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1 Introduction

Chemically reacting mixtures represent a framework for ellath various complicated processes in biol-
ogy and chemistry. The main ambitions | had in mind are as nthv@modynamic consistency as possible
and simultaneously amenability for rigorous mathematcalysis, and also a high complexity of the model
which would not restrict potential biological applicat&his led to a choice of incompressible Newtonian
framework with barycentric balancing of the impulse. Theampressibility refers here both to each par-
ticular constituent and, through volume-additivity hylpesis as in e.g. [18,28], also to the overall mixture.
The electro-neutrality hypothesis, often (explicitly @thassumed to simplify the task, is not assumed here
so that the self-induced electrostatic field ought to be ickemed; let us remind that very large intensity
of electric field exist on each cell membrane (about 10-100mVi.e. e.g. inside each ionic channel, al-
though intensities inside fluid media e.qg. inside cells antercellular space are certainly smaller. Beside
biological modelling, the applications are, however, ligraand expectedly cover, e.g., chemical reactors
operating on electrolytes under varying temperature. @fsm® in specific applications the generality of
the model can be reduced, cf. Remark 4.3 below; e.g. bichbgjgplication on a cellular level can well be
considered both isothermal and with Reynolds number zero.
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2 T. Roubitek

On the other hand, it should be emphasized that many singtidits are adopted in the presented
model, too. In particular, we consider small electricalrents (i.e. magnetic field is neglected), adopt the
mentioned volume-additivity assumption, assume the siifiu fluxes independent of other constituent’s
gradients (cross-effects are neglected) as well as of thpdeature gradient (i.e. Soret’s effect is neglected)
and (in agreement with Onsager’s reciprocity principlg]28so heat flux independent of the concentration
gradients (i.e. Dufour’s effect is neglected), see Sarh{88] for more detailed discussion. Finally, the
temperature-independent diffusion and mobility coeffitseand mass densities are are considered the same
for each constituents, cf. Remark 4.4 for the more geners# catlined. Besides, mathematical analysis
(i.e. here existence of solutions to the respective initiilie problems) will be performed only in certain
special cases: anisothermal Stokes flow (in Section 3.1)isotHermal general Navier-Stokes flow (in
Section 3.2). Existence of a solution to a fully coupled sgstvas done in [30] if one consider a certain
shear-thickening power-law dependence of the viscoskifioient.

The “barycentric” (also called Eckart-Prigogine’s [9, Pddncept, which balances the impulse of barycen-
ter only, is known to yield difficulties with a definition of antropy that would satisfy the Clausius-Duhem
inequality. This seems to be reflected here, too; cf. Rema&ki@ the compressible case, this barycentric
concept has been developed in particular in Andrej, Divafed MarSik [1], Balescu [3], deGroot and Mazur
[7], and Giovangigli [12]. A newer and more rational (alsdl@a Truesdell’s) description of mixtures bal-
ances impulses for each constituent separately insteagstiilating phenomenological fluxes. It has been
proposed in Truesdell and Toupin [40], and further devealidpeparticular by Drumheller [8], Mills [18],
Muller [19] and Ruggeri [20], Rajagopal and Tao [27], Rajpgl, Wineman, and Gandhi [28], Samohyl
[32—-34], Samohyl an&iilhavy [36]. Involvement of, in concrete problems usyalhknown, interaction
terms between the particular constituents in Truesdelbdehis compensated by more rigor and less phe-
nomenology but, on the other hand, richer investigatiomskEm done rather in two-component mixtures
only, cf. [18] and [27, Chapter 7]. Therefore, as already saie chose the more phenomenological but
expectedly more applicable “barycentric” concept. Thevd¢ion of our model from Truesdell’s one under
specific simplifying assumptions was made by Samohy! [35].

2 The model and its thermodynamics

We considerL, mutually reacting chemical constituents occupying a bedndomainf? C R? with a
Lipschitz (or, for Sect. 3.1, smooth) boundary:= 9f2. Our model consists in a system ®ft- L + 2
differential equations combining the Navier-Stokes sys(2.1a), the Nernst-Planck equation generalized
for moving media (2.1b), the Poisson equation (2.1c), anch#hat equation (2.1d):

8 L
98_1; +o(- Vo —vAv+Vp = cfe, div(v) =0, fr=-eVo, (2.1a)
=1

0 . .
% + div(ngrcw) =ri(c1,.yer,0),  jo=—d(0)Vee —mee(er—q)Veo, £=1,..,L, (2.1b)

L
eAp = —q, q= Zewe ; (2.1¢c)
=1
00 L
vy T div(kV0 — cyv0) = v|Vo]* + Z (fo- 3o — he(O)re(er, .y cp,0)) (2.1d)
=1

with the initial conditions
v(0,-) =vo, ¢(0,)=coe, 6(0,-)=8y on (2. (2.2)

The notation *” means the scalar product between vectors. The meaning ofittiables is:
v barycentric velocity,
p pressure,
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c¢ concentration of-constituent, presumably to satisﬂf:1 ce=1,¢c,>0,
¢ electrostatic potential,
0 temperature,
q the total electric charge,
and of the data is:
0 > 0 mass density both of the mixture and of the constituents,
v > 0 viscosity,
ey valence (i.e. electric charge) 6fconstituent,
e > 0 permitivity,
re(ca, ..., cr, 8) production rate of thé-constituent by chemical reactions,
he() the enthalpy contained in théh constituent,
fe¢ body force acting o-constituent;f; = —e,Vo,
je phenomenological flux of-constituent given in (2.1b),
d = d(0), m > 0 diffusion and mobility coefficients, respectively,
¢y > 0 specific heat (within constant volume),
k > 0 heat conductivity.
Due to the constraint, > 0 and thevolume-additivityconstraint (i.e. Amagat's law)

L
de=1 (2.3)
/=1

(implicitly contained in (2.1) if the initial and boundaryditions are compatible with it), the variables
¢ = (e,...,c) can also be calledolume fractionsas all constituents are assumed incompressitdee
simultaneously mass fractions.

Derivation of the model is briefly motivated as follows: Thiuation (2.1a) is based on Hamilton’s dis-
sipation principle generalized for dissipative systenfis[83; the body forcef, comes from Lorenz’ force
acting on a charge; moving in the electromagnetic fiel®, B), i.e. f¢ = e,(E+v, x B) after the simplifi-
cation thatt! = —V¢ andB = 0. The equation (2.1b) balances concentration of the pdaticonstituents
as usual in Nernst-Plank equations but here completed hétadvection term di,v) related with moving
medium in Eulerian coordinates, while (2.1c) is the restfithe full electro-magnetic Maxwell's system
which remains if assuming relatively slow movements of giecharges and small electric currents which
do not create fast changes of electric fields and substaméighetic field, and eventually (2.1d) is the usual
balance of energy again in moving medium in Eulerian co@idis, see e.g. [12,1] and Remark 2.1. The
only peculiarity is the terngV¢ in the diffusive fluxj, in (2.1b). The interpretation of this term is as a
reaction forcekeeping the natural requirement

L
> je=0 (2.4)
=1

satisfied, which eventually fixes also the mentioned volaueiivity constraint (2.3), cf. the argument
(3.18) below. This volume-additivity assumption is ofteatepted in the theory of mixtures, although it
should be emphasized that it is only a certain approximatfarality; cf. the discussion in [27, Sect. 2.8].
The condition (2.4) itself is routinely assumed even for poassible mixtures, see [12, Formula (2.5.9)].
One can derive the expression of this reaction force, letamotd it for a moment by, if assuming it

to act equally on each constitueritdeed, considering the fluy in a general formj, = —d(6)Ve, —
megeg Vo + meg fr, by summing it and requiring (2.4) as well as assuming (2v8)pbtain

0=: ijg = —d(G)V(zL:CZ) — m(icwg)v¢ + mzL:csz = m(—qv¢ + fR), (2.5)
=1 =1 (=1 =1

hence we obtairfr = ¢V¢ as indeed used (2.1b). Introducing this force is perhapsnibst novelty in
the model, although in special cases this seems not to beslgraurprising, cf. Remark 2.5. Note also
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that fr is the right-hand side of (2.1a) with the negative sign. Ugugr is small becausky| is small in
comparison withmax,—1 . 1, |e|. Often, the electro-neutrality assumptign= 0 is even postulated for
simplicity, which obviously makes this reaction force zero

We have still to consider some boundary conditions, e.gosed thermally isolated container which in
some simplified version leads to:

92 —apr—9), 5=0 on ¥, .

r
v =0, ce=cp, an

wheren denotes the unit outward normal to the boundB&rand the coefficientv can be interpreted as
a “surface permitivity” of the boundary angt}- is an outer potential. Fixing concentrations bris cer-
tainly rather simplifying and some nonlinear conditionsitten-type conditions are often used to describe
chemical reactions on possible electrodedwef. [31].

Considering a fixed time horizdh > 0, we use the notatioh:= [0, 7], @ := I x {2, andX := I x 912.
Besides, we naturally assumg : R/t! — R continuous and the mass and electric charge conservation
in all chemical reactions and nonnegative productioftiefconstituent if there is none, and the initial and
boundary conditions satisfy the volume-additivity coasits, i.e.

L L
ng(cl, e, ) =0= Zegrg(cl, ey cr,0) (2.7a)
=1 =1
=0 = recy...scr,0) >0, (2.7b)
L
> cor=1, cor >0, (2.7¢)
=1
L
el =1, ¢ >0 (2.7d)
=1

Remark 2.1 Energy balancgTo show conservation of the total energy, let us assumeajtgplicity, o =
¢r(z) time independent and then calculate the rate of electrostaergy:

%%(/Qa|v¢|2dx+/a|¢—¢p|2ds :/gw-v?dsw/ ¢(¢ ¢r)ds
99 ¢ ¢>
/QquV dz —/ ¢8t(8 )ds | cpagydr
/¢Zeg—dac—/ qbZeg(rg(c,G)— div(jg—l—czv))dx
/ gbZegdlv (je + cov) dz
I?)

L
= [ V¢- e(j +ew)de— [ ¢ > epje-ndS (2.8)

where (2.1c) and (2.1b) have been used together with thérielebarge-preservation assumption (2.7a)
and twice Green'’s formula counting also with the boundanditions (2.6). Testing (2.1a) hy, we obtain
rate of kinetic energy

d 2 <
E/ g% dz :/ Zcz(fg-v) —o((v-V)v)v — v|Vo*dz = —/ v|Vu|? —|—Z ceeeVovde. (2.9)
Q 2=

(=1
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The rate of internal energy can be obtained simply by intemraof (2.1d) overf2 and using Green’s
theorem with the considered boundary conditiéigon = 0:

L

d

T ey 0dx :/ v|Vo|* — E (ejeV o + he(0)re(c,0)) da. (2.10)
Q I7; —

Altogether, summing (2.8)—(2.10) and using also (2.1®dmted over? and Green’s formula, we obtain
the following balance:

d o | _IVeP ¢ — ér|?
E(/{)(QT—FET—FCVG)dCE—F/FaTdS

:_/QzL:hg(H)n(c,H)dx—/

=1 r

L
¢ erjo-nds, (2.11)
=1

where we used the boundary conditions (2.6). Hence, (2uk1spys that the total energy rate, i.e. the rate
of the sum of kinetic, electrostatic, and internal enefgv| + 3| V| + .6 over(2 and the electrostatic

energy%a|¢ — ¢r|? deposited orT", is balanced with the enthalpy production ritﬁzl here over (2 and
the normal flux of electro-ener@f:1 ¢evje - n through the boundary'.

Remark 2.4 Sources of hegtWhen substituting, andj, from (2.1a,b), the right-hand side of (2.1d) equals

L L

F(v,¢,6,0) = v[Vol + d(0)Vq-Vo+ Y meee| Vol — mg®[ Vo> = Y he(@)re(e,0).  (212)

{=1 (=1

Hence the particular source terms finrepresent respectively the heat production due to lossrdtiki
energy by viscosity, the power (per unit volume) of the eleaturrent arising by the diffusion flux, the
power ofJoule heatproduced by the electric currents the rate of cooling by the force which balances
the volume-additivity constraint, and the heat producedomsumed by chemical reactions. The influence
of the cooling term—mq?|V¢|? is presumably very small as usuallyl << max,—1, 1, |e¢|. Besides,
Joule’s heat always dominates this cooling effect bec@ﬁze1 coed > (Zle 6465)2 if Zle ce =1and

all ¢,'s are non-negative just by Jensen’s inequality. The dffecpecificelectric conductivitys obviously
m(ZLl cee? — ¢?). The termd(9)Vq- V¢ has an indefinite sign in general and may create local cooling
effects via diffusive flux of the electric charge againstginadient of the electrostatic field, which is related
with the so-calledPeltier effecin the lines of, e.g., deGroot and Mazur [7].

Remark 2.3Entropy) A relation with standard thermodynamic concepts is thtoagecific Helmholtz’
free energytaking the form

$(v.6,c.0) = S|V ~ c.f (D). (2.13)

The specifientropys is then defined by the Gibbs' relatish= —9v/90 = ¢, (1+1n(6)), and thenternal
energyise := ¢ + 0s = ¢, 0 + %5|V¢>|2. The requirement of preservation of total energy (i.e. tha sf
the kinetic and the internal ones) leads to the energy balanc

9[%+v-v](s)+divj=f (2.14)

where the heat fluy is subjected to Fourier's law = —xV6 and f = f(v,c, ¢,0) is the dissipation
rate identified in (2.12); note that (2.14) is just (2.1d)eTthermodynamic consistency of this model can
formally be claimed only if one assumes the diffusion coeffitd = d(6) approaching zero fof ™\, 0.
This, physically acceptable assumption is to “switch offé indefinite termi(8)Vq- V¢ if temperature)
approaches zero but brings essential mathematical treubteEbtaining a-priori estimates because one has
to prove that the temperature is away from zero. This needssaphisticated techniques and is always
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difficult, if possible at all; see Feireisl [6] who showed aéak positivity” of § (in the sense that 6
belongs toL?(Q)) in the compressible context. Yet, one should realize tthae, to phase transitions and
other effects, validity of the model ends in reality muchmseahary approaches the absolute zero. Anyhow,
at least formally, the assumptidimg- o d(¢) = 0 allows for claiming non-negativity of at least if also a
natural assumption that reaction rate&:, 0) vanishes fof \, 0 is accepted. It seems acceptable to assume
still that the chemical-reaction rates are designed niyu(reby “nature”) not to consume entropy, i.e.

XL: he(0) re(c, 0) > 0. (2.15)

0
=1

Under the mentioned positivity of temperature, this woulovaus to claim theClausius-Duhem inequality

d Cf,e0.0) KV |V
—_ = > .
a /., sdz /Q ( 7 + le( 7 ) + K 02 ) dx >0 (2.16)

if one would prove still non-negativity of the “Peltier-efft” term [, d(6)Vq-V¢/0 dz; let us note that

[ div(kV6/0) dz = — [;.k07106/dndS = 0 due to the isolation on the boundary (2.6). As standard
option ford andm is

d@)=RM6O and m=FM (2.17)
whereR is the universal gas constatit,is Faraday’s constant, and is the actual mobility, see e.g. [10,

Sect.3.3.2] or [25, Sect.3.4]. The mentioned non-negwtofithe Peltier-like term then holds: indeed, by
using Green'’s formula twice, we get

/ dO)VgVs
(9] 9

RMVqV¢dr = —eRM / V(A¢)-Vdn
(9] (9]

ERM/(2|A¢I2dx—sRM/FA¢% dszRM/an(m—@ ds,  (2.18)

so that the overall entropy production by the tet(f)Vq - V¢ /0 inside (2 is non-negative if the system is
isolated, i.eac = 0.

Remark 2.4 One simple testLet us test the model on a simple example of an electrolyteposed from
two constituents, cations and anions with equal chargeqpposite sign, of course, i.&. = 2 ande; =
—eg > 0) in a calm initial state (i.evo = 0) in thermal equilibrium (i.ef; = constant) placed in a container
of the lengthD between two electrodes with voltageand the constant coefficient = «q as indicated
on Figure 1. Assume further the electro-neutrality initia boundary conditions, i.e3; = % = ¢g2 and

cl' = % = cl’. The experience related with this virtual experiment uitiely says that the electrolyte will
remain calm (i.ev = 0) and electro-neutral (i.e.= 0) and simultaneously will conduct an electric current

which will heat it up.

a=0

a=0,>0 anion fluxj,
59
/66‘6' cation fluxj

(p =0 -—— 71

r 0 a=0,>0

X D

Fig. 1. A virtual experiment with electro-neutral two-cooment elec-
trolyte placed into an electrostatic field between two etmtds.

(pr:U >0
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Indeed, (2.7a) here says+r, = 0 andr; —ro = 0 so that ultimately; = o = 0; it says that no chemical
reaction can run if the third constituent is not allowed teteated. It is a matter of simple direct calculations
to verify thatc; = ¢z = 1, v = 0, ¢ constantin time and affine in space Wity = (aoU/ (gD + 2¢),0),
andd constant in space and increasing linearly in time with thestant rate2.0 = ¢ 'me?a2U?/(a0 D +
2¢)? consist a solution to the initial-boundary-value probletri], (2.2), and (2.6). The diffusive flux is
obviouslyj; = ( — mejaoU/ (200D + 4e), 0) = —j, and the power of Joule’s heat per unit volume is

—e1j1 - Vo — eaja - Vo = me3adU? /(oD + 2¢)%. The specific electric conductivity ise?.

Remark 2.9 A special case: diluted water solutioni very diluted water solutions of salts, that typically
occur in conventional electro-chemistry or biological bgations too, an alternative option is to consider
velocity of water as the referential velocity instead of Hagycentric one as used here. This is sometimes
called Hittorf's referential system. Then, assuming adhat diffusivity and mobility coefficients are the
same for each constituents and after suitable simplifinatielying on small concentrations of non-water
constituents, the “reaction force’r = ¢V ¢ arises simply by transformation from the Hittorf's system t
the barycentric one; see [32,35]. This gives a certain liglour arguments in (2.5) which holds exactly for
general mixtures being based on the only assumptionfthatts equally on each constituent.

3 Analysis of the model

We use the following standard notation for functions spaé¢é$2; R3) denotes the Lebesgue space of
measurable function® — R? whoser-power is integrabld{Vol’Q(Q; R3) is the Sobolev space of functions
whose gradient is itf2(£2; R"*") and whose trace of\f2 vanishesJV, =, (2, R?) = {ve W (2, R?);
dive = 0 in the sense of distributiohsand W —1-2(2; R?) = W, *(2; R?)*. Likewise, W*? indicates
all kth derivatives belonging to the? space. Occasionally, we will use alsmon-integer, referring to the
Sobolev-Slobodetskil space with fractional derivativdfe will assume the following data qualification:

g, V, ¢y, 0, K, m poOsitive constants « = a(z) > 0, (3.1a)
vo € L2(2;R3), co € L2(8;RY), 6y € L*(12), (3.1b)
re - REYL — R continuous |ry(c,0)| < Lo + Ly1]6]*", (3.1c)
h¢ : R — R continuous and bounded, (3.1d)
d:R — Rcontinuous 0 < dp < d(-) < dy, (3.1e)

for some0 < n < 1 and somel;, d; € R. The sub-linear growth of reaction rates is certainly naalistic
assumptions because usually even an exponential growthygiaal phenomenon. Likewise, enthalpies
he(#) usually growth linearly with temperature so their boundesinis a simplifying assumption, too.
Yet, it seems difficult to exclude a blow-up in finite time (ian explosion) via some finer assumptions.
Moreover, (3.1) is inconsistent with (2.17) which would vég very sophisticated mathematical tricks, as
already mentioned in Remark 2.3.

The notion of a weak solution to (3.9) can be defined, excep),(8tandardly as follows:

Definition 3.1 We will call v € L2(I; W, 2, (2 R%)), ¢ € L=(I;Wy2(2)), ¢ € L(I; Wh2(2;RE)),
andf € L?(I; Wh2(£2)) a weak solution to the system (2.1) with the initial and banyatonditions (2.2)
and (2.6) if

L
/ gv% —vVu:Vz — (Q(v -V)v+ Z Cgequb) zdzdt = —Q/ vo(x) - 2(0,z) da (3.2)
@ Ot =1 2

foranyz € L2(I; Wy, (12;R?)) N WL2(I; L/5(02; R?)) with z(-, T) = 0, where “” meangr;;]: [e;;] =
Dic 21 Tijeij-

/c~%+(j+c®v):Verr(c,@)zd:Edt:—/co~z(0,x)d:r (3.3)
@ Ot [0
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satisfying also the boundary conditiongs, = ¢/ with the flux vectorj = (ji,...,jr) € L*(Q;R3*F)
defined in (2.1b) andy = (co1, ..., cor,) from (2.2) and with the test-functione L2(I; W2(2; RE)) N
Wh2(1, W/5(02; RY)) arbitrary withz(-, T) = 0,

/ eVeo-Vz—qgzdxdt =0 (3.4)
Q
foranyz e L2(I; Wh2(2;RY)), and

/ CVG% — (cyvl + kVO) - Vz+ fzdedt = fcv/ 002(0,z) dx (3.5)

with f € LY(Q) from (2.12) for any: smooth withz(-,7') = 0 on {2 and%z = 0 onX. Finally, c satisfies

L
Zce =1& ¢, >0 ae.onqQ. (3.6)
=1

Remark 3.2The volume-additivity constraint and non-negativity df&l i.e. (3.6), which gives the vector
(c1,...,cr) the desired sense of concentrations of particular coestigy is not explicitly involved in the
equations (2.1) and indeed cannot be read from them. Anyth@rassumptions (2.7) will impose these
additional algebraic constraints in a fine way through theegje structure of the system (2.1).

Inwhat follows, we will confine ourselves to two special casaly because the general case (2.1) seems
to bring serious difficulties. This is because to treat that keguation in the framework of conventiodzl-
theory as in Section 3.1 one would need a regularity of thee@peoblem with the “fixed” velocity of the
same quality, which is similar as in the Navier-Stokes sydtat this is recognized as an extremely difficult
and so far open problem for general 3-dimensional case aitfeldata. Without this regularity, one can
treat the heat equation in the frameworkiof-theory as in [21] but then, beside other technical troybles
the continuity needed for the fixed-point theorem seemsdiffdue to the advection term. The analysis of
the full system (2.1) seems to require some modificatiogs p@wer-law shear-thickening non-Newtonian
fluids instead of the Newtonian fluid (2.1a) as shown recent]g0].

3.1 Stokes’ case.

In this subsection, we will assume that the veloeitis so small that the quadratic terfn - V)v play a
role of a 2nd-order perturbation and can be neglected iraf2ld other words, we consider a fully laminar
flow with Reynolds’ number zero that can be described by tbkestequation instead of the Navier-Stokes
equation (2.1a). As we will employ regularity both for theisdmn equation and for the Stokes system, we
have additionally to assume

2 is of the claso?#, i > 0, and ¢, € L*°(I") so smooth that (3.7a)
q— ¢ : L*(0) — W*%(02) is bounded withp solving (2.1¢c)—(2.6), (3.7b)
vy € Wi (02;R?). (3.7¢)

For analysis, we define a retrakt : {€eR”; Y27 & = 1} — {€eRY S0 & =1& 6 >0, £ =
1,...,L} by

+
Kil®) i= =t

— S e max(&,0). (3.8)
yL g HEmaen0)
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Note that/ is continuous and bounded. Starting witke (¢¢)¢=1,...1, 7 andé given such thaEf:1 ce =1,
we solve successively the following auxiliary decoupledtegn consisting in the Poisson equation, the
Stokes equation, the generalized Nernst-Planck equatoddinally the heat equation, i.e.

L
eAp = —q, q= eeK4(T), (3.9a)
=1

v .
05 ~ vAv 4+ Vp =q Vo, div(v) =0, (3.9b)
% — div(d(0)Ver — cov) = re (K (€),0) — div(mK(€)(ee — q)V), £=1,..L, (3.9¢)
CV% — div(kV0 — cyv) = f(v, K(©),c,¢,0) (3.9d)

where, similarly as in (2.12), the heat source equals
L
Fw,w,e,0,0) == v|Vol> + Y (fo- je = he(@)re(w, 6)), (3.10)
=1

L

with j, = mwy ( Z ejw; — eg) V¢ —d(0)Vey, fo=—eVo. (3.11)

=1

Involving also the initial and the boundary conditions {2(2.6), the notion of the weak solutions to (3.9)
is understood in a way analogous to Definition 3.1.

Lemma 3.3Let (2.7a,c,d), (3.1), and (3.7) hold. For any= L?(Q;RY) satisfyingZL1 ¢¢ = 1 and any
0 € L*(Q), the equations (3.9) have a weak soluti@ne, ¢, §) which is unique and satisfies the following
a-priori bounds:

H(bHLOC(I wee (o)) < Co, (3.12a)

< C, H < Cy, (3.12b)

||U"LG(I;WQ’G(Q;]RS))OLOO(I;LZ(.Q;R3)) =

L2(Q;R3)
<Co+ ClHellLQ(Q)’
(3.12¢)

|17

HcéHLZ(I WL2(02))NLoo(I;L2(£2)) < Co+ ClHGHL?(Q)’ L2(I;W12(02)*) ~

<Co+ ClH9||L2(Q)a
(3.12d)

_
HQHLQU;W“(Q))ﬂLx<I;L2<r2>> <Cot ClHQHL%nQ)’ H Ot L2 (w2 ()7 —

with the constant§), and C; independent of andf. Besides¢ satisfies the volume-additivity constraint
S, ¢ = 1 (but not necessarily, > 0).

Proof. Existence of weak solutions of the particular decoupledigos (3.9) can be shown by usual meth-
ods, e.g. by using Galerkin's approximation; realize thath@se equations are linear. The only essential
point are the a-priori estimates.

Using the usualV 2:2-regularity for (3.9a), we obtain the estimate (3.12a)lizeathe smoothness as-
sumptions (3.7a,b) fof?2, o and ¢, and that eventuallys (¢) is a-priori bounded even ik > (Q; RY)
if Zle ¢¢ = 1 as indeed assumed. For regularity of (3.9b), we use a remuthé evolutionary Stokes
problem

g% —vAv+Vp=g, div(v)=0, (3.13)

with g := Ze 1 K¢(€)es Vg, whose solution satisfies the bould| s (7,216 (0 29)) < Cllgllzer;ze(2))
see Solonnikov [38,39]; even a bit less regularityvgfthan assumed in (3.7c) is needed for this result.
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Due to the a-priori bound (3.12a), we have even better iatality of g, namely||g|| Lo (7,16 (2;rs)) <
I Ze 1 Ke(©)eel| Lo (@) | VOl Lo (1,5(2;r3)) @-priori bounded. The test of (3.13) /0t yields stan-
dardly [|0v/0t|| 12(q;rs) @-priori bounded; here, € W, () is needed but we assumed even more in
(3.7¢).

Now we test (3.9¢) by, and use Green'’s formula for both the left-hand and the rigintd sides and
the identities

1 1
/ div(cpv)ep da = —/ cevVegdr = ——/ vV|ce|? dz = —/ div(v)|c/)*dz =0 (3.14)
7 7 2Ja 2Je

and, when employing the boundary conditions (2.6), also

/Q —div(mK(c)(ee — q)Ve)ceda = / (mK(€)(er — q)V®) - Vg da

2

+ /Fng(E)(eg —q)a(p — ¢r)ck dS. (3.15)
By this way, we obtain the estimate
Sileliaiay + dolVel g < [ re((@.8)c
+ (mEO)er = 0)V0) - Verdo+ [ mE(e)(er = )a(o = da)crdS
< c<1 00 2fe) (1 el ) + 2 o € [ 90] e

O el sy + 2mas Jmax il (N6t Mooy + Nellérflyanairy) — (326)
wheredy is from (3.1f) andC' = C(Ly, L1, {2, 1) is a constant and/; and N, denote the norm of the trace
operatorg — ¢|r : WH2(£2) — LY(I') and of the embedding’'/%2(I") ¢ L'(I'), respectively. Note
that we used a trivial estimafie, — q|| < (o) < 2max;—1,._ 1, |e;|- Altogether, the estimate (3.12c) follows
by Gronwall’s inequality. To be more precise, (3.15) andsthlso (3.16) requires the traceadn I to be
defined, but eventually the estimate is completely indepehdf this trace becaud€, is bounded, hence
this estimate holds for a generat L?(Q; RY) by a density argument. The second estimate in (3.12c) can
be obtained by testing (3.9¢) hye L?(1; W!2(2)) as follows:

|7

= su <% z>
LALWL2(2)%) . b < \ot’

[ HLZ(I;leQ(Q))_

= sup (/ d(@)Vep-Vz—cov-Vz—r(K(e0)z
Q

lzll L2 (w22 <1

—mK(¢)(eq—q)V - Vzda dt + /2 makK(¢)(ec—q)(p—¢r)zdS dt)

< C(HVCZHN ©mr3) T HcfHLco(l;B(Q))HUHLG(I;Loo(Q;RS))
+1+ ||9HL2(Q) + "v¢"L2(Q;R3)) + H¢ - (bFHLQ(I;Wl/Z(F))) (3.17)

whereC = O(Q, d1,m, o, maxy |€g|) is a constant. Then we use (3.12b) and the already provedpart
(3.12¢) B

To go on to (3.12d), let us now estimate the particular temfs(v K (¢),c,¢,0) from (3.11). The first
term,v|Vv|?, is a-priori bounded irl.3(I; L°°(£2)) because of the estimate (3.12b). The tepWc,- V¢
can be estimated d&,Vee Vol 2,020y < leel IVeel L2(qire) [Vl Lo (1.05(2;rs)) hence it is a-
priori bounded inZ?(I; L?/?(£2)) and hence also ifi?(I; L%/°(£2)) which is a subspace of the “energetic
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dual” to L2(I; W12(£2)) in our 3-dimensional case. The next term, inee,K,(¢)(ex — q)|Vo|?, is a-
priori bounded even i >°(I; L3(§2)) due to the estimate (3.12a). The last terahy, (0)r, (K (¢), ), can
be estimated, e.g., ih?(Q) bounded a@(HéH;("Q)). Then, testing (3.9d) b# yields, after using Green’s
formula for the left-hand side and the identity (3.14)ddnstead ot,, the first part of the estimate (3.12d).
The second part of (3.12d) can then be got like (3.17).

The uniqueness of the solutions to the auxiliary de-couptpdhtions (3.9) is trivial when realizing that
all those equations are linear and using formulae like (3uxben testing by the difference of two solutions.
Now, we have to prove that the constra@f:1 ¢y = 1 is satisfied. Let us abbreviate(t, ) =

So7_, c(t, ) By summing (3.9¢) fof = 1, ..., L, one gets

L

% = Z re(K(€),0) + div (d(g)VU +wvo
=1
— 3 mK(@) (eg -y elKl(E)) v¢) — div(d(f)Vo) +v - Vo (3.18)
/=1 =1

where (2.7a) has been used. Thus (3.18) results to the h'mnmtion%a —v-Vo —div(d(#)Vo) = 0.
We assumed|;—g = Zle cor = lando|y = Zle ¢l =1onX, cf. (2.2) and (2.6) with (2.7c,d), so
that the unique solution to this equatiorvig, -) = 1 foranyt > 0. O

Lemma 3.4Let (3.1a), and (3.7a,b) hold. Then the mapping ¢, Zle ¢¢ = 1, determined by (3.9a) is
continuous as a mappink? (Q; RY) — L™(I; W2(£2)) with 1 < r < 4o arbitrary.

Proof. Obvious from the continuity of the Nemytskil mappiag- K (¢) : L?(Q; RF) — L"(Q; RY) when
restricted on{¢ € L?(Q;RL); Zle ¢ = 1} and by the a-priori estimate (3.12a) and linearity of the
equation (3.9a). O

Lemma 3.5Let (3.1a,b), and (3.7). Then the mappiag— v determined by (3.9b) witkh determined
by (3.9a) is continuous as a mappidg(Q; R*) — LS(I; W6(£2;R?)) if ¢ is again subjected to the
constraintsZéL:1 co = 1.

Proof. The mappingé, ¢) — K,(¢)Ve : L?(Q) x L"(I; W*%(2)) — L"(I; L°(£2;R?)) is continuous
if Zle ¢¢ = 1 holds. The solution to the Stokes problem depends contsiya@n the right-hand side
from L"(I; L8 (2; R3)) to LS(I; W22(£2; R3)); cf. the a-priori estimate (3.12c) and realize the lingaoft
(3.9b). O

Lemma 3.6Let (2.7a,c,d), (3.1), and (3.7) hold. Then the mapging) — c determined by (3.9c) with
¢ determined by (3.9a) and determined by (3.9b) is continuous as a mapplffgQ; R*) x L?*(Q) —
L2(I; W1’2(Q;RL)).

Proof.One can easily prove the continuity to the weak topologhfl; W12 (£2; RL)), cf. also the a-priori

estimate (3.12c). To prove the continuity to the norm togyp)det us take a sequen¢e®, #*) converging

to (¢, 0) and the corresponding weak solutiarfsconverging weakly te,. Subtracting (3.12c) written for
cf from (3.12c) written forc, and testing the resulting equation 8y— c,, one can estimate

d
Ellek — el + dolIV ek ~ el agqrze) = /Q (ero — cEoP) V(e — eo)
+ (re(K(6),0%) = re(K(2).0) ) (ck = e0)

+ m(Ke(@)ee = ")V ~ Ku(@)lee — a)V) - V(ck o)
+ (d(0) — d(0%))Vee - V() — co) da

+ /F ma(KAé’“)(w—qk)m’z —Ke<é><ez—q>¢ce)<c’z—ce>ds, (3.19)
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where naturally* := ZZL e,cr. By Aubin-Lions theorem (see [2] and [17, Sect.l.5.2]) ahe &-priori
estimate (3.12c), we knomf — ¢ strongly inL?(I; L5=9(42)) for 6 > 0 arbitrary. This convergence also
holds weakly* inL>(I; L?(12)). By interpolation (e.g. in ratig¢ and3), one can see that

v *“Hm(z;m—c(m) < ok — ”HLZ 1;L5-5(2)) ok = ”HLw ;22 — 0 (3.20)

with some(¢ > 0 arbitrarily small (depending of > 0), cf. e.g. Lions [17, Sect.lll.2.1]. Moreover, from
Lemma 3.5, we already know that — v in LS(I; WL6(02;R3)) C LS(I; L>°(§2;R?)). Altogether,
(cov — o)V (ck — ¢) converges to zero weakly ib'2/11 (1; L(6—20/G=0(2)) ¢ LY(Q). The next term
converges to zero weakly ib' (I; L%/2(12)) because, (K (¢*),0%) — r(K(e),0) in L>(1=7(Q) due to
the assumption (3.1d) and the standard Nemytskii-magh#grem and becausg — cin L?(I; L°(£2)).
The further term converges to zero weakly iIR—%(1; L?/2(§2)) for any § > 0 becausek,(c*)(e; —
*)VeF — Ky(e)(ep — q)Ve in L™(I; L5(£2;R?)) and Ve, — Ve weakly in L2(Q;R?). Takingcs €
Lo (I; Whe(12)) such that|Ves — Vg L2(g.rs) < 0, we can estimate

// d(0) — d(0%))Veg - V(ce—q)dxdt<// —d(0%))Ves - V(ch—eco) dzdt

+ 4||d(0) (3.21)

)HLOO(Q)||v(c§_cé)||L2(Q)’
where the right-hand-side integral converges to zero sy, — Ve, weakly inL?(Q; R?) andd(d) —
d(6%) strongly inL2(Q), and therefore we can see that the left-hand-side integnaterges to zero because
0 > 0 can be taken arbitrarily small. Eventually, the boundanntén (3.19) simply vanishes because
cf—co = cf'—cl = 0onI. Altogether, from (3.19) by Gronwall's inequality, we geétstrong convergence
cf — coin L2(I;W12(02)), as claimed, and also ib>(I; L?(£2)). O

Lemma 3.7Let (2.7a,c,d), (3.1), and (3.7). Then the mappiag)) — 6 determined by (3.9d) with
determined by (3.9c) with determined by (3.9a) and determined by (3.9b) is continuous as a mapping

L*(Q:RY) x L*(Q) — L*(Q).

Proof. We start with proving continuity ofv, ¢, ¢, ¢,0) — f(v, K(¢),c,¢,0) with f from (3.10) as a
mapping fromL® (I; W6(2; R3)) x L2(Q;RE) x L2(I; W12(02;RY)) x L™(I; W?2(02)) x L*(Q) to
the weak topology of ?(I; L%/°(£2)), which is a subset of the natural “energetic dusf{7; TW1:2(£2)*),
so that the standarfi>-theory for the heat-transfer equation will apply. Let ustgoough the particular
terms inf.

By Lemma 3.5 — |Vw|? is continuous to the norm topology @f(Q;R3)) which is certainly a
subset ofL2(I; L%°(£2)). As to (¢, ¢) + Ve, - Vo, by Lemma 3.6 we know continuity iRc, in the
norm topology ofZ?(Q) and by the a-priori estimate (3.12a) we know also the coittino V¢ in the
weak* topology ofL>°(I; L%(2)), hence altogether we have continuityNfe, - V¢ in the weak topology
of L2(I; L*/?(£2)) which is again a subset df?(I; L%/%(12)). By Lemma 3.4 and by continuity of the
Nemytskil mappings, the continuity in the tet¥y(¢) (e, — Zle K,(¢))|V¢|? is into the norm topology
L"/2(I; L*(£2)) which is again a subset & (I; LS/>(£2)) if » > 4 s considered. Eventually, the continuity
in7¢(K (¢), #) in the norm topology of.?/(1=7)(Q) is a consequence of (3.1d).

Then, we get the continuity ifl in the weak topology ofZ.2(I; W12(2)) N Wh2(02; Wh2(02)%),
cf. the a-priori estimate (3.12d) and realize that the lipaissage in the convective tertiv(vf) = v - VO
is simply due to strong convergenceinEventually, the continuity i in the norm topology of.2(Q) is
by the Aubin-Lions theorem. O

Proposition 3.8Let (2.7), (3.1), and (3.7) hold and Iét > 0 be so large tha? > T'(Cy + C1R'™")
with Cy and C; from Lemma 3.3 ang from (3.1d). Then the mappin@, 6) — (c,6) has a fixed point
(c,0) on the set

{(c 0) € L2(Q: RETY);

L
)i Nlell pogumry < B [10]] 12y < B ;Cz =1}, (3.22)
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and moreover every such a fixed point satisfies alse 0 for any/. Thus, considering als¢ andv related
with this fixed poinfc, 8), the quadruplé ¢, v, ¢, 8) is a weak solution (in the sense of Definition 3.1) to the
system (2.1) with the convective tefm V)v in (2.1a) omitted.

Proof. By the a-priori estimate (3.12d), it hold§|| 1> (q) < VT|6]| L (1:L2(2)) < VT(Co+ Cullf] ()

< R provided||0|| .2(q) < R. By (3.12c), it then also hold$z|| ;2(g.rzy < R. The continuity of(c, §) —
(c,0) in L?2(Q;RE*1) has been proved in previous Lemmas. By a-priori estimatd2¢3d) and Aubin-
Lions’ theorem, the image of the convex set (3.22) is comjpatf (Q; RY). By Schauder’s theorem, this
mapping has a fixed point, sdy, v). Thus we get als@, andd, and the quadruplép, v, ¢, ) is a weak
solution to (3.9) provided we also prove (3.6).

The constrainEf:1 ce = 1is, as provedin (3.18), satisfied and, at this fixed point, axeetadditionally
alsocy(t,-) > 0 satisfied for any. To see this, test (3.9¢) written with = ¢, by the negative pawt, of
ce. Realizing Ky (c)Ve, = 0 because, for a.dt,z) € Q, eitherKy(c(t,z)) = 0 (if c,(t,z) < 0) or
Veo(t,z)~ = 0 (if co(t,z) > 0), andre(-)c, > 0 because of (2.7b), we obtaip = 0 a.e. onQ.
To be more precise, we can assume, for a momentythatdefined on the whol®” in such a way that
re(ci, ..., cr) > 0for e, < 0. As we are just proving that > 0, the values of, for negative concentrations
are eventually irrelevant.

The non-negativity of, togetherwichéL:1 c¢ = 1 ensuresthat(t,z) € Range(K)fora.a.(t,z) € @
so thatc, = K/(c) and thus the quadrup(®, v, ¢, §) is a weak solution not only to (3.9) with = v and
¢ = c but even to the original system (2.1)0

3.2 Isothermal case.

A lot of applications run essentially on constant temperatiecause of the negligible heat production
and/or a sufficiently fast transfer of the produced heatidetthe considered domai®. In such cases, we
can consider the production rate= r,(c) independent o, the diffusion coefficient constant, and kick
the heat equation (2.1d) out. This enables us to analyzesthaining system (2.1a-c) without any need of
regularity of the Navier-Stokes system (2.1a) so that wecocasider the convective terfa - V)v in (2.1a),

i.e. arbitrary Reynolds’ numbers. Moreover, no reguldadtythe Poisson equation (2.1c) is needed, either,
so we do not need the data qualification (3.7) at all. Even @&manstructive analysis through the Galerkin
method instead of the fixed-point approach used here iskjesas shown recently in [29].

For analysis, we will use again the retrdctdefined in (3.8) and design the fixed-point procedure as
follows: starting withé = (&)¢=1,..., and @ given such thaEL1 ¢y = 1, we solve successively the
following auxiliary decoupled system consisting in thed3oin, the approximate Navier-Stokes (so-called
Oseen) equation, and finally the generalized Nernst-Plaquktions, i.e.

L
eAp=—q, q=) ek.(e), (3-23a)
=1
0
ga—z +0(0-V)v—vAv+Vp=qVe, div(v)=0, (3.23b)
80[

E — diV(dVCg - CgT)) =1y (K(E))
—div(mK(c)(es —q)Ve¢), €=1,..L. (3.23c)

The notion of the weak solutions to (3.23) with the boundarg the initial conditions (2.2) and (2.6) is
understood in a way analogous to Definition 3.1 with the hgat#on (3.5) omitted, of course.

Lemma 3.9Let (2.7a,c,d) and (3.1) hold. For any € L?(Q;RF) satisfyinng:1 ¢¢ = 1 and for any
v € L2(I; Wy, (2;R?)) N L (I; L2(£2;R?)), the equations (3.23) have a weak solutiong, ¢) which
and satisfies the following a-priori bounds:

H(bHLOO(I;Wlﬂ(Q)) < Co, (3.24a)
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||UHL2(I WL2(25R) Lo (1;L2(25R3)) = Co, (3.24b)

H LA/3(I; W, gy (S2R3)*) <G+ G H@}’LQ(I'W“(Q;R3))0L°°(I;L2(Q;R3))’ (3-24¢)
Ocy

HceHLQ(I;WL?(Q))QLOC(I;LQ(.(Z)) < Co, H LA/3(L;WL2(2)%) < Co, (3.24d)

with the constant€’, and C; independent of and v. Besides¢ always satisfies the volume-additivity
constraintzéL:1 ¢ = 1 (but not necessarily, > 0).

Proof. It mostly simplifies the proof of Lemma 3.3 above. As to (3.R4tgust suffices to test (3.23a) hy
itself; note that no regularity is used now, unlike in Lemni&3efore. The estimate (3.24b) can be obtained
by testing (3.23b) by itself and using the usual trick the, Vp - vdz = — [, pdiv(v) dz = 0 as well

as [, (v V)v-vda = 0so that the bound in (3.24b) is completely independent dhe estimate (3.24c)
can be obtained by testing (3.23b) by a suitabies follows:

H v Ov >
oll= , = sup 0—,2
DL s W3 (89 ™ el <1 O
= sup /VVv:Vz+g(17~V)v~z—qV¢~zdxdt
Il rawd 2, s <17 @

_1/2 _1/2
T (V + QN3/2HUHLZ(I;Wlﬂ(Q;R?*))"v"LW(I;LZ(Q;R3)))

+2N€£?§L|eé| HV(bHL4/3(17L6/5(Q)) (325)

< HVUHLZ(Q;]RSX3)

where we used the Holder inequality and the interpolat®imd3.20) to estimate the convective term

/Q(” Vv zdedt < H77||L4(1;L3(Q;R3))||V”||L2(Q;R3X3)||ZHL4(1;L6(Q;R3))

_n1/2 _n1/2
< HUHL?(I;LG(Q;RS))||U||L°°(I;L2(.Q;R3))||vv||L2(Q;R3X3)HZ||L4(I;L6(Q;R3))
and whereV denotes the norm of the embedding?(£2) C L°(£2). Using the already obtained estimates
(3.24a) and (3.24b), the estimate (3.24c) follows.

The proof of (3.24d) remains essentially the same; notentsithher (3.16) nor (3.17) needs any regular-
ity of ¢, the latter estimate (3.17) requires a modification

/chv-Vzd:cdt = HCZHL%I;LG(Q))H’DHL‘l(I;LS(Q;RS))HVZHL‘l(I;L%Q;]RS))

1/2 1/2
< HCZHB I;L5(£2)) H HL2 I;LO(£2;R3)) H HLw([ L2(82; RS))HVZHL4(1;L2(Q;R3))' =
Let us abbreviate
W = {c € LQ(I;WI’Q(Q;RL)); gt L4/3( ;Wl’Q(Q;RL)*)}, (3.26)
Wy o= {ve L2( W2 (@ ®); 2 e 1V (w2 (2:8)) ) (3:27)

Endowed by the respectlveg—“ graph” norms, these spaces become Banach spaces andethdyalised
Aubin-Lions theorem [2,17] gives the compact embeddigs C L2(I; L5~9(§2;R")) for any§ > 0,
and similarlyW, < L2(I; L°~°(£2;R?)). Moreover, we will also use the well-known fact that, C
L (I; L?(2; R?)) continuously.
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Lemma 3.10Let (3.1a,b) hold. Then the set-valued mappi{Agr) — {v € Wh; v is a weak solution
to (3.23b) with¢ determined by (3.23&)is (weak,weak) upper semicontinuous convex-valued mgppin
Wi x Wa = W, if ¢ is again subjected to the constraiis,_, & = 1.

Proof. Taking a sequence dfc*, v%)} ren converging weakly tde, 7) in Wi x W, by Aubin-Lions’ the-
orem we have® — ¢ strongly inL?(Q; R¥), hencep® — ¢ in L™(I; W12(2)), and alsak,(¢¥)Vo* —

K (@) V¢ in LT'(I L2(£2;R3)) with » < oo arbitrary. Then the limit passage in (3.23b) is routine;iebv
ouslny V)vk-zdr — fQ v-V)v-zdz at least forz € L*>°(Q) (those functions are densely contained
in the set of test functions for (3.2), if they are containedlB because* — © strongly inL?(Q; R?) and
Vol — Vo weakly L2(Q; R3*3).

As (3.23a,b) is linear fofc, v) fixed, the set ob’s in question is convex. O

Lemma 3.11Let (2.7a,c,d) and (3.1). Then the set-valued mapping) — {ceWi; c is a weak solution
to (3.23c) with withp determined by (3.234&)s (weak,weak) upper semicontinuous convex-valued mgppin

W1 x Wy = W if ¢is again subjected to the constrairﬁ:%f:1 ¢ = 1.

Proof. By a-priori estimates (3.24d), by standard arguments thi¢ fiassage in (3.23c) formulated weakly
easily follows.
As (3.23a,c) is linear fofe, v) fixed, the set of’s in question is convex. O

Proposition 3.12Let (2.7) and (3.1) hold. The set-valued mappldg (¢, ) — {(c,v) € W1 xWs; (¢, v)
is a weak solution to (3.23b,c) withdetermined by (3.23&)has a fixed poinfc, v) on the convex closed
set

{(C’U)EW1XW2 : HCHL2(I;W1’2(Q;RL)) - ’ L4/3 le 2(_(2 RL) ) S CO’
||v"L2(I;W1’2(Q;]RS))HLOO(I;LZ(.Q-R3)) < Co,
ov
< Co(14+C)) - 1} 3.28
‘ 9t s w2 ey = COUTED Zc@ (3.28)

with Cy and C; from (3.24). Moreover, every such a fixed point satisfies ajsg> 0 for any ¢. Thus,
considering alsap related with this fixed poinfc, v), the triple (¢, v, ¢) is a weak solution (in the sense of
Definition 3.1) to the system (2.1) with the heat equatiohdPomitted.

Proof. The (weak,weak) upper semicontinuity &f : W) xWs =% Wy x W, has been proved in previous
Lemmas 3.10 and 3.11. By a-priori estimates (3.24b-d) arargpyments as (3.18), this mapping maps the
convex set (3.28) into itself, and the valuesMf are nonempty. By Lemmas 3.10 and 3.11, this values
are also convex. BothV; andW, are compact if endowed with the weak topologies; here it jgartant
that the se{v € Wa; ||[v]|p(1;L2(2:r3)) < Co} is closed inV, due to the continuous embedding, C

L (I; L*(2; R3)). By the Kakutani fixed-point theorem saying that any upperisgontinuous nonempty-
convex-valued mapping on a compact convex set has a fixed, panobtain existence of a fixed point
(c,v) € M(c,v). The non-negativity of, is then to be proved as done Proposition 3.8.

4 Concluding remarks

Remark 4.1 Composition-dependent coefficiefytslaking the coefficients = ¢(c), d = d(c), m = m(c),

v = ¢y(c), or k = k(c) dependent on the concentrations brings essentially ndgmsbas far as this
dependence is continuous and these coefficients do notelegemo zero. The auxiliary decoupled systems
(3.9) and (3.23) are then to be constructed by replacimith K (¢) in these coefficients, cf. [29] for the
isothermal case. On the other hand, making the mass dendiépendent om would indicate that mass
densities of particular constituents differ from each gthad then the whole concept becomes much more
complicated because one must distinguish between voluangdns and mass fractions [35].
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Remark 4.4 Alternative model3.The dissipative heat, i.e. the first term in (2.12), is to begjioned. Con-
sidering only one-component electrically neutral system { = 1, e; = 0), there are various models
appearing in the literature, cf. e.g. [4,15,26] for a gemedivarious possibilities in case of an additional
buoyancy. The starting point is always the complete congvksfluid system of: + 2 conservation laws

for mass, impulse, and energy;denotes the spatial dimension. Then, the so-called incessfirle limit
represents a small perturbation around a stationary honeoges state, i.e. around constant mass density,
constant temperature, and zero velocity. E.g., the corveaitOberbeck-Boussinesq model neglects the
dissipative heat. It should be emphasized that, thoughrigeal full system is thermodynamically con-
sistent, the incompressible limit systemvof- 1 equations in general violates both the energy conservation
law and the Clausius-Duhem inequality. Hence it is ceryainteresting that, in our case, we got these
properties back.

Remark 4.3Some special cas¢d he general system (2.1) covers also some other specied casdied

in literature. Neglecting the heat equation (2.1d) as weiniSection 3.2 and further the Navier-Stokes
flow part (2.1a) by considering a fully stationary mediura, i. = 0 andp constant, (2.1) reduces into the
so-called Nernst-Planck-Poisson system, which is a basétehfor electro-diffusion of ions in electrolytes
formulated by W. Nernst and M. Planck at the end of 19th cenéurd which has massively been scrutinized
in the literature, see Glitzky [11] for its mathematical Bsés. Often, the electro-hydro-dynamics (EHD)
does not requirgle ce =1, see e.g. [5,16,25,37] where however no mathematical sisas/done, or it

is even considered as a constraint and involved through eabhgg multiplier, see [22] for such an attempt.
Neglecting the flow and the electric field (2.1a,c) by putting 0, p = 0, and¢ = 0, one gets the model
studied by Henri [14] for the special case= Zj ke; f; wheref; = fi(ci,...,cr,0).

Remark 4.4More general mobility and diffusivity coefficienfsSome mixtures exhibit markable differ-
ences between mobilities of particular constituents (@sfig if the size of the involved (macro)molecules
varies considerably) and also cross-effects may occun Teediffusivity and mobility are rather matrices
dre andmy,, respectively. We assume again that the reaction figdealancing the heat fluxes to zero
sum (2.4) acts equally on each constituents, i.e. the puesettingj, = —d(0)Ve, — mee(e,Vd — fr)
generalizes to

L

jg = Z ( — dkg(e)VCk — MyCk (ekV(b - fR)) (4-1)

k=1

The requirement (2.4) then ultimately implies by a simpbgehka thatfr must take the form
L

L L L
fr= Z Z (dkz(@)Vck + mkgckekV(b) /JV[, M : Z Z M Cre - (4.2)
2

14=1 k=1 /(=1

By Onsager’s principle [23], the matricéd,.(6)] and [my,] are symmetric. The former caga = ¢V¢

is, of course, a special case of (4.2) fdr.(6)] and [my,| diagonal withd,,(0) = d(6) andmg = m
and with (2.3) holding, and it was considered for the sakeuoidity of the explanation not to make the
formulas and the analysis too complicated. Let us only roerttiat, in the case (4.2), the a-prori estimates
(3.12c) and (3.24d) must be done for all concentratioas(cy, - - - , ¢z,) simultaneously by summing the
Nernst-Planck equations fey tested byc,, which requireszllejg - Ve, > 52521 |Vee|? for some

§ > 0, i.e. [dre(0)] to be positive definite uniformly with respect to The fixed-point procedure (3.9)
must be modified accordingly, i.e. all. in (4.2) are to be replaced b (c). The a-priori estimates as
well as limit passage bear appropriate modifications, téwe parabolic equation (3.18) modifies to the
hyperbolic%a + v - Vo = 0 which admits again the unique solution= 1 because of the initial and
boundary conditions = 1 and because ando are enough regular. Let us finally mention that an attempt
for another method to made (2.4) satisfied had been implexdent[12, Sect.2.5.1] without considering
electric charges, however.
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ERRATA

The second estimate in (3.24d) depends also on v. More importandly, the
non-negativity of ce in the proof of Proposition 3.12 unfortunately does
not seem to be convincing becuase %cz is not in duality to ¢, Wwhich is thus
not a legal test function for the corresponding Nernst-Plan ck equation. The
results in Sect.3.2 remains however true if one applies the f ollowing changes:

Instead of ¢,v in (3.23c), put Ky(e)v.

Then (3.23c) still remains a system of separated single line ar equations,
each of them having a unique weak solution. The possible non- uniqueness comes
from possible non-uniqueness of v but the convexity of the set-valued map-
ping in Lemma 3.11 is preserved. The estimate (3.24d) then ap plies with LA3(I;.)

replaced by  L?(I;.) because the last estimate in the proof of Lemma 3.9 can
now be made simply as

/ Ky(e)v-Vzdedt < HU||L2(Q;R3)HVZHLZ(Q;R3) < T1/2C()||VZ||L2(Q;R3)
Q

with  Cy referring to (3.24b); moreover, the estimate (3.24d) is now indeed

independent of v. Then (3.18) even simplifies because

L L

> div(E,(e)v) = div(v Y K,(e)) = div(v) = 0.

=1 =1
The non-negativity of ce in the Kakutani's fixed point can now be proved
by testing the Nernst-Planck equation by ¢, Wwhich is now indeed in dual-
ity with %Ce. The argument for Ky(c)v- Ve, =0 is now the same as used in
the proof of Proposition 3.8 for K¢(c)Ve, =0.
Acknowledgement: Thanks are to Ji Fi Glaser who detected the above mentioned
discrepancy in the proof of Proposition 3.12 concerning the non-negativity

of Cy.



