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Abstract The model combining Navier-Stokes’ equation for barycentric velocity together with Nernst-
Planck’s equation for concentrations of particular mutually reacting constituents, the heat equation, and
the Poisson equation for self-induced quasistatic electric field is formulated and its thermodynamics is
discussed. Then, existence of a weak solution to an initial-boundary-value problem for this system is proved
in two special cases: zero Reynolds’ number and constant temperature.
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1 Introduction

Chemically reacting mixtures represent a framework for modelling various complicated processes in biol-
ogy and chemistry. The main ambitions I had in mind are as muchthermodynamic consistency as possible
and simultaneously amenability for rigorous mathematicalanalysis, and also a high complexity of the model
which would not restrict potential biological applications. This led to a choice of incompressible Newtonian
framework with barycentric balancing of the impulse. The incompressibility refers here both to each par-
ticular constituent and, through volume-additivity hypothesis as in e.g. [18,28], also to the overall mixture.
The electro-neutrality hypothesis, often (explicitly or not) assumed to simplify the task, is not assumed here
so that the self-induced electrostatic field ought to be considered; let us remind that very large intensity
of electric field exist on each cell membrane (about 10-100 MV/m), i.e. e.g. inside each ionic channel, al-
though intensities inside fluid media e.g. inside cells or inintercellular space are certainly smaller. Beside
biological modelling, the applications are, however, broader and expectedly cover, e.g., chemical reactors
operating on electrolytes under varying temperature. Of course, in specific applications the generality of
the model can be reduced, cf. Remark 4.3 below; e.g. biological application on a cellular level can well be
considered both isothermal and with Reynolds number zero.
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On the other hand, it should be emphasized that many simplifications are adopted in the presented
model, too. In particular, we consider small electrical currents (i.e. magnetic field is neglected), adopt the
mentioned volume-additivity assumption, assume the diffusion fluxes independent of other constituent’s
gradients (cross-effects are neglected) as well as of the temperature gradient (i.e. Soret’s effect is neglected)
and (in agreement with Onsager’s reciprocity principle [23]) also heat flux independent of the concentration
gradients (i.e. Dufour’s effect is neglected), see Samohýl [35] for more detailed discussion. Finally, the
temperature-independent diffusion and mobility coefficients and mass densities are are considered the same
for each constituents, cf. Remark 4.4 for the more general case outlined. Besides, mathematical analysis
(i.e. here existence of solutions to the respective initial-value problems) will be performed only in certain
special cases: anisothermal Stokes flow (in Section 3.1) andisothermal general Navier-Stokes flow (in
Section 3.2). Existence of a solution to a fully coupled system was done in [30] if one consider a certain
shear-thickening power-law dependence of the viscosity coefficient.

The “barycentric” (also called Eckart-Prigogine’s [9,24]) concept, which balances the impulse of barycen-
ter only, is known to yield difficulties with a definition of anentropy that would satisfy the Clausius-Duhem
inequality. This seems to be reflected here, too; cf. Remark 2.3. In the compressible case, this barycentric
concept has been developed in particular in Andrej, Dvořák and Maršı́k [1], Balescu [3], deGroot and Mazur
[7], and Giovangigli [12]. A newer and more rational (also called Truesdell’s) description of mixtures bal-
ances impulses for each constituent separately instead of postulating phenomenological fluxes. It has been
proposed in Truesdell and Toupin [40], and further developed in particular by Drumheller [8], Mills [18],
Müller [19] and Ruggeri [20], Rajagopal and Tao [27], Rajagopal, Wineman, and Gandhi [28], Samohýl
[32–34], Samohýl anďSilhavý [36]. Involvement of, in concrete problems usually unknown, interaction
terms between the particular constituents in Truesdell’s model is compensated by more rigor and less phe-
nomenology but, on the other hand, richer investigations can be done rather in two-component mixtures
only, cf. [18] and [27, Chapter 7]. Therefore, as already said, we chose the more phenomenological but
expectedly more applicable “barycentric” concept. The derivation of our model from Truesdell’s one under
specific simplifying assumptions was made by Samohýl [35].

2 The model and its thermodynamics

We considerL mutually reacting chemical constituents occupying a bounded domainΩ ⊂ R
3 with a

Lipschitz (or, for Sect. 3.1, smooth) boundaryΓ := ∂Ω. Our model consists in a system of3 + L + 2
differential equations combining the Navier-Stokes system (2.1a), the Nernst-Planck equation generalized
for moving media (2.1b), the Poisson equation (2.1c), and the heat equation (2.1d):

%
∂v

∂t
+ %(v ·∇)v − ν∆v + ∇p =

L∑

`=1

c`f` , div(v) = 0 , f` = −e`∇φ, (2.1a)

∂c`
∂t

+ div
(
j`+c`v

)
= r`(c1, ..., cL, θ) , j` = −d(θ)∇c` −mc`(e`−q)∇φ, ` = 1, ..., L , (2.1b)

ε∆φ = −q, q =

L∑

`=1

e`c` , (2.1c)

cv
∂θ

∂t
− div

(
κ∇θ − cvvθ

)
= ν|∇v|2 +

L∑

`=1

(
f` · j` − h`(θ)r`(c1, ..., cL, θ)

)
(2.1d)

with the initial conditions

v(0, ·) = v0 , c`(0, ·) = c0` , θ(0, ·) = θ0 on Ω. (2.2)

The notation “·” means the scalar product between vectors. The meaning of the variables is:
v barycentric velocity,
p pressure,
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c` concentration of̀ -constituent, presumably to satisfy
∑L

`=1 c` = 1, c` ≥ 0,
φ electrostatic potential,
θ temperature,
q the total electric charge,

and of the data is:
% > 0 mass density both of the mixture and of the constituents,
ν > 0 viscosity,
e` valence (i.e. electric charge) of`-constituent,
ε > 0 permitivity,
r`(c1, ..., cL, θ) production rate of thè-constituent by chemical reactions,
h`(θ) the enthalpy contained in thèth constituent,
f` body force acting oǹ-constituent:f` = −e`∇φ,
j` phenomenological flux of̀-constituent given in (2.1b),
d = d(θ), m > 0 diffusion and mobility coefficients, respectively,
cv > 0 specific heat (within constant volume),
κ > 0 heat conductivity.

Due to the constraintc` ≥ 0 and thevolume-additivityconstraint (i.e. Amagat’s law)

L∑

`=1

c` = 1 (2.3)

(implicitly contained in (2.1) if the initial and boundary conditions are compatible with it), the variables
c = (c1, ..., cL) can also be calledvolume fractions; as all constituents are assumed incompressible,c are
simultaneously mass fractions.

Derivation of the model is briefly motivated as follows: The equation (2.1a) is based on Hamilton’s dis-
sipation principle generalized for dissipative systems, cf. [8]; the body forcef` comes from Lorenz’ force
acting on a chargee` moving in the electromagnetic field(E,B), i.e.f` = e`(E+v`×B) after the simplifi-
cation thatE = −∇φ andB = 0. The equation (2.1b) balances concentration of the particular constituents
as usual in Nernst-Plank equations but here completed with the advection term div(c`v) related with moving
medium in Eulerian coordinates, while (2.1c) is the rest from the full electro-magnetic Maxwell’s system
which remains if assuming relatively slow movements of electric charges and small electric currents which
do not create fast changes of electric fields and substantialmagnetic field, and eventually (2.1d) is the usual
balance of energy again in moving medium in Eulerian coordinates, see e.g. [12,1] and Remark 2.1. The
only peculiarity is the termq∇φ in the diffusive fluxj` in (2.1b). The interpretation of this term is as a
reaction forcekeeping the natural requirement

L∑

`=1

j` = 0 (2.4)

satisfied, which eventually fixes also the mentioned volume-additivity constraint (2.3), cf. the argument
(3.18) below. This volume-additivity assumption is often accepted in the theory of mixtures, although it
should be emphasized that it is only a certain approximationof reality; cf. the discussion in [27, Sect. 2.8].
The condition (2.4) itself is routinely assumed even for compressible mixtures, see [12, Formula (2.5.9)].
One can derive the expression of this reaction force, let us denote it for a moment byfR, if assuming it
to act equally on each constituent: indeed, considering the fluxj` in a general formj` = −d(θ)∇c` −
mc`e`∇φ +mc`fR, by summing it and requiring (2.4) as well as assuming (2.3),we obtain

0 =:

L∑

`=1

j` = −d(θ)∇
( L∑

`=1

c`

)
−m

( L∑

`=1

c`e`

)
∇φ+m

L∑

`=1

c`fR = m
(
−q∇φ+ fR

)
, (2.5)

hence we obtainfR = q∇φ as indeed used (2.1b). Introducing this force is perhaps themost novelty in
the model, although in special cases this seems not to be entirely surprising, cf. Remark 2.5. Note also
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thatfR is the right-hand side of (2.1a) with the negative sign. Usually, fR is small because|q| is small in
comparison withmax`=1,...,L |e`|. Often, the electro-neutrality assumptionq = 0 is even postulated for
simplicity, which obviously makes this reaction force zero.

We have still to consider some boundary conditions, e.g. a closed thermally isolated container which in
some simplified version leads to:

v = 0, c` = cΓ` , ε
∂φ

∂n

= α(φΓ − φ),
∂θ

∂n

= 0 on Σ, (2.6)

wheren denotes the unit outward normal to the boundaryΓ and the coefficientα can be interpreted as
a “surface permitivity” of the boundary andφΓ is an outer potential. Fixing concentrations onΓ is cer-
tainly rather simplifying and some nonlinear conditions Newton-type conditions are often used to describe
chemical reactions on possible electrodes onΓ , cf. [31].

Considering a fixed time horizonT > 0, we use the notationI := [0, T ],Q := I×Ω, andΣ := I×∂Ω.
Besides, we naturally assumer` : R

L+1 → R continuous and the mass and electric charge conservation
in all chemical reactions and nonnegative production of`th constituent if there is none, and the initial and
boundary conditions satisfy the volume-additivity constraints, i.e.

L∑

`=1

r`(c1, ..., cL, θ) = 0 =

L∑

`=1

e`r`(c1, ..., cL, θ) , (2.7a)

c` = 0 ⇒ r`(c1, ..., cL, θ) ≥ 0, (2.7b)
L∑

`=1

c0` = 1, c0` ≥ 0, (2.7c)

L∑

`=1

cΓ` = 1, cΓ` ≥ 0. (2.7d)

Remark 2.1(Energy balance.) To show conservation of the total energy, let us assume, forsimplicity,φΓ =
φΓ (x) time independent and then calculate the rate of electrostatic energy:

1

2

d

dt

( ∫

Ω

ε|∇φ|2 dx+

∫

Γ

α|φ− φΓ |2 dS
)

=

∫

Ω

ε∇φ·∇∂φ

∂t
dx+

∫

Γ

α
∂φ

∂t
(φ − φΓ ) dS

=

∫

Ω

ε∇φ·∇∂φ

∂t
dx−

∫

Γ

εφ
∂

∂t

(∂φ
∂n

)
dS = −

∫

Ω

εφ∆
∂φ

∂t
dx

=

∫

Ω

φ

L∑

`=1

e`
∂c`
∂t

dx =

∫

Ω

φ

L∑

`=1

e`

(
r`(c, θ) − div(j` + c`v)

)
dx

= −
∫

Ω

φ

L∑

`=1

e`div(j` + c`v) dx

=

∫

Ω

∇φ ·
L∑

`=1

e`(j` + c`v) dx−
∫

Γ

φ

L∑

`=1

e`j` · n dS (2.8)

where (2.1c) and (2.1b) have been used together with the electric-charge-preservation assumption (2.7a)
and twice Green’s formula counting also with the boundary conditions (2.6). Testing (2.1a) byv, we obtain
rate of kinetic energy

d

dt

∫

Ω

%
|v|2
2

dx =

∫

Ω

L∑

`=1

c`(f`·v) − %
(
(v·∇)v

)
·v − ν|∇v|2 dx = −

∫

Ω

ν|∇v|2 +

L∑

`=1

c`e`∇φ·v dx. (2.9)
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The rate of internal energy can be obtained simply by integration of (2.1d) overΩ and using Green’s
theorem with the considered boundary conditions∂θ/∂n = 0:

d

dt

∫

Ω

cv θ dx =

∫

Ω

ν|∇v|2 −
L∑

`=1

(
e`j`∇φ+ h`(θ)r`(c, θ)

)
dx. (2.10)

Altogether, summing (2.8)–(2.10) and using also (2.1b) integrated overΩ and Green’s formula, we obtain
the following balance:

d

dt

( ∫

Ω

(
%
|v|2
2

+ ε
|∇φ|2

2
+ cvθ

)
dx+

∫

Γ

α
|φ − φΓ |2

2
dS

)

= −
∫

Ω

L∑

`=1

h`(θ)r`(c, θ) dx −
∫

Γ

φ
L∑

`=1

e`j` · n dS, (2.11)

where we used the boundary conditions (2.6). Hence, (2.11) just says that the total energy rate, i.e. the rate
of the sum of kinetic, electrostatic, and internal energy1

2%|v|2 + 1
2ε|∇φ|2 +cvθ overΩ and the electrostatic

energy1
2α|φ − φΓ |2 deposited onΓ , is balanced with the enthalpy production rate

∑L
`=1 h`r` overΩ and

the normal flux of electro-energy
∑L

`=1 φe`j` · n through the boundaryΓ .

Remark 2.2(Sources of heat.) When substitutingf` andj` from (2.1a,b), the right-hand side of (2.1d) equals

f(v, c, φ, θ) := ν|∇v|2 + d(θ)∇q ·∇φ +

L∑

`=1

mc`e
2
` |∇φ|2 −mq2|∇φ|2 −

L∑

`=1

h`(θ)r`(c, θ). (2.12)

Hence the particular source terms inf represent respectively the heat production due to loss of kinetic
energy by viscosity, the power (per unit volume) of the electric current arising by the diffusion flux, the
power ofJoule heatproduced by the electric currentsj`, the rate of cooling by the force which balances
the volume-additivity constraint, and the heat produced orconsumed by chemical reactions. The influence
of the cooling term−mq2|∇φ|2 is presumably very small as usually|q| << max`=1,...,L |e`|. Besides,

Joule’s heat always dominates this cooling effect because
∑L

`=1 c`e
2
` ≥

(∑L
`=1 c`e`

)2
if

∑L
`=1 c` = 1 and

all c`’s are non-negative just by Jensen’s inequality. The effective specificelectric conductivityis obviously
m(

∑L
`=1 c`e

2
` − q2). The termd(θ)∇q ·∇φ has an indefinite sign in general and may create local cooling

effects via diffusive flux of the electric charge against thegradient of the electrostatic field, which is related
with the so-calledPeltier effectin the lines of, e.g., deGroot and Mazur [7].

Remark 2.3(Entropy.) A relation with standard thermodynamic concepts is through specific Helmholtz’
free energytaking the form

ψ(v, φ, c, θ) =
ε

2
|∇φ|2 − cvθ ln(θ). (2.13)

The specificentropys is then defined by the Gibbs’ relations := −∂ψ/∂θ = cv(1+ln(θ)), and theinternal
energyis e := ψ + θs = cvθ + 1

2ε|∇φ|2. The requirement of preservation of total energy (i.e. the sum of
the kinetic and the internal ones) leads to the energy balance

θ
[ ∂
∂t

+ v · ∇
]
(s) + div j = f (2.14)

where the heat fluxj is subjected to Fourier’s lawj = −κ∇θ andf = f(v, c, φ, θ) is the dissipation
rate identified in (2.12); note that (2.14) is just (2.1d). The thermodynamic consistency of this model can
formally be claimed only if one assumes the diffusion coefficient d = d(θ) approaching zero forθ ↘ 0.
This, physically acceptable assumption is to “switch off” the indefinite termd(θ)∇q ·∇φ if temperatureθ
approaches zero but brings essential mathematical troubles in obtaining a-priori estimates because one has
to prove that the temperature is away from zero. This needs very sophisticated techniques and is always
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difficult, if possible at all; see Feireisl [6] who showed a “weak positivity” of θ (in the sense thatln θ
belongs toL2(Q)) in the compressible context. Yet, one should realize that,due to phase transitions and
other effects, validity of the model ends in reality much sooner thanθ approaches the absolute zero. Anyhow,
at least formally, the assumptionlimθ↘0 d(θ) = 0 allows for claiming non-negativity ofθ at least if also a
natural assumption that reaction ratesr`(c, θ) vanishes forθ ↘ 0 is accepted. It seems acceptable to assume
still that the chemical-reaction rates are designed naturally (=by “nature”) not to consume entropy, i.e.

L∑

`=1

h`(θ) r`(c, θ)

θ
≥ 0. (2.15)

Under the mentioned positivity of temperature, this would allow us to claim theClausius-Duhem inequality

d

dt

∫

Ω

s dx =

∫

Ω

(f(v, c, φ, θ)

θ
+ div

(κ∇θ
θ

)
+ κ

|∇θ|2
θ2

)
dx ≥ 0 (2.16)

if one would prove still non-negativity of the “Peltier-effect” term
∫

Ω
d(θ)∇q·∇φ/θ dx; let us note that∫

Ω div
(
κ∇θ/θ

)
dx = −

∫
Γ κθ

−1∂θ/∂n dS = 0 due to the isolation on the boundary (2.6). As standard
option ford andm is

d(θ) = RM θ and m = F M (2.17)

whereR is the universal gas constant,F is Faraday’s constant, andM is the actual mobility, see e.g. [10,
Sect.3.3.2] or [25, Sect.3.4]. The mentioned non-negativity of the Peltier-like term then holds: indeed, by
using Green’s formula twice, we get

∫

Ω

d(θ)∇q·∇φ
θ

dx =

∫

Ω

RM∇q·∇φdx = −εRM
∫

Ω

∇(∆φ)·∇φdx

= εRM

∫

Ω

|∆φ|2 dx− εRM

∫

Γ

∆φ
∂φ

∂n

dS ≥ RM

∫

Γ

qα
(
φΓ−φ

)
dS, (2.18)

so that the overall entropy production by the termd(θ)∇q ·∇φ/θ insideΩ is non-negative if the system is
isolated, i.e.α = 0.

Remark 2.4(One simple test.) Let us test the model on a simple example of an electrolyte composed from
two constituents, cations and anions with equal charge (butopposite sign, of course, i.e.L = 2 ande1 =
−e2 > 0) in a calm initial state (i.e.v0 = 0) in thermal equilibrium (i.e.θ0 = constant) placed in a container
of the lengthD between two electrodes with voltageU and the constant coefficientα = α0 as indicated
on Figure 1. Assume further the electro-neutrality initialand boundary conditions, i.e.c01 = 1

2 = c02 and
cΓ1 = 1

2 = cΓ2 . The experience related with this virtual experiment ultimately says that the electrolyte will
remain calm (i.e.v = 0) and electro-neutral (i.e.q = 0) and simultaneously will conduct an electric current
which will heat it up.

φ  =    > 0
0

Ω

α = 0

0

anion fluxα = α  > 0

cation flux
α = α  > 0

α = 0

φ  = 0
x2

1

2 Γ

1

Γ

x

j

D

j

U

Fig. 1. A virtual experiment with electro-neutral two-component elec-
trolyte placed into an electrostatic field between two electrodes.
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Indeed, (2.7a) here saysr1+r2 = 0 andr1−r2 = 0 so that ultimatelyr1 = r2 = 0; it says that no chemical
reaction can run if the third constituent is not allowed to becreated. It is a matter of simple direct calculations
to verify thatc1 = c2 = 1

2 , v = 0,ϕ constant in time and affine in space with∇φ =
(
α0U/(α0D+2ε), 0

)
,

andθ constant in space and increasing linearly in time with the constant rate∂
∂tθ = c−1

v me21α
2
0U

2/(α0D+
2ε)2 consist a solution to the initial-boundary-value problem (2.1), (2.2), and (2.6). The diffusive flux is
obviouslyj1 =

(
− me1α0U/(2α0D + 4ε), 0

)
= −j2 and the power of Joule’s heat per unit volume is

−e1j1 · ∇φ− e2j2 · ∇φ = me21α
2
0U

2/(α0D + 2ε)2. The specific electric conductivity isme21.

Remark 2.5(A special case: diluted water solutions.) In very diluted water solutions of salts, that typically
occur in conventional electro-chemistry or biological applications too, an alternative option is to consider
velocity of water as the referential velocity instead of thebarycentric one as used here. This is sometimes
called Hittorf’s referential system. Then, assuming againthat diffusivity and mobility coefficients are the
same for each constituents and after suitable simplifications relying on small concentrations of non-water
constituents, the “reaction force”fR = q∇φ arises simply by transformation from the Hittorf’s system to
the barycentric one; see [32,35]. This gives a certain lightto our arguments in (2.5) which holds exactly for
general mixtures being based on the only assumption thatfR acts equally on each constituent.

3 Analysis of the model

We use the following standard notation for functions spaces: Lr(Ω; R3) denotes the Lebesgue space of
measurable functionsΩ → R

3 whoser-power is integrable,W 1,2
0 (Ω; R3) is the Sobolev space of functions

whose gradient is inL2(Ω; Rn×n) and whose trace on∂Ω vanishes,W 1,2
0,DIV(Ω; R3) = {v∈W 1,2

0 (Ω; R3);

div v = 0 in the sense of distributions}, andW−1,2(Ω; R3) ∼= W 1,2
0 (Ω; R3)∗. Likewise,W k,2 indicates

all kth derivatives belonging to theL2 space. Occasionally, we will use alsok non-integer, referring to the
Sobolev-Slobodetskiı̆ space with fractional derivatives. We will assume the following data qualification:

ε, ν, cv, %, κ, m positive constants, α = α(x) ≥ 0, (3.1a)

v0 ∈ L2(Ω; R3), c0 ∈ L2(Ω; RL), θ0 ∈ L2(Ω), (3.1b)

r` : R
L+1 → R continuous, |r`(c, θ)| ≤ L0 + L1|θ|1−η, (3.1c)

h` : R → R continuous and bounded, (3.1d)

d : R → R continuous, 0 < d0 ≤ d(·) ≤ d1 , (3.1e)

for some0 < η ≤ 1 and somed1, d2 ∈ R. The sub-linear growth of reaction rates is certainly not a realistic
assumptions because usually even an exponential growth is atypical phenomenon. Likewise, enthalpies
h`(θ) usually growth linearly with temperature so their boundedness is a simplifying assumption, too.
Yet, it seems difficult to exclude a blow-up in finite time (i.e. an explosion) via some finer assumptions.
Moreover, (3.1) is inconsistent with (2.17) which would require very sophisticated mathematical tricks, as
already mentioned in Remark 2.3.

The notion of a weak solution to (3.9) can be defined, except (3.6), standardly as follows:

Definition 3.1 We will call v ∈ L2(I;W 1,2
0,DIV(Ω; R3)), φ ∈ L∞(I;W 1,2

0 (Ω)), c ∈ L2(I;W 1,2(Ω; RL)),
andθ ∈ L2(I;W 1,2(Ω)) a weak solution to the system (2.1) with the initial and boundary conditions (2.2)
and (2.6) if

∫

Q

%v
∂z

∂t
− ν∇v :∇z −

(
%(v · ∇)v +

L∑

`=1

c`e`∇φ
)
·z dxdt = −%

∫

Ω

v0(x) · z(0, x) dx (3.2)

for anyz ∈ L2(I;W 1,2
0,DIV(Ω; R3))∩W 1,2(I;L6/5(Ω; R3)) with z(·, T ) = 0, where “:” means[τij ] : [eij ] =∑n

i=1

∑n
j=1 τijeij .

∫

Q

c · ∂z
∂t

+ (j + c⊗ v) : ∇z + r(c, θ)z dxdt = −
∫

Ω

c0 · z(0, x) dx (3.3)
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satisfying also the boundary conditionsc`|Σ = cΓ` with the flux vectorj = (j1, ..., jL) ∈ L2(Q; R3×L)
defined in (2.1b) andc0 = (c01, ..., c0L) from (2.2) and with the test-functionz ∈ L2(I;W 1,2(Ω; RL)) ∩
W 1,2(I;W 6/5(Ω; RL)) arbitrary withz(·, T ) = 0,

∫

Q

ε∇φ · ∇z − qz dxdt = 0 (3.4)

for anyz ∈ L2(I;W 1,2(Ω; RL)), and

∫

Q

cvθ
∂z

∂t
− (cvvθ + κ∇θ) · ∇z + fz dxdt = −cv

∫

Ω

θ0z(0, x) dx (3.5)

with f ∈ L1(Q) from (2.12) for anyz smooth withz(·, T ) = 0 onΩ and ∂
∂n
z = 0 onΣ. Finally,c satisfies

L∑

`=1

c` = 1 & c` ≥ 0 a.e. onQ. (3.6)

Remark 3.2The volume-additivity constraint and non-negativity of all c`, i.e. (3.6), which gives the vector
(c1, ..., cL) the desired sense of concentrations of particular constituents, is not explicitly involved in the
equations (2.1) and indeed cannot be read from them. Anyhow,the assumptions (2.7) will impose these
additional algebraic constraints in a fine way through the specific structure of the system (2.1).

In what follows, we will confine ourselves to two special cases only because the general case (2.1) seems
to bring serious difficulties. This is because to treat the heat equation in the framework of conventionalL2-
theory as in Section 3.1 one would need a regularity of the Oseen problem with the “fixed” velocity of the
same quality, which is similar as in the Navier-Stokes system but this is recognized as an extremely difficult
and so far open problem for general 3-dimensional case with large data. Without this regularity, one can
treat the heat equation in the framework ofL1-theory as in [21] but then, beside other technical troubles,
the continuity needed for the fixed-point theorem seems difficult due to the advection term. The analysis of
the full system (2.1) seems to require some modifications, e.g. power-law shear-thickening non-Newtonian
fluids instead of the Newtonian fluid (2.1a) as shown recentlyin [30].

3.1 Stokes’ case.

In this subsection, we will assume that the velocityv is so small that the quadratic term(v · ∇)v play a
role of a 2nd-order perturbation and can be neglected in (2.1a). In other words, we consider a fully laminar
flow with Reynolds’ number zero that can be described by the Stokes equation instead of the Navier-Stokes
equation (2.1a). As we will employ regularity both for the Poisson equation and for the Stokes system, we
have additionally to assume

Ω is of the classC2,µ, µ > 0, and φΓ , α ∈ L∞(Γ ) so smooth that (3.7a)

q 7→ φ : L2(Ω) →W 2,2(Ω) is bounded withφ solving (2.1c)–(2.6), (3.7b)

v0 ∈W 2,2
0 (Ω; R3). (3.7c)

For analysis, we define a retractK : {ξ∈R
L;

∑L
`=1 ξ` = 1} → {ξ∈R

L;
∑L

`=1 ξ` = 1 & ξ` ≥ 0, ` =
1, ..., L} by

K`(ξ) :=
ξ+`∑L
l=1 ξ

+
l

, ξ+` := max(ξ`, 0). (3.8)
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Note thatK is continuous and bounded. Starting withc̄ ≡ (c̄`)`=1,..,L, v̄ andθ̄ given such that
∑L

`=1 c̄` = 1,
we solve successively the following auxiliary decoupled system consisting in the Poisson equation, the
Stokes equation, the generalized Nernst-Planck equations, and finally the heat equation, i.e.

ε∆φ = −q , q =

L∑

`=1

e`K`(c̄) , (3.9a)

%
∂v

∂t
− ν∆v + ∇p = q∇φ, div(v) = 0 , (3.9b)

∂c`
∂t

− div(d(θ̄)∇c` − c`v) = r`
(
K(c̄), θ̄

)
− div

(
mK`(c̄)(e` − q)∇φ

)
, ` = 1, .., L, (3.9c)

cv
∂θ

∂t
− div

(
κ∇θ − cvvθ

)
= f̂(v,K(c̄), c, φ, θ̄) (3.9d)

where, similarly as in (2.12), the heat source equals

f̂(v, w, c, φ, θ̄) := ν|∇v|2 +
L∑

`=1

(
f` · j` − h`(θ̄)r`(w, θ̄)

)
, (3.10)

with j` = mw`

( L∑

l=1

elwl − e`

)
∇φ− d(θ̄)∇c`, f` = −e`∇φ. (3.11)

Involving also the initial and the boundary conditions (2.2)–(2.6), the notion of the weak solutions to (3.9)
is understood in a way analogous to Definition 3.1.

Lemma 3.3Let (2.7a,c,d), (3.1), and (3.7) hold. For anyc̄ ∈ L2(Q; RL) satisfying
∑L

`=1 c̄` = 1 and any
θ̄ ∈ L2(Q), the equations (3.9) have a weak solution(v, φ, c, θ) which is unique and satisfies the following
a-priori bounds:

∥∥φ
∥∥

L∞(I;W 2,2(Ω))
≤ C0, (3.12a)

∥∥v
∥∥

L6(I;W 2,6(Ω;R3))∩L∞(I;L2(Ω;R3))
≤ C0,

∥∥∥
∂v

∂t

∥∥∥
L2(Q;R3)

≤ C0, (3.12b)

∥∥c`
∥∥

L2(I;W 1,2(Ω))∩L∞(I;L2(Ω))
≤ C0 + C1‖θ̄‖1−η

L2(Q),
∥∥∥
∂c`
∂t

∥∥∥
L2(I;W 1,2(Ω)∗)

≤ C0 + C1‖θ̄‖1−η
L2(Q),

(3.12c)
∥∥θ

∥∥
L2(I;W 1,2(Ω))∩L∞(I;L2(Ω))

≤ C0 + C1‖θ̄‖1−η
L2(Q),

∥∥∥
∂θ

∂t

∥∥∥
L2(I;W 1,2(Ω)∗)

≤ C0 + C1‖θ̄‖1−η
L2(Q),

(3.12d)

with the constantsC0 andC1 independent of̄c and θ̄. Besides,c satisfies the volume-additivity constraint∑L
`=1 c` = 1 (but not necessarilyc` ≥ 0).

Proof.Existence of weak solutions of the particular decoupled equations (3.9) can be shown by usual meth-
ods, e.g. by using Galerkin’s approximation; realize that all these equations are linear. The only essential
point are the a-priori estimates.

Using the usualW 2,2-regularity for (3.9a), we obtain the estimate (3.12a); realize the smoothness as-
sumptions (3.7a,b) forΩ, α andφΓ , and that eventuallyK(c̄) is a-priori bounded even inL∞(Q; RL)

if
∑L

`=1 c̄` = 1 as indeed assumed. For regularity of (3.9b), we use a result for the evolutionary Stokes
problem

%
∂v

∂t
− ν∆v + ∇p = g, div(v) = 0 , (3.13)

with g :=
∑L

`=1K`(c̄)e`∇φ, whose solution satisfies the bound‖v‖L6(I;W 2,6(Ω;R3)) ≤ C‖g‖L6(I;L6(Ω)),
see Solonnikov [38,39]; even a bit less regularity ofv0 than assumed in (3.7c) is needed for this result.



10 T. Roubı́ček

Due to the a-priori bound (3.12a), we have even better integrability of g, namely‖g‖L∞(I;L6(Ω;R3)) ≤
‖

∑L
`=1K`(c̄)e`‖L∞(Q)‖∇φ‖L∞(I;L6(Ω;R3)) a-priori bounded. The test of (3.13) by∂v/∂t yields stan-

dardly ‖∂v/∂t‖L2(Q;R3) a-priori bounded; herev0 ∈ W 1,2
0 (Ω) is needed but we assumed even more in

(3.7c).
Now we test (3.9c) byc` and use Green’s formula for both the left-hand and the right-hand sides and

the identities
∫

Ω

div(c`v)c` dx = −
∫

Ω

c`v∇c` dx = −1

2

∫

Ω

v∇|c`|2 dx =
1

2

∫

Ω

div(v)|c`|2 dx = 0 (3.14)

and, when employing the boundary conditions (2.6), also
∫

Ω

−div
(
mK`(c̄)(e` − q)∇φ

)
c` dx =

∫

Ω

(
mK`(c̄)(e` − q)∇φ

)
· ∇c` dx

+

∫

Γ

mK`(c̄)(e` − q)α(φ − φΓ )cΓ` dS. (3.15)

By this way, we obtain the estimate

d

dt

∥∥c`
∥∥2

L2(Ω)
+ d0

∥∥∇c`
∥∥2

L2(Ω;R3)
≤

∫

Ω

r`
(
K(c̄), θ̄

)
c`

+
(
mK`(c̄)(e` − q)∇φ

)
· ∇c` dx+

∫

Γ

mK`(c̄)(e` − q)α(φ − φG)c` dS

≤ C
(
1 +

∥∥θ̄
∥∥1−η

L2(Ω)

)(
1 +

∥∥c`
∥∥2

L2(Ω)

)
+

2m

d0
max

l=1,...,L
e2l

∥∥∇φ
∥∥2

L2(Ω;R3)

+
d0

2

∥∥∇c`
∥∥2

L2(Ω;R3)
+ 2mα max

l=1,...,L
|el|

(
N1

∥∥φ(t, ·)
∥∥

W 1,2(Ω)
+N2

∥∥φΓ

∥∥
W 1/2,2(Γ )

)
(3.16)

whered0 is from (3.1f) andC = C(L0, L1, Ω, η) is a constant andN1 andN2 denote the norm of the trace
operatorφ 7→ φ|Γ : W 1,2(Ω) → L1(Γ ) and of the embeddingW 1/2,2(Γ ) ⊂ L1(Γ ), respectively. Note
that we used a trivial estimate‖e` − q‖L∞(Ω) ≤ 2 maxl=1,...,L |el|. Altogether, the estimate (3.12c) follows
by Gronwall’s inequality. To be more precise, (3.15) and thus also (3.16) requires the trace ofc̄ onΓ to be
defined, but eventually the estimate is completely independent of this trace becauseK` is bounded, hence
this estimate holds for a generalc̄ ∈ L2(Q; RL) by a density argument. The second estimate in (3.12c) can
be obtained by testing (3.9c) byz ∈ L2(I;W 1,2(Ω)) as follows:

∥∥∥
∂c`
∂t

∥∥∥
L2(I;W 1,2(Ω)∗)

:= sup
‖z‖L2(I;W1,2(Ω))≤1

〈∂c`
∂t
, z

〉

= sup
‖z‖L2(I;W1,2(Ω))≤1

( ∫

Q

d(θ̄)∇c` · ∇z − c`v · ∇z − r`(K(c̄, θ̄)z

−mK`(c̄)(e`−q)∇φ · ∇z dxdt+

∫

Σ

mαK`(c̄)(e`−q)(φ−φΓ )z dS dt

)

≤ C
(∥∥∇c`

∥∥
L2(Q;R3))

+
∥∥c`

∥∥
L∞(I;L2(Ω))

∥∥v
∥∥

L6(I;L∞(Ω;R3))

+ 1 +
∥∥θ̄

∥∥1−η

L2(Q)
+

∥∥∇φ
∥∥

L2(Q;R3))
+

∥∥φ− φΓ

∥∥
L2(I;W 1/2(Γ ))

)
(3.17)

whereC = C
(
Ω, d1,m, α,max` |e`|

)
is a constant. Then we use (3.12b) and the already proved partof

(3.12c)
To go on to (3.12d), let us now estimate the particular terms in f̂(v,K(c̄), c, φ, θ̄) from (3.11). The first

term,ν|∇v|2, is a-priori bounded inL3(I;L∞(Ω)) because of the estimate (3.12b). The terme`∇c`·∇φ
can be estimated as‖e`∇c`·∇φ‖L2(I;L3/2(Ω)) ≤ |e`| ‖∇c`‖L2(Q;R3)‖∇φ‖L∞(I;L6(Ω;R3)) hence it is a-

priori bounded inL2(I;L3/2(Ω)) and hence also inL2(I;L6/5(Ω)) which is a subspace of the “energetic
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dual” to L2(I;W 1,2(Ω)) in our 3-dimensional case. The next term, i.e.me`K`(c̄)(e` − q)|∇φ|2, is a-
priori bounded even inL∞(I;L3(Ω)) due to the estimate (3.12a). The last term,−h`(θ̄)r`(K(c̄), θ̄), can
be estimated, e.g., inL2(Q) bounded asO(‖θ̄‖1−η

L2(Q)). Then, testing (3.9d) byθ yields, after using Green’s
formula for the left-hand side and the identity (3.14) forθ instead ofc`, the first part of the estimate (3.12d).
The second part of (3.12d) can then be got like (3.17).

The uniqueness of the solutions to the auxiliary de-coupledequations (3.9) is trivial when realizing that
all those equations are linear and using formulae like (3.14) when testing by the difference of two solutions.

Now, we have to prove that the constraint
∑L

`=1 c` = 1 is satisfied. Let us abbreviateσ(t, ·) :=∑L
`=1 c`(t, ·) By summing (3.9c) for̀ = 1, ..., L, one gets

∂σ

∂t
=

L∑

`=1

r`
(
K(c̄), θ

)
+ div

(
d(θ̄)∇σ + vσ

−
L∑

`=1

mK`(c̄)
(
e` −

L∑

l=1

elKl(c̄)
)
∇φ

)
= div

(
d(θ̄)∇σ

)
+ v · ∇σ (3.18)

where (2.7a) has been used. Thus (3.18) results to the linearequation ∂
∂tσ − v · ∇σ − div(d(θ̄)∇σ) = 0.

We assumedσ|t=0 =
∑L

`=1 c0` = 1 andσ|Σ =
∑L

`=1 c
Γ
` = 1 onΣ, cf. (2.2) and (2.6) with (2.7c,d), so

that the unique solution to this equation isσ(t, ·) ≡ 1 for anyt > 0. ut

Lemma 3.4Let (3.1a), and (3.7a,b) hold. Then the mappingc̄ 7→ φ,
∑L

`=1 c̄` = 1, determined by (3.9a) is
continuous as a mappingL2(Q; RL) → Lr(I;W 2,2(Ω)) with 1 ≤ r < +∞ arbitrary.

Proof.Obvious from the continuity of the Nemytskiı̆ mappingc̄ 7→ K(c̄) : L2(Q; RL) → Lr(Q; RL) when
restricted on{c̄ ∈ L2(Q; RL);

∑L
`=1 c̄` = 1} and by the a-priori estimate (3.12a) and linearity of the

equation (3.9a). ut

Lemma 3.5Let (3.1a,b), and (3.7). Then the mappingc̄ 7→ v determined by (3.9b) withφ determined
by (3.9a) is continuous as a mappingL2(Q; RL) → L6(I;W 1,6(Ω; R3)) if c̄ is again subjected to the
constraints

∑L
`=1 c̄` = 1.

Proof. The mapping(c̄, φ) 7→ K`(c̄)∇φ : L2(Q) × Lr(I;W 2,2(Ω)) → Lr(I;L6(Ω; R3)) is continuous
if

∑L
`=1 c̄` = 1 holds. The solution to the Stokes problem depends continuously on the right-hand side

fromLr(I;L6(Ω; R3)) toL6(I;W 2,2(Ω; R3)); cf. the a-priori estimate (3.12c) and realize the linearity of
(3.9b). ut

Lemma 3.6Let (2.7a,c,d), (3.1), and (3.7) hold. Then the mapping(c̄, θ̄) 7→ c determined by (3.9c) with
φ determined by (3.9a) andv determined by (3.9b) is continuous as a mappingL2(Q; RL) × L2(Q) →
L2(I;W 1,2(Ω; RL)).

Proof.One can easily prove the continuity to the weak topology ofL2(I;W 1,2(Ω; RL)), cf. also the a-priori
estimate (3.12c). To prove the continuity to the norm topology, let us take a sequence(c̄k, θ̄k) converging
to (c̄, θ̄) and the corresponding weak solutionsck` converging weakly toc`. Subtracting (3.12c) written for
ck` from (3.12c) written forc` and testing the resulting equation byck` − c`, one can estimate

d

dt

∥∥ck` − c`
∥∥2

L2(Ω)
+ d0

∥∥∇(ck` − c`)
∥∥2

L2(Ω;R3)
=

∫

Ω

(c`v − ck` v
k)∇(ck` − c`)

+
(
r`

(
K(c̄k), θ̄k

)
− r`

(
K(c̄), θ̄

))
(ck` − c`)

+ m
(
K`(c̄

k)(e` − qk)∇φk −K`(c̄)(e` − q)∇φ
)
· ∇(ck` − c`)

+
(
d(θ̄) − d(θ̄k)

)
∇c` · ∇(ck` − c`) dx

+

∫

Γ

mα
(
K`(c̄

k)(e` − qk)φck` −K`(c̄)(e` − q)φc`

)
(ck` − c`) dS, (3.19)
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where naturallyqk :=
∑L

l=1 elc̄
k
l . By Aubin-Lions theorem (see [2] and [17, Sect.I.5.2]) and the a-priori

estimate (3.12c), we knowck` → c` strongly inL2(I;L6−δ(Ω)) for δ > 0 arbitrary. This convergence also
holds weakly* inL∞(I;L2(Ω)). By interpolation (e.g. in ratio12 and 1

2 ), one can see that

∥∥vk − v
∥∥

L4(I;L3−ζ(Ω))
≤

∥∥vk − v
∥∥1/2

L2(I;L6−δ(Ω))

∥∥vk − v
∥∥1/2

L∞(I;L2(Ω))
→ 0 (3.20)

with someζ > 0 arbitrarily small (depending onδ > 0), cf. e.g. Lions [17, Sect.III.2.1]. Moreover, from
Lemma 3.5, we already know thatvk → v in L6(I;W 1,6(Ω; R3)) ⊂ L6(I;L∞(Ω; R3)). Altogether,
(c`v−ck` vk)∇(ck` −c`) converges to zero weakly inL12/11(I;L(6−2ζ)/(5−ζ)(Ω)) ⊂ L1(Q). The next term
converges to zero weakly inL1(I;L3/2(Ω)) becauser`

(
K(c̄k), θ̄k

)
→ r`

(
K(c̄), θ̄

)
in L2/(1−η)(Q) due to

the assumption (3.1d) and the standard Nemytskiı̆-mappingtheorem and becauseck → c in L2(I;L6(Ω)).
The further term converges to zero weakly inL2−δ(I;L3/2(Ω)) for any δ > 0 becauseK`(c̄

k)(e` −
qk)∇φk → K`(c̄)(e` − q)∇φ in Lr(I;L6(Ω; R3)) and∇ck → ∇c weakly inL2(Q; R3). Takingcδ ∈
L∞(I;W 1,∞(Ω)) such that‖∇cδ −∇c`‖L2(Q;R3) ≤ δ, we can estimate

∫ t

0

∫

Ω

(
d(θ̄) − d(θ̄k)

)
∇c` · ∇(ck`−c`) dxdt ≤

∫ t

0

∫

Ω

(
d(θ̄) − d(θ̄k)

)
∇cδ · ∇(ck`−c`) dxdt

+ δ
∥∥d(θ̄) − d(θ̄k)

∥∥
L∞(Q)

∥∥∇(ck`−c`)
∥∥

L2(Q)
, (3.21)

where the right-hand-side integral converges to zero because∇ck` → ∇c` weakly inL2(Q; R3) andd(θ̄) →
d(θ̄k) strongly inL2(Q), and therefore we can see that the left-hand-side integral converges to zero because
δ > 0 can be taken arbitrarily small. Eventually, the boundary term in (3.19) simply vanishes because
ck`−c` = cΓ` −cΓ` = 0 onΓ . Altogether, from (3.19) by Gronwall’s inequality, we get the strong convergence
ck` → c` in L2(I;W 1,2(Ω)), as claimed, and also inL∞(I;L2(Ω)). ut

Lemma 3.7Let (2.7a,c,d), (3.1), and (3.7). Then the mapping(c̄, θ̄) 7→ θ determined by (3.9d) withc
determined by (3.9c) withφ determined by (3.9a) andv determined by (3.9b) is continuous as a mapping
L2(Q; RL) × L2(Q) → L2(Q).

Proof. We start with proving continuity of(v, c̄, c, φ, θ̄) 7→ f̂(v,K(c̄), c, φ, θ̄) with f̂ from (3.10) as a
mapping fromL6(I;W 1,6(Ω; R3)) × L2(Q; RL) × L2(I;W 1,2(Ω; RL)) × Lr(I;W 2,2(Ω)) × L2(Q) to
the weak topology ofL2(I;L6/5(Ω)), which is a subset of the natural “energetic dual”L2(I;W 1,2(Ω)∗),
so that the standardL2-theory for the heat-transfer equation will apply. Let us gothrough the particular
terms inf̂ .

By Lemma 3.5,̄v 7→ |∇v|2 is continuous to the norm topology ofL3(Q; R3)) which is certainly a
subset ofL2(I;L6/5(Ω)). As to (c`, φ) 7→ ∇c` · ∇φ, by Lemma 3.6 we know continuity in∇c` in the
norm topology ofL2(Q) and by the a-priori estimate (3.12a) we know also the continuity in ∇φ in the
weak* topology ofL∞(I;L6(Ω)), hence altogether we have continuity in∇c` · ∇φ in the weak topology
of L2(I;L3/2(Ω)) which is again a subset ofL2(I;L6/5(Ω)). By Lemma 3.4 and by continuity of the
Nemytskiı̆ mappings, the continuity in the termK`(c̄)(e` −

∑L
l=1Kl(c̄))|∇φ|2 is into the norm topology

Lr/2(I;L3(Ω)) which is again a subset ofL2(I;L6/5(Ω)) if r ≥ 4 is considered. Eventually, the continuity
in r`(K(c̄), θ̄) in the norm topology ofL2/(1−η)(Q) is a consequence of (3.1d).

Then, we get the continuity inθ in the weak topology ofL2(I;W 1,2(Ω)) ∩ W 1,2(Ω;W 1,2(Ω)∗),
cf. the a-priori estimate (3.12d) and realize that the limitpassage in the convective termdiv(vθ) = v · ∇θ
is simply due to strong convergence inv. Eventually, the continuity inθ in the norm topology ofL2(Q) is
by the Aubin-Lions theorem.ut

Proposition 3.8Let (2.7), (3.1), and (3.7) hold and letR > 0 be so large thatR ≥
√
T (C0 + C1R

1−η)
with C0 andC1 from Lemma 3.3 andη from (3.1d). Then the mapping(c̄, θ̄) 7→ (c, θ) has a fixed point
(c, θ) on the set

{
(c, θ) ∈ L2(Q; RL+1);

∥∥c
∥∥

L2(Q;RL)
≤ R,

∥∥θ
∥∥

L2(Q)
≤ R,

L∑

`=1

c` = 1
}
, (3.22)
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and moreover every such a fixed point satisfies alsoc` ≥ 0 for any`. Thus, considering alsoφ andv related
with this fixed point(c, θ), the quadruple(φ, v, c, θ) is a weak solution (in the sense of Definition 3.1) to the
system (2.1) with the convective term(v · ∇)v in (2.1a) omitted.

Proof.By the a-priori estimate (3.12d), it holds‖θ‖L2(Q) ≤
√
T‖θ‖L∞(I;L2(Ω)) ≤

√
T (C0 +C1‖θ̄‖1−η

L2(Q))

≤ R provided‖θ̄‖L2(Q) ≤ R. By (3.12c), it then also holds‖c‖L2(Q;RL) ≤ R. The continuity of(c̄, θ̄) 7→
(c, θ) in L2(Q; RL+1) has been proved in previous Lemmas. By a-priori estimates (3.12c,d) and Aubin-
Lions’ theorem, the image of the convex set (3.22) is compactin L2(Q; RL). By Schauder’s theorem, this
mapping has a fixed point, say(c, v). Thus we get alsoφ, andθ, and the quadruple(φ, v, c, θ) is a weak
solution to (3.9) provided we also prove (3.6).

The constraint
∑L

`=1 c` = 1 is, as proved in (3.18), satisfied and, at this fixed point, we have additionally
alsoc`(t, ·) ≥ 0 satisfied for anyt. To see this, test (3.9c) written withc` = c̄` by the negative partc−` of
c`. RealizingK`(c)∇c−` = 0 because, for a.a.(t, x) ∈ Q, eitherK`(c(t, x)) = 0 (if c`(t, x) ≤ 0) or
∇c`(t, x)− = 0 (if c`(t, x) > 0), andr`(·)c−` ≥ 0 because of (2.7b), we obtainc−` = 0 a.e. onQ.
To be more precise, we can assume, for a moment, thatr` is defined on the wholeRL in such a way that
r`(c1, ..., cL) ≥ 0 for c` < 0. As we are just proving thatc` ≥ 0, the values ofr` for negative concentrations
are eventually irrelevant.

The non-negativity ofc` together with
∑L

`=1 c` = 1 ensures thatc(t, x) ∈ Range(K) for a.a.(t, x) ∈ Q
so thatc` = K`(c) and thus the quadruple(φ, v, c, θ) is a weak solution not only to (3.9) with̄v = v and
c̄ = c but even to the original system (2.1).ut

3.2 Isothermal case.

A lot of applications run essentially on constant temperature because of the negligible heat production
and/or a sufficiently fast transfer of the produced heat outside the considered domainΩ. In such cases, we
can consider the production rater` = r`(c) independent ofθ, the diffusion coefficientd constant, and kick
the heat equation (2.1d) out. This enables us to analyze the remaining system (2.1a-c) without any need of
regularity of the Navier-Stokes system (2.1a) so that we canconsider the convective term(v ·∇)v in (2.1a),
i.e. arbitrary Reynolds’ numbers. Moreover, no regularityfor the Poisson equation (2.1c) is needed, either,
so we do not need the data qualification (3.7) at all. Even a more constructive analysis through the Galerkin
method instead of the fixed-point approach used here is possible, as shown recently in [29].

For analysis, we will use again the retractK defined in (3.8) and design the fixed-point procedure as
follows: starting withc̄ ≡ (c̄`)`=1,..,L and v̄ given such that

∑L
`=1 c̄` = 1, we solve successively the

following auxiliary decoupled system consisting in the Poisson, the approximate Navier-Stokes (so-called
Oseen) equation, and finally the generalized Nernst-Planckequations, i.e.

ε∆φ = −q , q =

L∑

`=1

e`K`(c̄) , (3.23a)

%
∂v

∂t
+ %(v̄ ·∇)v − ν∆v + ∇p = q∇φ, div(v) = 0 , (3.23b)

∂c`
∂t

− div
(
d∇c` − c`v̄

)
= r`

(
K(c̄)

)

− div
(
mK`(c̄)(e` − q)∇φ

)
, ` = 1, .., L. (3.23c)

The notion of the weak solutions to (3.23) with the boundary and the initial conditions (2.2) and (2.6) is
understood in a way analogous to Definition 3.1 with the heat equation (3.5) omitted, of course.

Lemma 3.9Let (2.7a,c,d) and (3.1) hold. For anȳc ∈ L2(Q; RL) satisfying
∑L

`=1 c̄` = 1 and for any
v̄ ∈ L2(I;W 1,2

0,DIV(Ω; R3)) ∩ L∞(I;L2(Ω; R3)), the equations (3.23) have a weak solution(v, φ, c) which
and satisfies the following a-priori bounds:

∥∥φ
∥∥

L∞(I;W 1,2(Ω))
≤ C0, (3.24a)
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∥∥v
∥∥

L2(I;W 1,2(Ω;R3))∩L∞(I;L2(Ω;R3))
≤ C0, (3.24b)

∥∥∥
∂v

∂t

∥∥∥
L4/3(I;W 1,2

0,DIV (Ω;R3)∗)
≤ C0 + C1

∥∥v̄
∥∥

L2(I;W 1,2(Ω;R3))∩L∞(I;L2(Ω;R3))
, (3.24c)

∥∥c`
∥∥

L2(I;W 1,2(Ω))∩L∞(I;L2(Ω))
≤ C0,

∥∥∥
∂c`
∂t

∥∥∥
L4/3(I;W 1,2(Ω)∗)

≤ C0, (3.24d)

with the constantsC0 andC1 independent of̄c and v̄. Besides,c always satisfies the volume-additivity
constraint

∑L
`=1 c` = 1 (but not necessarilyc` ≥ 0).

Proof. It mostly simplifies the proof of Lemma 3.3 above. As to (3.24a), it just suffices to test (3.23a) byφ
itself; note that no regularity is used now, unlike in Lemma 3.3 before. The estimate (3.24b) can be obtained
by testing (3.23b) byv itself and using the usual trick that

∫
Ω
∇p · v dx = −

∫
Ω
p div(v) dx = 0 as well

as
∫

Ω(v̄ · ∇)v · v dx = 0 so that the bound in (3.24b) is completely independent ofv̄. The estimate (3.24c)
can be obtained by testing (3.23b) by a suitablez as follows:

%
∥∥∥
∂v

∂t

∥∥∥
L4/3(I;W 1,2

0,DIV (Ω;R3)∗)
:= sup

‖z‖
L4(I;W

1,2
0,DIV (Ω;R3))

≤1

〈
%
∂v

∂t
, z

〉

= sup
‖z‖

L4(I;W
1,2
0,DIV (Ω;R3))

≤1

∫

Q

ν∇v : ∇z + %(v̄ · ∇)v · z − q∇φ · z dxdt

≤
∥∥∇v

∥∥
L2(Q;R3×3)

T 1/4
(
ν + %N3/2

∥∥v̄
∥∥1/2

L2(I;W 1,2(Ω;R3))

∥∥v̄
∥∥1/2

L∞(I;L2(Ω;R3))

)

+2N max
`=1,..,L

|e`|
∥∥∇φ

∥∥
L4/3(I;L6/5(Ω))

(3.25)

where we used the Hölder inequality and the interpolation as in (3.20) to estimate the convective term
∫

Q

(v̄ · ∇)v · z dxdt ≤
∥∥v̄

∥∥
L4(I;L3(Ω;R3))

∥∥∇v
∥∥

L2(Q;R3×3)

∥∥z
∥∥

L4(I;L6(Ω;R3))

≤
∥∥v̄

∥∥1/2

L2(I;L6(Ω;R3))

∥∥v̄
∥∥1/2

L∞(I;L2(Ω;R3))

∥∥∇v
∥∥

L2(Q;R3×3)

∥∥z
∥∥

L4(I;L6(Ω;R3))

and whereN denotes the norm of the embeddingW 1,2(Ω) ⊂ L6(Ω). Using the already obtained estimates
(3.24a) and (3.24b), the estimate (3.24c) follows.

The proof of (3.24d) remains essentially the same; note thatneither (3.16) nor (3.17) needs any regular-
ity of φ, the latter estimate (3.17) requires a modification

∫

Q

c`v̄·∇z dxdt ≤
∥∥c`

∥∥
L2(I;L6(Ω))

∥∥v̄
∥∥

L4(I;L3(Ω;R3))

∥∥∇z
∥∥

L4(I;L2(Ω;R3))

≤
∥∥c`

∥∥
L2(I;L6(Ω))

∥∥v̄
∥∥1/2

L2(I;L6(Ω;R3))

∥∥v̄
∥∥1/2

L∞(I;L2(Ω;R3))

∥∥∇z
∥∥

L4(I;L2(Ω;R3))
. ut

Let us abbreviate

W1 :=
{
c ∈ L2

(
I;W 1,2(Ω; RL)

)
;

∂c

∂t
∈ L4/3

(
I;W 1,2(Ω; RL)∗

)}
, (3.26)

W2 :=
{
v ∈ L2

(
I;W 1,2

0,DIV(Ω; R3)
)
;
∂v

∂t
∈ L4/3

(
I;W 1,2

0,DIV(Ω; R3)∗
)}
. (3.27)

Endowed by the respective “∂
∂t -graph” norms, these spaces become Banach spaces and the already used

Aubin-Lions theorem [2,17] gives the compact embeddingsW1 ⊂ L2(I;L6−δ(Ω; RL)) for any δ > 0,
and similarlyW2 ⊂ L2(I;L6−δ(Ω; R3)). Moreover, we will also use the well-known fact thatW2 ⊂
L∞(I;L2(Ω; R3)) continuously.
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Lemma 3.10Let (3.1a,b) hold. Then the set-valued mapping(c̄, v̄) 7→ {v ∈ W2; v is a weak solution
to (3.23b) withφ determined by (3.23a)} is (weak,weak) upper semicontinuous convex-valued mapping
W1 ×W2 ⇒ W2 if c̄ is again subjected to the constraints

∑L
`=1 c̄` = 1.

Proof.Taking a sequence of{(c̄k, v̄k)}k∈N converging weakly to(c̄, v̄) in W1 ×W2, by Aubin-Lions’ the-
orem we havēck → c̄ strongly inL2(Q; RL), henceφk → φ in Lr(I;W 1,2(Ω)), and alsoK`(c̄

k)∇φk →
K`(c̄)∇φ in Lr(I;L2(Ω; R3)) with r < ∞ arbitrary. Then the limit passage in (3.23b) is routine; obvi-
ously

∫
Q(v̄k·∇)vk·z dx →

∫
Q(v̄·∇)v·z dx at least forz ∈ L∞(Q) (those functions are densely contained

in the set of test functions for (3.2), if they are contained at all) becausēvk → v̄ strongly inL2(Q; R3) and
∇vk → ∇v weaklyL2(Q; R3×3).

As (3.23a,b) is linear for(c̄, v̄) fixed, the set ofv’s in question is convex. ut

Lemma 3.11Let (2.7a,c,d) and (3.1). Then the set-valued mapping(c̄, v̄) 7→ {c∈W1; c is a weak solution
to (3.23c) with withφ determined by (3.23a)} is (weak,weak) upper semicontinuous convex-valued mapping
W1 ×W2 ⇒ W1 if c̄ is again subjected to the constraints

∑L
`=1 c̄` = 1.

Proof.By a-priori estimates (3.24d), by standard arguments the limit passage in (3.23c) formulated weakly
easily follows.

As (3.23a,c) is linear for(c̄, v̄) fixed, the set ofc’s in question is convex. ut

Proposition 3.12Let (2.7) and (3.1) hold. The set-valued mappingM : (c̄, v̄) 7→ {(c, v)∈W1×W2; (c, v)
is a weak solution to (3.23b,c) withφ determined by (3.23a)} has a fixed point(c, v) on the convex closed
set

{
(c, v)∈W1×W2 :

∥∥c
∥∥

L2(I;W 1,2(Ω;RL))
≤ C0,

∥∥∥
∂c

∂t

∥∥∥
L4/3(I;W 1,2(Ω;RL)∗)

≤ C0,

∥∥v
∥∥

L2(I;W 1,2(Ω;R3))∩L∞(I;L2(Ω;R3))
≤ C0,

∥∥∥
∂v

∂t

∥∥∥
L4/3(I;W 1,2

0,DIV (Ω;R3)∗)
≤ C0(1+C1),

L∑

`=1

c` = 1
}

(3.28)

with C0 andC1 from (3.24). Moreover, every such a fixed point satisfies alsoc` ≥ 0 for any `. Thus,
considering alsoφ related with this fixed point(c, v), the triple(φ, v, c) is a weak solution (in the sense of
Definition 3.1) to the system (2.1) with the heat equation (2.1d) omitted.

Proof. The (weak,weak) upper semicontinuity ofM : W1×W2 ⇒ W1×W2 has been proved in previous
Lemmas 3.10 and 3.11. By a-priori estimates (3.24b-d) and byarguments as (3.18), this mapping maps the
convex set (3.28) into itself, and the values ofM are nonempty. By Lemmas 3.10 and 3.11, this values
are also convex. BothW1 andW2 are compact if endowed with the weak topologies; here it is important
that the set{v ∈ W2; ‖v‖L∞(I;L2(Ω;R3)) ≤ C0} is closed inW2 due to the continuous embeddingW2 ⊂
L∞(I;L2(Ω; R3)). By the Kakutani fixed-point theorem saying that any upper semi-continuous nonempty-
convex-valued mapping on a compact convex set has a fixed point, we obtain existence of a fixed point
(c, v) ∈M(c, v). The non-negativity ofc` is then to be proved as done Proposition 3.8.ut

4 Concluding remarks

Remark 4.1(Composition-dependent coefficients.) Making the coefficientsε = ε(c), d = d(c),m = m(c),
cv = cv(c), or κ = κ(c) dependent on the concentrations brings essentially no problems as far as this
dependence is continuous and these coefficients do not degenerate to zero. The auxiliary decoupled systems
(3.9) and (3.23) are then to be constructed by replacingc with K(c̄) in these coefficients, cf. [29] for the
isothermal case. On the other hand, making the mass density% dependent onc would indicate that mass
densities of particular constituents differ from each other, and then the whole concept becomes much more
complicated because one must distinguish between volume fractions and mass fractions [35].
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Remark 4.2(Alternative models.) The dissipative heat, i.e. the first term in (2.12), is to be questioned. Con-
sidering only one-component electrically neutral system (i.e. L = 1, e1 = 0), there are various models
appearing in the literature, cf. e.g. [4,15,26] for a genesis of various possibilities in case of an additional
buoyancy. The starting point is always the complete compressible fluid system ofn+ 2 conservation laws
for mass, impulse, and energy;n denotes the spatial dimension. Then, the so-called incompressible limit
represents a small perturbation around a stationary homogeneous state, i.e. around constant mass density,
constant temperature, and zero velocity. E.g., the conventional Oberbeck-Boussinesq model neglects the
dissipative heat. It should be emphasized that, though the original full system is thermodynamically con-
sistent, the incompressible limit system ofn+ 1 equations in general violates both the energy conservation
law and the Clausius-Duhem inequality. Hence it is certainly interesting that, in our case, we got these
properties back.

Remark 4.3(Some special cases.) The general system (2.1) covers also some other special cases studied
in literature. Neglecting the heat equation (2.1d) as we didin Section 3.2 and further the Navier-Stokes
flow part (2.1a) by considering a fully stationary medium, i.e.v = 0 andp constant, (2.1) reduces into the
so-called Nernst-Planck-Poisson system, which is a basic model for electro-diffusion of ions in electrolytes
formulated by W. Nernst and M. Planck at the end of 19th century, and which has massively been scrutinized
in the literature, see Glitzky [11] for its mathematical analysis. Often, the electro-hydro-dynamics (EHD)
does not require

∑L
`=1 c` = 1, see e.g. [5,16,25,37] where however no mathematical analysis is done, or it

is even considered as a constraint and involved through a Lagrange multiplier, see [22] for such an attempt.
Neglecting the flow and the electric field (2.1a,c) by puttingv = 0, p = 0, andφ = 0, one gets the model
studied by Henri [14] for the special caser` =

∑
j k`jfj wherefj = fj(c1, ..., cL, θ).

Remark 4.4(More general mobility and diffusivity coefficients.) Some mixtures exhibit markable differ-
ences between mobilities of particular constituents (especially if the size of the involved (macro)molecules
varies considerably) and also cross-effects may occur. Then the diffusivity and mobility are rather matrices
dk` andmk`, respectively. We assume again that the reaction forcefR balancing the heat fluxesj` to zero
sum (2.4) acts equally on each constituents, i.e. the previous settingj` = −d(θ)∇c` − mc`(e`∇φ − fR)
generalizes to

j` =

L∑

k=1

(
− dk`(θ)∇ck −mk`ck

(
ek∇φ − fR

))
. (4.1)

The requirement (2.4) then ultimately implies by a simple algebra thatfR must take the form

fR =
L∑

k=1

L∑

`=1

(
dk`(θ)∇ck +mk`ckek∇φ

)/
M, M :=

L∑

k=1

L∑

`=1

mk`ck. (4.2)

By Onsager’s principle [23], the matrices[dk`(θ)] and[mk`] are symmetric. The former casefR = q∇φ
is, of course, a special case of (4.2) for[dk`(θ)] and [mk`] diagonal withd``(θ) = d(θ) andm`` = m
and with (2.3) holding, and it was considered for the sake of lucidity of the explanation not to make the
formulas and the analysis too complicated. Let us only mention that, in the case (4.2), the a-prori estimates
(3.12c) and (3.24d) must be done for all concentrationsc = (c1, · · · , cL) simultaneously by summing the
Nernst-Planck equations forc` tested byc`, which requires

∑L
`=1 j` · ∇c` ≥ δ

∑L
`=1 |∇c`|2 for some

δ > 0, i.e. [dk`(θ)] to be positive definite uniformly with respect toθ. The fixed-point procedure (3.9)
must be modified accordingly, i.e. allck in (4.2) are to be replaced byKk(c). The a-priori estimates as
well as limit passage bear appropriate modifications, too. The parabolic equation (3.18) modifies to the
hyperbolic ∂

∂tσ + v · ∇σ = 0 which admits again the unique solutionσ = 1 because of the initial and
boundary conditionsσ = 1 and becausev andσ are enough regular. Let us finally mention that an attempt
for another method to made (2.4) satisfied had been implemented in [12, Sect.2.5.1] without considering
electric charges, however.
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ERRATA

The second estimate in (3.24d) depends also on v̄. More importandly, the
non-negativity of c` in the proof of Proposition 3.12 unfortunately does
not seem to be convincing becuase ∂

∂tc` is not in duality to c−` which is thus
not a legal test function for the corresponding Nernst-Plan ck equation. The
results in Sect.3.2 remains however true if one applies the f ollowing changes:

Instead of c`v̄ in (3.23c), put K`(c̄)v.
Then (3.23c) still remains a system of separated single line ar equations,

each of them having a unique weak solution. The possible non- uniqueness comes
from possible non-uniqueness of v but the convexity of the set-valued map-
ping in Lemma 3.11 is preserved. The estimate (3.24d) then ap plies with L4/3(I; .)
replaced by L2(I; .) because the last estimate in the proof of Lemma 3.9 can
now be made simply as

∫

Q

K`(c̄)v · ∇z dxdt ≤ ‖v‖L2(Q;R3)‖∇z‖L2(Q;R3) ≤ T 1/2C0‖∇z‖L2(Q;R3)

with C0 referring to (3.24b); moreover, the estimate (3.24d) is now indeed
independent of v̄. Then (3.18) even simplifies because

L∑

`=1

div(K`(c̄)v) = div(v

L∑

`=1

K`(c̄)) = div(v) = 0.

The non-negativity of c` in the Kakutani’s fixed point can now be proved
by testing the Nernst-Planck equation by c−` which is now indeed in dual-
ity with ∂

∂tc`. The argument for K`(c)v · ∇c−` = 0 is now the same as used in
the proof of Proposition 3.8 for K`(c)∇c−` = 0.

Acknowledgement: Thanks are to Ji ř ı́ Glaser who detected the above mentioned
discrepancy in the proof of Proposition 3.12 concerning the non-negativity
of c`.


