continuous extension of the Nemytski�� mapping z 7!

f

0

(x; z(x)) : L

q

(
; IR

m

) ! L

1

(
; IR

m

1

) with some f

0

: 
� IR

m

! IR

m

1

satisfying jf

0

(x; s)j � a(x) + cjsj

q

for some a 2 L

1

(
) and c 2 IR. This

extension is de�ned by

f

0

�
� 2 rca(

�


; IR

m

1

)

�

=

C(

�


; IR

m

1

)

�

: (2:6)

Z

�




g(x)[f

0

�
�](dx) � hf

0

�
�; gi = h�; g � f

0

i

for any g 2 C(

�


; IR

m

1

), where [g � f

0

](x; s) :=

P

m

1

k=1

g

k

(x)f

0k

(x; s).

Note that, due to (2.2), g 7! g � f

0

: C(

�


; IR

m

1

) ! H is continuous
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because kg � f

0

k

H

� kgk

C(

�


;IR

m

1

)

kf

0

k

H

and � 7! f

0

�
� is linear; cf. [30,

Example 3.6.3]. Obviously, f

0

�
i(z) = f

0

(z). We will use this extension

for f

0

:= h � u (and m

1

:= 1) and also for f

0

:= f � u (and m

1

:= n). In

the later case, we always have (f � u)
�
� 2 L

2

(
) due to (1.3d).

Then the continuous extension of the original problem (P) looks

naturally as follows:

(RP)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Minimize

�

J(�; u) :=

Z

�




[(h � u)
�
�](dx)

subject to (u � r)u� ��u+rp = (f � u)
�
� ;

divu = 0;

u2W

1;2

0

(
; IR

n

); p2L

2

0

(
); �2

�

Z

ad

� Y

q

H

(
; IR

m

):

Again, by (u; p) we understand a weak solution, which means analo-

gously to (1.2) that u 2 W

1;2

0;DIV

(
; IR

n

), p 2 L

2

0

(
), and, for a given

�2Y

q

H

(
; IR

m

), the following identity holds:

((u � r)u; v) + �(ru;rv) = h�; v � (f � u)i 8v2W

1;2

0;DIV

(
; IR

n

); (2:7)

or, in accord with Remark 1, for all v2W

1;2

0;DIV

(
; IR

n

),

((u � r)u; v) + �(ru;rv)� (p;div v) = h�; v � (f � u)i: (2:8)

Next lemma shows that, in fact, the solution to (2.7) is regular and

the Navier-Stokes system in (RP) holds almost everywhere. Moreover,

assuming certain condition on the smallness of a

2

, ~a

2

and � occurring at

(1.3d,e) we obtain the continuous dependence of u on �. Note thatW

2;2

-

regularity of the velocity will be used in assumption (1.3b,e) (because �

may have an arbitrary growth) and in other places, too.

Lemma 1. Let 
 be a C

2

-domain and (1.3d) hold. Let u 2

W

1;2

0;DIV

(
; IR

n

) denote the solution to the Navier-Stokes system with the

relaxed control � 2

�

Z

ad

. Then

8�2

�

Z

ad

: kuk

L

1

(
;IR

n

)

� c kuk

W

2;2

(
;IR

n

)

� C � C(
; ka

2

k

L

2

(
)

):

(2:9)

Moreover, let also (1.3e) hold and u

1

and u

2

2 W

1;2

0;DIV

(
; IR

n

) be two

solutions to the Navier-Stokes system with relaxed controls �

1

and

�

2

2

�

Z

ad

, respectively. Then

ku

1

� u

2

k

W

1;2

(
;IR

n

)

� C

0

k�

1

� �

2

k

H

�

(2:10)

provided that a

2

, � and c occurring at (1.3d,e) satisfy

k

1

k~a

2

k

L

2

(
)

+ k

2

0

�(C(ka

2

k

L

2

(
)

)) +

k

0

k

1

�

ka

2

k

L

2

(
)

< � ; (2:11)
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where k

0

comes from the Poincaré inequality (cf. Remark 2) and k

1

comes from the inequality

k!k

L

4

(
;IR

n

)

�

p

k

1

kr!k

L

2

(
;IR

n�n

)

: (2:12)

Proof. Due to (1.3d), the right-hand side (f �y)
�
� of the relaxed Navier-

Stokes equation (2.7) is bounded in L

2

(
; IR

n

) if � ranges Y

q

H

(
; IR

m

).

Then we can directly use nowdays standard regularity approach to the

stationary Navier-Stokes equations (cf. [16], or [6]) to obtain (2.9).

Next, let u

1

and u

2

solve the identity (2.7) with � := �

1

and � := �

2

,

respectively. Subtracting these identities and putting v := u

1

� u

2

gives

�kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

= h�

1

; (u

1

�u

2

)�(f �u

1

)i�h�

2

; (u

1

�u

2

)�(f �u

2

)i

+((u

2

� r)u

2

; u

1

� u

2

)� ((u

1

� r)u

1

; u

1

� u

2

)

= h�

1

; (u

1

�u

2

)�[(f�u

1

)�(f�u

2

)]i+h�

1

��

2

; (u

1

�u

2

)�(f�u

2

)i

+((u

2

� u

1

) � r)u

2

; u

1

� u

2

) + ((u

1

� r)(u

2

� u

1

); u

1

� u

2

):

Due to divergence-free constraint, the last term vanishes. The other

terms are estimated by means of (1.3d,e). Thus, we obtain

�kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

� k~a

2

k

L

2

(
)

ku

1

� u

2

k

2

L

4

(
;IR

n

)

+�(max(ku

1

k

L

1

(
;IR

n

)

; ku

2

k

L

1

(
;IR

n

)

))ku

1

� u

2

k

2

L

2

(
;IR

n

)

+k�

1

� �

2

k

H

�

ku

1

� u

2

k

L

2

(
;IR

n

)

ka

2

k

L

2

(
)

+kru

2

k

L

2

(
;IR

n�n

)

ku

1

� u

2

k

2

L

4

(
;IR

n

)

;

where we used also the estimate










(u

1

� u

2

) � (f � u

2

)










H

�










ju

1

� u

2

j a

2










L

1

(
)

� ku

1

� u

2

k

L

2

(
;IR

n

)

ka

2

k

L

2

(
)

;

which follows by the Hölder inequality from (1.3d) and (2.3). By (2.9),

ku

i

k

L

1

(
;IR

n

)

� C = C(ka

2

k

L

2

(
)

) for i = 1; 2. As � is increasing we

see that �(max(ku

1

k

L

1

(
;IR

n

)

; ku

2

k

L

1

(
;IR

n

)

)) � �(C). Using (2.12),

Poincaré inequality (see (1.5)) and Young inequality, we have

�kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

� (k

1

k~a

2

k

L

2

(
)

+k

2

0

�(C))kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

+ �kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

+

k

2

0

ka

2

k

2

L

2

(
)

4�

k�

1

��

2

k

2

H

�

+

k

0

k

1

�

ka

2

k

L

2

(
)

kru

1

�ru

2

k

2

L

2

(
;IR

n�n

)

for arbitrary � > 0, which implies (2.10) if (2.11) holds.
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In particular, (2.11) ensures a unique response u = u(�) for (RP) to

a given generalized control �. Hencefore, we can then put

�(z) := J(z; u(z)) &

�

�(�) :=

�

J(�; u(�)) : (2:13)

Although the unique response is desirable, some results, as e.g.

Proposition 1 below, hold even without this assumption.

Now, we can state the existence of a solution to the relaxed problem

and relations between this problem and the original one, see also [30] for

such a kind of results.

Proposition 1. Let 
 be a C

2

-domain, and let (1.3) and (2.10) be

satis�ed. Then

1. (RP) possesses at least one optimal control.

2. Moreover, inf(P) = min(RP).

3. For any optimal solution (�; u; p) 2 Y

q

H

(
; IR

m

) �W

1;2

0

(
; IR

n

) �

L

2

0

(
) to (RP) and any sequence f(z

k

; u

k

; p

k

)g

k2IN

such that

z

k

2 Z

ad

and (u

k

; p

k

) solves the Navier-Stokes system in (P) with

z := z

k

and i(z

k

)! � weakly* in H

�

, it holds �(z

k

)! inf(P), so

that this sequence is minimizing for (P).

4. Conversely, having a minimizing sequence f(z

k

; u

k

; p

k

)g

k2IN

for

(P), there exists a subsequence of f(i(z

k

); u

k

; p

k

)g

k2IN

converging

weakly* in H

�

�W

1;2

(
; IR

n

) � L

2

(
) and the limit of any such

subsequence solves (RP).

Sketch of the proof. In accord with Remark 1, we will omit p's in this

proof. Always, there is a minimizing sequence f(z

k

; u

k

)g

k2IN

for (P). In

view of (1.2), it holds

((u

k

� r)u

k

; v) + �(ru

k

;rv) = (f(u

k

; z

k

); v) (2:14)

for all v2W

1;2

0;DIV

(
; IR

n

). By (1.3a,d,f), inf(P) < +1. Then, by (1.3c),

the following apriori estimate holds:

lim sup

k!1

Z




c

0

jz

k

j

q

dx � lim

k!1

Z




h(x; u

k

(x); z

k

(x))dx = inf(P) < +1:

(2:15)

This implies fz

k

g

k2IN

bounded in L

q

(
; IR

m

). Then i(z

k

) converges

weakly* to some � 2

�

Z

ad

, if a suitable subsequence is selected. Due to

(1.5) and the Poincaré inequality, fu

k

g

k2IN

is bounded in W

1;2

(
; IR

n

).

Thus, taking another subsequence if necessary, we obtain that u

k

!
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u weakly in W

1;2

0

(
; IR

n

), which implies that u

k

! u strongly in

L

4

(
; IR

n

). Thus, for any v 2W

1;2

0;DIV

(
; IR

n

),

((u

k

� r)u

k

; v) = �((u

k

� r)v; u

k

)! �((u � r)v; u) = ((u � r)u; v) :

Moreover, by (1.3d), ff(u

k

; z

k

)g

k2IN

is bounded in L

2

(
; IR

n

) and, by

using also (1.3e), f(u

k

; z

k

) ! (f � u)
�
� weakly in L

2

(
; IR

n

); cf. [30,

Lemma 3.6.7]. Similarly, by (1.3a,b) we can see that fh(u

k

; z

k

)g

k2IN

is

bounded in L

1

(
) and converges to (h � u)
�
� weakly* in rca(

�


).

Altogether, it enables us to pass to the limit in the integral identity

(2.14), which gives just (2.7). Thus u satis�es (2.7), i.e. (�; u) is

admissible for (RP).

Moreover,

lim

k!1

J(z

k

; u

k

) = lim

k!1

Z




h(x; u

k

(x); z

k

(x)) dx

=

Z

�




[(h � u)
�
�](dx) =

�

J(�; u): (2:16)

As J(z

k

; u

k

) ! inf(P), we showed

�

J(�; u) = inf(P) so that certainly

inf(RP) � inf(P).

Taking a minimizing sequence f(�

k

; u

k

)g

k2IN

for (RP), we can prove

similarly as above that f�

k

g

k2IN

converges (after taking possibly a

subsequence) weakly* in H

�

and the limit solves (RP), as claimed in 1.

Taking (�; u) a solution to (RP), there is a sequence fz

k

g

k2IN

� Z

ad

bounded in L

q

(
; IR

m

) such that w*-lim

k!1

i(z

k

) = �. Then one can

prove similarly as above that �(z

k

) =

�

�(i(z

k

)) !

�

�(�) = min(RP), so

that min(RP) � inf(P).

Thus 2 was proved, justifying also the points 3{4 as a side e�ect.

Remark 3. If 
 were only a Lipschitz domain, we do not know whether

(2.9) holds; then the growth of � in (1.3) would have to be speci�ed

appropriately.

Remark 4. As H is separable and h(x; r; �) has a q-growth while

f(x; r; �) is bounded (see (1.3c,d)), by using [30, Lemmas 4.2.3{4] one can

see that any optimal relaxed control � 2 Y

q

H

(
; IR

m

) is q-nonconcetrating

in the sense that there is a sequence of controls fz

k

g

k2IN

such that w*-

lim

k!1

i(z

k

) = � and the set fjz

k

j

q

; k 2 INg is relatively weakly compact

in L

1

(
). Every such � has a so-called L

q

-Young-measure representation

� 2 Y

q

(
; IR

m

) (possibly not determined uniquely) satisfying

8h 2 H : h�; hi =

Z




Z

IR

m

h(x; s)�

x

(ds) dx; (2:17)

where Y

q

(
; IR

m

) denotes the set of all L

q

-Young measures, i.e. weakly

measurable families � := f�

x

g

x2


of probability Radon measures
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on IR

m

satisfying

R




R

IR

m

jsj

q

�

x

(ds) dx < +1; the adjective \weakly

measurable" means that for any v 2 C

0

(IR

m

) the mapping 
 ! IR :

x 7! h�

x

; vi :=

R

IR

m

v(s)�

x

(ds) is measurable in the usual sense.

If S is measurable and closed-valued, the relaxed problem (RP) can

be rewritten in terms of L

q

-Young measure into the following form:

(RP

0

)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Minimize

�

J(�; u) :=

Z




Z

IR

m

h(x; u(x); s)�

x

(ds)(dx)

subject to (u � r)u� ��u+rp =

Z

IR

m

f(x; u(x); s)�

x

(ds) ;

divu = 0;

supp(�

x

) � S(x) for a.a. x2
;

u2W

1;2

0

(
; IR

n

); p2L

2

0

(
); �2Y

q

(
; IR

m

):

For an extension in terms of classical relaxed controls (i.e. L

1

-Young

measures) we refer also [8, 12, 13, 33, 34].

An example for usage of (RP

0

) is the following existence result.

Proposition 2. Let 
 be a C

2

-domain, let (1.3) and (2.11) hold, let

S be measurable and closed-valued. Denote by h � f the mapping of


�IR

n

�IR

n

onto IR�IR

n

such that [h�f ](x; r; s) = (h(x; r; s); f(x; r; s)).

Assume that for all r 2 IR

n

and a.a. x2


co [h� f ](x; r; S(x)) � Q(x; r); (2:18)

where the \orientor �eld" Q is de�ned by

Q(x; r) := f(a; y) 2 IR� IR

n

; a � h(x; r; s); y = f(x; r; s); s 2 S(x)g:

(2:19)

Then (P) has a solution.

Sketch of the proof. (For more details see [31, Lemma 2].) Take a

solution � which does exist by Proposition 1(i). By Remark 4, � is

q-nonconcentrating and (every) its L

q

-Young-measure representation �

solves (RP

0

). For any x 2 
 for which

R

IR

m

jsj

q

�

x

(ds) <1 we have

Z

IR

m

[h� f ](x; u(x); s)�

x

(ds) 2 co [h� f ](x; u(x); S(x)) � Q(x; u(x)) ;

(2:20)

where we used also (2.18). Let us put

R(x) :=

�

s2S(x); h(x; u(x); s) �

Z

IR

m

h(x; u(x); �)�

x

(d�); (2:21)

f(x; u(x); s) =

Z

IR

m

f(x; u(x); �)�

x

(d�)

�

:
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By (2.19), for any (a; y) 2 Q(x; u(x)) there is s 2 S(x) such that

a � h(x; u(x); s) and y = f(x; u(x); s). Hence, for the particular choice

(a; y) = (a(x); y(x)) :=

Z

IR

m

[h� f ](x; u(x); s)�

x

(ds); (2:22)

the inclusion (2.20) implies that a(x) � h(x; u(x); s) and y(x) =

f(x; u(x); s) for some s 2 S(x), hence R(x) 6= ;. Besides, the multi-

valued mapping R : 


!

!

IR

m

de�ned by (2.21) is measurable and

closed-valued, thus it possesses a measurable selection z(x) 2 R(x). In

particular, z(x) 2 S(x). Moreover, in view of (3.1) with (3.3),

f(x; u(x); z(x)) = y(x) =

Z

IR

m

f(x; u(x); s)�

x

(ds) (2:23)

for a.a. x 2 
, so that z and � give the same response u, i.e.

u(z) = u(�) := u(�) with � given by (2.17). Hence the pair (z; u)

is admissible for (P). Moreover, by using also Proposition 1(ii), we

get

R




h(x; u(x); z(x)) dx �

R




a(x) dx =

R




R

IR

m

h(x; u(x); s)�

x

(ds)dx =

min(RP

0

) = min(RP) = inf(P). In particular, the coercivity (1.3c)

implies c

0

R




jz(x)j

q

dx �

R




h(x; u(x); z(x)) dx � inf(P) < +1; note

that (1.3a,d,f) makes inf(P) indeed �nite. Therefore, z 2 L

q

(
; IR

m

),

which completes the proof that z solves (P).

Remark 5. Note that (2.18) is ful�lled if for example Q(x; r) is convex

and compact. This is ensured if S(x) is compact for a.a. x (as h, f

are Carathéodory functions) and Q(x; r) is convex, which is a slightly

generalized variant of the Filippov{Roxin condition. A very special case

that can be however handled by a direct method occurs if S(x) is convex,

f(x; r; �) is a�ne and h(x; r; �) is convex on S(x) for a.a. x 2 
; cf. e.g.

[19] for such a type of existence result.

3. MAXIMUM PRINCIPLE

In this section we formulate �rst-order necessary optimality conditions

for (RP) in terms of a maximum principle. For maximum principle for

Navier-Stokes optimal control problems, we refer also to [4, 13, 33] or

for other type of �rst-order optimality conditions also to [3, 5, 7, 19, 20,

22, 25, 29, 35]. To give as simple proofs as possible, we con�ne ourselves

to the special case

h(x; r; s) :=

1

2

jr � u

d

(x)j

2

+

^

h(x; s) ; f(x; r; s) :=

^

f(x; s) ; (3:1)

where u

d

2 L

q

0

(
; IR

n

) is a desired (given) velocity pro�le, and

q

0

> n: (3:2)
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The �rst term in (3.1) realizes the so-called 
ow tracking often used in

literature, cf. [5, 2, 18, 19, 22, 23, 25, 29].

To formulate the maximum principle we will need the so-called adjoint

state w 2W

1;2

0;DIV

(
; IR

n

) satisfying the integral identity

�(rw;rv)�((u�r)w; v)+(w; (v�r)u) = (u

d

�u; v) 8v2W

1;2

0;DIV

(
; IR

n

) :

(3:3)

It is worth mentioning that w in (3.3) is a weak solution of the adjoint

system to the linearized Navier-Stokes equations, i.e.

���w

i

+

@�

@x

i

= (u

d

�u)

i

�

n

X

k=1

(w

k

@u

k

@x

i

�u

k

@w

k

@x

i

) ; i = 1; : : : ; n; (3:4a)

divw = 0 ; (3:4b)

where � 2 L

2

0

(
), cf. Remark 1. The following regularity of the adjoint

state, higher than e.g. in [19, Theorem 3.2], will be essential for (3.18)

below. Let us remark that, in context of 
uid control, condition (3.5)

was already used by Biliè [1].

Lemma 2. Let 
 be a C

2

-domain, let (1.3) with (3.1) with u

d

2

L

q

0

(
; IR

n

) hold, and let a

2

from (1.3d) satisfy

k

0

k

1

�

2

ka

2

k

L

2

(
)

< 1: (3:5)

Then there is C

1

depending on 
, � and ka

2

k

L

2

(
)

such that for arbitrary

small �

8� 2

�

Z

ad

: krw(�)k

L

1

(
;IR

n�n

)

� C

1

ku� u

d

k

L

n+�

(
;IR

n

)

; (3:6)

where w = w(�) 2W

1;2

0;DIV

(
; IR

n

) solves (3.3) with u = u(�).

Proof. Let us �rst observe that (3.5) implies the existence of C depending

on the above mentioned quantities such that

krwk

L

2

(
;IR

n�n

)

� C : (3:7)

Indeed, testing in (3.3) by v := w, and using the Hölder inequality and

(1.5) we obtain (notice that ((u � r)w;w) = 0)

�krwk

2

L

2

(
;IR

n�n

)

= ((u � r)w;w) � (w; (w � r)u) + (u

d

� u;w)

� kwk

2

L

4

(
;IR

n

)

kruk

L

2

(
;IR

n�n

)

+ ku� u

d

k

L

2

(
;IR

n

)

kwk

L

2

(
;IR

n

)

�

k

0

k

1

�

ka

2

k

L

2

(
)

krwk

2

L

2

(
;IR

n

)

+k

0

ku�u

d

k

L

2

(
;IR

n

)

krwk

L

2

(
;IR

n�n

)

:
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Therefore

�

��

k

0

k

1

�

ka

2

k

L

2

(
)

�

krwk

L

2

(
;IR

n�n

)

� k

0

ku� u

d

k

L

2

(
;IR

n

)

; (3:8)

and (3.7) follows due to (3.5).

Now, using the facts that u 2W

2;2

(
; IR

n

) and w 2W

1;2

(
; IR

n

), we

can view (3.4) as the Stokes system with the right-hand side belonging

at least to L

2

(
; IR

n

) (the restriction comes from the term

P

n

k=1

u

k

@w

k

@x

i

).

Then applying standard L

2

-regularity result for the Stokes system one

obtains w 2W

2;2

(
; IR

n

) with

kwk

W

2;2

(
;IR

n

)

� cku� u

d

k

L

2

(
;IR

n

)

:

However, using this we easily observe that the right-hand side of (3.4a)

belongs now to L

n+�

(
; IR

n

), � > 0, � � min (q

0

;

2n

n�2

). The L

q

-regularity

theory for the Stokes system (cf. [16] for example) then implies

kwk

W

2;n+�

(
;IR

n

)

�

~

C

1

(
; �; ka

2

k

L

2

(
)

) ku� u

d

k

L

n+�

(
;IR

n

)

: (3:9)

The assertion then follows from the imbeddingW

2;n+�

(
) intoW

1;1

(
).

Then C

1

is

~

C

1

multiplied by the norm of the imbedding W

2;n+�

(
) �

W

1;1

(
).

Lemma 3. De�ning the so-called Hamiltonian H

w

: 
� IR

m

! IR by

H

w

(x; s) := w(x) �

^

f(x; s)�

^

h(x; s) ; (3:10)

the following increment formula holds

�

�(~�)�

�

�(�)+

Z

�




H

w

�
(~���) dx =

Z




1

2

j~u�uj

2

dx�

�

((~u� u) � r)w; ~u� u

�

(3:11)

provided �; ~� 2 Y

q

H

(
; IR

m

), u = u(�), ~u = u(~�), and the adjoint state

w 2W

1;2

0;DIV

(
; IR

n

) solves (3.3).

Proof. We use successively the formula for the Hamiltonian (3.10),

the weak formulation (2.7) both for u = u(�) and for ~u = u(~�) with

v := w, the adjoint equation (3.3) with v := ~u�u, the algebraic identity

1

2

j~u� u

d

j

2

�

1

2

ju� u

d

j

2

� (u� u

d

) � (~u� u) =

1

2

j~u� uj

2

, and the Green

theorem. Thus we can obtain:

�

�(~�)�

�

�(�)+

Z

�




H

w

�
(~���)dx =

1

2

Z




j~u�u

d

j

2

�ju�u

d

j

2

dx+ h~���;w �

^

fi

=

1

2

Z




j~u�u

d

j

2

�ju�u

d

j

2

dx+�(r~u�ru;rw)�((u�r)u;w)+((~u�r)~u;w)

=

Z




1

2

j~u� u

d

j

2

�

1

2

ju� u

d

j

2

+ (u

d

� u) � (~u� u) dx� ((u � r)u;w)
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+((~u �r)~u;w)+ ((u �r)w; ~u�u)+ (w; ((u� ~u) �r)u)

=

Z




1

2

j~u� uj

2

dx+ ((~u � r)~u;w)� (w; (~u � r)u) + ((u � r)w; ~u� u)

=

Z




1

2

j~u� uj

2

dx�

�

((~u� u) � r)w; ~u� u

�

:

As a simple consequence we can now get the integral maximum

principle for the relaxed problem as the �rst-order necessary optimality

condition.

Proposition 3. Let the assumptions of Lemma 2 hold, and let (�; u) 2

Y

q

H

(
; IR

m

)�W

1;2

0

(
; IR

n

) be an optimal solution for (RP). Then there

is w 2 W

1;2

0;DIV

(
; IR

n

) solving (3.3) such that, for the Hamiltonian H

w

from (3.10), the following maximum principle holds:

Z

�




H

w

�
� dx = sup

z2Z

ad

Z




H

w

(x; z(x)) dx : (3:12)

Sketch of the proof. Let us calculate the directional derivative of

�

�,

which is by de�nition:

D

�

�(�; ~���) := lim

"&0

�

�(� + "(~� � �))�

�

�(�)

"

=

Z

�




(

^

h�w �

^

f)
�
(~���)dx

+ lim

"&0

1

"

Z




1

2

ju

"

� uj

2

� (((u

"

� u) � r)w) � (u

"

� u) dx

where we used also (3.11) with ~u := u

"

denoting the solution of the

relaxed Navier-Stokes equation (2.7) but with �

"

:= �+ "(~���) in place

of �. Let us agree to consider only ~� 2

�

Z

ad

and 0 < " � 1, which will be

su�cient for usage in (3.14) and which will guarantee �

"

2

�

Z

ad

.

Note that (3.5) now implies (2.11) because (1.3e) now holds with with

~a

2

= 0 and � = 0. Hencefore we have Lemma 1 at our disposal, so that

(2.10) gives

ku

"

�uk

L

2

(
;IR

n

)

� ku

"

�uk

W

1;2

(
;IR

n

)

� C

0

k�

"

��k

H

�

= "C

0

k~���k

H

�

:

This yields

R




ju

"

� uj

2

dx = O("

2

). Similarly, the term

�

�

�

�

Z




(((u

"

� u) � r)w) � (u

"

� u) dx

�

�

�

�

� krwk

L

1

(
;IR

n�n

)

ku

"

� uk

2

L

2

(
;IR

n

)

is O("

2

) because rw is bounded in L

1

(
; IR

n�n

) due to (3.6) with (1.5).

Altogether, we have proved the expression for the directional derivative,
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which apparently depends linearly and continuously on the direction as

soon as ~� 2

�

Z

ad

. Thus

�

� has a Gâteaux di�erential r

�

� given by

hr

�

�(�); ~� � �i = h� � ~�;H

w

i; w solves (3.3) with u = u(�): (3:13)

Then (�; u) solves (P), which means that � minimizes

�

� on

�

Z

ad

, implies

that �r

�

�(�) belongs to the normal cone to the convex set

�

Z

ad

at �,

which is just equivalent to

8~� 2

�

Z

ad

: hr

�

�(�); ~� � �i � 0 : (3:14)

This means precisely

Z

�




H

w

�
� dx = h�r

�

�(�); �i = max

~�2

�

Z

ad

h�r

�

�(�); ~�i (3:15)

= max

~�2

�

Z

ad

Z

�




H

w

�
~� dx = sup

z2Z

ad

Z




H

w

(x; z(x)) dx :

As in [30, Theorem 4.2.2], one can modify the integral maximum

principle (3.12) to a pointwise (sometimes called Pontryagin's) maximum

principle (cf. also [4, 13, 33]):

Corollary 1. Let the assumptions of Lemma 2 hold, and let S be

measurable and closed-valued. Then for any solution (�; u) to (RP) it

holds

[H

w

�
�](x) = max

s2S(x)

H

w

(x; s) for a.a. x2
 (3:16)

with the Hamiltonian H

w

from (3.10) with w 2 W

1;2

0;DIV

(
; IR

n

) solving

(3.3).

Having an L

q

-Young-measure representation � of an optimal relaxed

control �, (3.16) says that �

x

is supported on the set where H

w

(x; �)

attains its maximum. By Lemma 2, we have in particular an L

1

-

regularity of the multiplier w, which then gives the following assertion:

Corollary 2. If

^

h and

^

f are independent of x 2 
, then any optimal

relaxed control � for (RP) has an L

1

-Young measure representation �,

i.e. �

x

is compactly supported independently of x 2 
.

The following assertion states an important global property of

�

� if

the Reynolds number is small, see Remark 6 below.

Lemma 4. Let the assumptions of Lemma 2 hold, and let a

2

from

(1.3d) satisfy (3.5) and also

C

n;q

0

k

0

�

ka

2

k

L

2

(
)

+ cku

d

k

L

q

0

(
;IR

n

)

�

1

2C

1

(3:17)
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with C

1

= C

1

(
; �; ka

2

k

L

2

(
)

) from Lemma 2 and C

n;q

0

denoting the

norm of the imbedding W

1;2

(
) � L

q

0

(
). Then the extended cost

functional

�

� :

�

Z

ad

! IR is convex with respect to the geometry of the

space H

�

.

Proof. Using (1.5), Lemma 2 and (3.17), the second-order term in (3.11)

in nonnegative because of the following estimate:

Z




1

2

j~u� uj

2

dx�

�

((~u� u) � r)w; ~u� u

�

(3:18)

�

�

1

2

� krwk

L

1

(
;IR

n�n

)

�

k~u� uk

2

L

2

(
;IR

n

)

�

�

1

2

�C

1

ku� u

d

k

L

n+�

(
;IR

n

)

�

k~u� uk

2

L

2

(
;IR

n

)

�

�

1

2

�C

1

kuk

L

n+�

(
;IR

n

)

� C

1

ku

d

k

L

n+�

(
;IR

n

)

�

k~u� uk

2

L

2

(
;IR

n

)

�

�

1

2

�C

1

C

n;q

0

k

0

�

ka

2

k

L

2

(
)

� C

1

cku

d

k

L

q

0

(
;IR

n

)

�

k~u�uk

2

L

2

(
;IR

n

)

:

By (3.17) and the proof of Proposition 3, we have just obtained

�

�(~�) �

�

�(�) � [r

�

�(�)](~� � �) � 0 and, replacing the roles of � and

~�, also

�

�(�) �

�

�(~�) � [r

�

�(~�)](� � ~�) � 0. Therefore, by addition, we

obtain [r

�

�(�)�r

�

�(~�)](~���) � 0, which just says that r

�

� is monotone,

from which the convexity of

�

� follows by well-known arguments.

We are now ready to state also the su�ciency of the maximum

principle (3.12).

Proposition 4. Let condition (3.17) be satisfy. Then the maximum

principle consisting of (3.3), (3.10), and (3.12) is su�cient in the sense

that, having a triple (�; u; w) 2

�

Z

ad

�W

1;2

0;DIV

(
; IR

n

)

2

such that u solves

the Navier-Stokes system (2.7), and w solves the adjoint problem to the

linearized Navier-Stokes system (3.3), and the maximum principle (3.12)

holds, then (�; u) is the optimal solution to (RP).

Proof. By Lemma 4,

�

� is convex, so that (3.14) is also a su�cient

optimality condition. Yet, (3.14) is equivalent with (3.15).

Remark 6. The constant C

1

from (3.6) depends on � as O(�

�1

). Then,

for given u

d

and a

2

, the condition (3.17) requires � su�ciently large.

Hencefore, (3.17) needs a su�ciently small Reynolds number. As the


uid (and its viscosity �) is usually given, we rather need a su�ciently

small driving force and desired velocity pro�le, as expressed in (3.17),

indeed.
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