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Tomáš Roubı́ček∗1,2 and Martin Kružı́k∗∗2,3
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This contribution presents a mesoscopic model of evolution of microstructure in alloys ex-
hibiting shape-memory effects. Main features are a multi-well stored energy at large strains
and rate-independent dissipation potential acting on volume fractions involved in the meso-
scopic description of microstructure by Young measures. The focus is on analysis of an ap-
proximation scheme as well as on numerical simulations of single-crystal experiments with
specific alloys.
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1 Introduction, shape-memory alloys

Shape-memory alloys (=SMAs), as so-called smart materials, have enjoyed recently important
applications especially in human medicine (e.g. vascular or dental implants) and mechanical
or aerospace engineering, and have therefore been subjected to intensive theoretical and exper-
imental research. SMAs exhibit specific hysteretic stress/strain/temperature response, which
is called a shape-memory effect (=SME); cf. Figures 1b, 2 and 4 in this paper. The mechanism
behind SME is quite simple: atoms tend to be arranged in different crystalographical config-
urations (in particular, having different symmetry groups) under different temperatures. At
higher temperatures, atoms tend to form a grid with higher symmetry (typically cubic) which
is referred to as the austenite phase while, at lower temperatures, they tend to form a lower-
symmetrical grid (typically tetragonal, orthorhombic, monoclinic, or triclinic) called marten-
site phase. Due to symmetry, the lower-symmetrical grid may occur in several variants which
can be combined (we speak about a coherent co-existence) with each other, forming thus so-
called twins of two variants. Such a regular twined structure is called a laminate. Laminates
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can be combined in layers-within-layers to second-order (or even higher-order) laminates, or
some other self-organization as wedges or branching can be observed and explained by mere
crystallographic arguments, cf. [5, 6, 8, 21, 34, 37, 38, 46]. These basic studies address pri-
marily stress-free configurations. In general configurations exposed to outer loading, one has
to consider the free energy which expresses a phenomenology of an energy, dependent on
temperature, stored in interatomic links and atomic vibrations under a given deformation gra-
dient and temperature. When loaded even more, the martensitic phase(variant)s can usually
transform to each other (resp. also to a higher-symmetrical austenite), which is called re-
orientation of martensite (resp. martensitic phase transformation). Depending whether only
particular variants of martensite(s) or also a parent austenite is involved (i.e. depending on
temperature), the resulted response is called quasi-plasticity and pseudo-elasticity, respec-
tively. This is even a less understood phenomenon playing, however, equally important role
in evolution of the microstructure. The phenomenology related to it describes a dissipation of
the mechanical energy into heat or, to a smaller extent, acoustic emission.

Mathematical and computational modelling of SMAs represents a certain tool of theoret-
ical understanding of transformation processes and may both complete experimental results
and predict response of new materials or applications in engineering workpieces even before
casted or built. The real situation in SMAs is essentially multi-scale which already creates
variety of possibilities for modeling. Here we focus on a mesoscopic model playing, beside
an “averaged” deformation and deformation gradients of particular phases (or phase variants),
with volume fractions. This seems to be a successful compromise that allow us to describe
scales of large single crystals as often used in labs, or even representative sample volumes
of polycrystals. Besides, various dissipation mechanisms can be considered. Here we focus
on a phenomenological degree-1 homogeneous potential which is related with a hysteretic re-
sponse and with the fact that the phase transformations in SMA are activated processes which
are, if enough slow and isothermal, rate independent. For a certain survey of a wide menagerie
of SMA models we refer to [44].

In Sections 2-3, we present a mesoscopic model proposed, after a preliminary scalar study
[43], in [28]. The purpose of this paper is primarily to develop a certain approximation theory
for this model, done in Section 4. After describing an implementation in Section 5, numerical
simulations of single-crystal experiments with a specific alloy are presented in Section 6.

2 Main ingredients: free energy and dissipation energy

As outlined in Introduction, mechanisms through which the material stores and dissipates
energy are determinative for inelastic response of SMAs. Thus, corresponding response func-
tions are ultimately the main ingredients for any model.

The parent austenite in a stress-free configuration represents a natural state of the material.
From a viewpoint of continuum mechanics, we can thus speak about a reference configuration
of a specimen occupying a domain Ω ⊂ IR3 and, as usual, y : Ω → IR3 denotes the deforma-
tion and u : Ω → IR3 the displacement, related to each other by y(x) = x + u(x), x ∈ Ω.
Hence deformation gradient equals F = ∇y = I +∇u, where I ∈ IR3×3 denotes the identity
matrix and ∇ is the Lagrangean gradient operator.
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2.1 Free energy

The specific energy stored in the inter-atomic links in the continuum ψ̂ = ψ̂(F, θ) is phe-
nomenologically described as a function of the deformation gradient F and, in anisothermal
case, a temperature θ. The frame-indifference, i.e. ψ̂(F, θ) = ψ̂(RF, θ) for any R ∈SO(d), the
group of orientation-preserving rotations, requires that ψ̂ in fact depends only on the (right)
Cauchy-Green stretch tensor C := F�F . By d, we denote the dimension of the specimen
domain Ω ⊂ IRd, though physically relevant case is d = 3 only. As F = I + ∇u, we can
express the specific stored energy in terms of the displacement gradient as

ψ = ψ(∇u, θ) = ψ̂(I + ∇u, θ). (1)

As ψ in (1) does not depend explicitly on x, this form describes single crystals only; gen-
eralization for polycrystals by letting φ depend on x in a piece-wise (=grain-wise) constant
manner is, in principle, simple, see [28]. The Piola-Kirchhoff stress σ : IRd×d → IRd×d is
given by σ = ∂

∂(∇u)ψ(∇u, θ).
We will use a St.Venant-Kirchhoff-like form of the stored energy of each particular phase

variants which allows for an explicit reference to measured data and can easily be applied to
various materials. We consider that the material can occur in L stress-free configurations that
are determined by distortion matrices U�, � = 1, ..., L, which are independent of θ, i.e. thermal
expansion is neglected.

The frame-indifferent free energy of particular phase(variant)s is considered as a function
of Green strain tensor ε� related to the distortion of this phase(variant). In the simplest case
(cf. [38, Sect.6.6], e.g.), one can consider a function quadratic in terms of ε� of the form

ψ̂�(F, θ) =

d∑
i,j,k,l=1

ε�ijC
�
ijklε

�
kl − c�θln

( θ

θ0

)
, ε� =

(U�
� )−1F�FU−1

� − I

2
, (2)

where C� = {C�ijkl} is the 4th-order tensor of elastic moduli satisfying the usual symmetry
relations depending also on symmetry of the specific phase(variant) �, θ is a temperature
(sometimes considered as a parameter only), θ0 an equilibrium temperature, while c� the heat
capacity of this phase(variant). The overall stored energy is assembled as

ψ̂(F, θ) := −kBθ ln

( L∑
�=1

e−ψ̂�(F,θ)/(kBθ)

)
(3)

where kB is the Boltzmann constant (related per unit volume). This option exhibits the ex-
pected multi-well character and is backed up by statistical physics.

Another form of ψ̂, namely ψ̂ := min� ψ̂�, for θ as a fixed parameter, has been used in
[3] for CuAlNi undergoing cubic/orthorhombic phase transformation (=PT) and in [1] for
NiMnGa with cubic/tetragonal PT. However, the data required for this potential are available
in many other alloys except the measurements of the elastic tensor C� which are standardly
done (with few exceptions) only for the austenite so that elastic response of the martensitic
variants has to be extrapolated. The heat capacities c� are usually obtained experimentally.
Typically, heat capacity of austenite is larger than of martensite, which is just what causes
SME.
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Assuming each C� positive definite, the important property from the mathematical view-
point of φ is the polynomial growth and the coercivity of ψ(x, ·, θ) in the sense

∃c1, c0 > 0 ∀(F, θ)∈IRd×d × IR+ : c0|F |p − 1 ≤ ψ(F, θ) ≤ c1(1 + |F |p) (4)

with p = 4, and the uniform Lipschitz continuity of ψ(x, F, ·):

∀(F, θ1, θ2)∈IRd×d × [δ, +∞)2 :
∣∣ψ(F, θ1) − ψ(F, θ2)

∣∣ ≤ lδ
∣∣θ1 − θ2

∣∣. (5)

2.2 Mesoscopic description: Young measures

On a mesoscopic level, we want to see an “averaged character” of fast oscillations of the
deformation gradient of minimizing sequences to the stored energy u 
→

∫
Ω

ψ(x,∇u, θ)dx.
This can be described by a probability measure νx on IRd×d possibly depending on (i.e. being
parameterized by) x ∈ Ω; cf. e.g. [5, 6, 34, 37]. We then call ν = {νx}x∈Ω a Young measure
[51] if, in addition, x 
→ νx is weakly measurable. Young measures form a subset of the lin-
ear space L∞

w (Ω; rca(IRd×d) ∼= L1(Ω; C0(IR
d×d))∗ where rca(IRd×d) stands for Radon mea-

sures on IRd×d and C0(IR
d×d) for compactly supported continuous functions on IRd×d. In our

context, relevant Young measures are only those that are attainable by gradients, i.e. ν =w*-
limk→∞{δ∇uk(x)}x∈Ω for some sequence in the Sobolev space W 1,p(Ω; IRd) with p referring
to the p-power growth/coercivity of F 
→ ψ(F, θ); here, in view of (2), p = 4. Let us denote
by Gp(Ω; IRd×d) the set of such parameterized measures. An example of a Young measure ν

describing a so-called 1st-order laminate with a macroscopic deformation u ∈ W 1,p(Ω; IRd)
is

ν = {νx}x∈Ω, νx = ξ1(x)δF1(x) + ξ2(x)δF2(x),

[ξ1F1 + ξ2F2](x) = ∇u(x), F1(x) − F2(x) = a(x) ⊗ n(x),

ξ1(x), ξ2(x) ≥ 0, ξ1(x) + ξ2(x) = 1, a(x), n(x) ∈ IRd. (6)

This process can be re-iterated: a 2nd-order laminate with the macroscopic deformation u as
above is ν = {νx}x∈Ω, where

νx = ξ0(x)ξ1(x)δF1(x) + ξ0(x)(1−ξ1(x))δF2(x)

+ (1−ξ0(x))ξ2(x)δF3(x) + (1−ξ0(x))(1−ξ2(x))δF3(x) , (7)

with (dropping for simplicity a dependence on x)

F1 − F2 = a1 ⊗ n1, F3 − F4 = a2 ⊗ n2 , (8a)
ξ1F1 + (1 − ξ1)F2 − ξ2F3 − (1 − ξ2)F4 = a ⊗ n , (8b)
∇u = ξ0ξ1F1 + ξ0(1−ξ1)F2 + (1−ξ0)ξ2F3 + (1−ξ0)(1−ξ2)F4 (8c)

and 0 ≤ ξi ≤ 1, ai, ni ∈ IRd, i ∈ {0, 1, 2}. Analogously, we can get a laminate of an arbitrary
order.

Unfortunately, not every ν ∈ Gp(Ω; IRd×d) is of the form of a laminate, or even cannot
be attained by laminates, which can be interpreted that microstructures might be much more
chaotic. This is connected with the famous Šverák’s counterexample [47] that rank-one con-
vexity does not imply quasiconvexity. Moreover, description of Gp(Ω; IRd×d) is not possible
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in an efficient way, which is related with lack of efficient characterization of quasiconvex
functions; cf. [22, 37]. Nevertheless, at least for theoretical analysis in Section 3, we can
work with all possible microstructures, i.e. with the whole set Gp(Ω; IRd×d).

Starting from [35], there are numerical studies involving gradient Young measures as
e.g. [3, 23, 24] but, due to the mentioned impossibility of an efficient description of the whole
set Gp(Ω; IRd×d), they eventually have to deal with laminates of an order κ ≥ 1, let us denote
this set as

Gp,κ
lam(Ω; IRd×d) :=

{
ν ∈ Gp(Ω; IRd×d); νx is a κ-order laminate for a.a. x∈Ω

}
. (9)

2.3 Dissipation energy

PT in SMAs is characterized by a specific dissipation which results to a hysteretic response
in stress/strain/temperature diagrams. This is, to a large extent, rate-independent, activated
process similar like standard slip plasticity in metals and proper modelling of the dissipation
is equally important as the stored energy, in particular to model evolution. As the dissipa-
tion seems essentially influenced by various impurities and dislocations, there is even more
phenomenology needed than for the stored energy. We follow an attempt to build such a
phenomenology on a purely continuum-level model proposed in [42, Formula (33)], based
on (to some extent simplified) standpoint that the amount of dissipated energy within the
particular PT (here it is meant also M/M-transformation, i.e. of one variant of the marten-
site transforms to another, sometimes referred rather as a re-orientation of martensite) can be
described by a single, phenomenologically given number (of the dimension J/m3=Pa). This
philosophy is to design at least the energetics in accord with experiments, if the activated
PT dynamics cannot be understood in detail by more rigorous arguments, and has indepen-
dently been adopted in physics, see [20, 48, 49]. For this, we need to identify the partic-
ular phase(variant)s and thus define a continuous mapping L : Ω × IRd×d → �L where
�L := { ζ ∈ IRL ; ζ� ≥ 0, � = 1, ..., L,

∑L
i=1 ζ� = 1 } is a simplex with L vertices. Like

(1), we assume

L(F ) = L̂(I + F ), with L̂ : IRd×d → �L. (10)

Again, L̂ is related with the material itself and thus is expected to be frame indifferent. We
have in mind that the components {L̂1, ..., L̂L} of L̂ = (L̂1, . . . , L̂L)� form a partition of
unity on IRd×d such that L�(F ) is equal 1 if F is in the �-th phase, i.e. F is in a neighborhood
of �-th well SO(d)U� of ψ (which can be identified according to the stretch tensor F�F closed
to U�

� U� like in [29, 31]). Of course, L̂(F ) in the (relative) interior of �L indicates F in the
spinodal region where no definite phase is specified. Hence λ plays the role of what is often
called a vector of order parameters or a vector-valued internal variable. The concrete form
of L̂ does not seem to be important as long as L̂ enjoys the above properties.

The phenomenology itself is considered through the choice of a “norm” on IRL (not nec-
essarily Euclidean and even not symmetric), let us denote it by | · |L; its physical dimension
will be Jm−3=Pa. The desired meaning is to set up the specific energy E�k needed for PT of
a phase(variant) � to k as |e� − ek|L, where e� = (0, .., 0, 1, 0, ...0) ∈ IRL is the unit vector
with 1 at the position �.
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Referring to (10), mesoscopic volume fractions at a current “macroscopic” point λ = λ(x)
will then be naturally calculated as

λ(x) := [L • ν](x) :=

∫
IRd×d

L(F )νx(dF ). (11)

In terms of the volume fractions, the (pseudo)potential of dissipative forces that corresponds
this phenomenology is

R(q) = R(u, ν, λ) :=

∫
Ω

∣∣∣∂λ

∂t

∣∣∣
L
dx. (12)

This means, considering a process over the time interval [t1, t2], the overall dissipated energy
by all underwent PTs in the whole specimen Ω will be

∫ t2

t1

∫
Ω

∣∣∣∂λ

∂t

∣∣∣
L

dxdt =

∫
Ω

Var
t∈[t1,t2]

λ(t, x) dx (13)

where the total variation “Var” with respect to the (possibly nonsymmetric) norm | · |L counts
which PTs (and how many times) has been undergone in the point x.

The phenomenological dissipated energies E�k are then to be got from experiments, and/or
model-fitting technique, and/or from some other more or less speculative considerations.
Sometimes, some hint can be found in the literature, e.g. for Ti-Ni single crystal [48, p.331]
uses E�k = 4.7MPa if either � or k refers to austenite (i.e. energy for A/M PT) while E�k = 0
otherwise (i.e. M/M-reorientation is considered as nondissipative, which however is not com-
pletely true, of course).

Let us remark that a lightly different construction of L̂ but of a similar spirit, relying on
particular PTs rather than particular phase(variant)s, has been used in [2].

The important property of R is that it satisfies the triangle inequality, i.e.

∀q1, q2, q3∈Q : R(q1 − q3) ≤ R(q1 − q2) + R(q2 − q3), (14)

which follows immediately from convexity and the homogeneity of degree 1.

3 Mesoscopic-level model

Therefore, the mesoscopic configuration will be a triple q := (u, ν, λ) of macroscopic dis-
placement u, the microstructure ν, and the volume fraction λ, and the set Q of admissible
configurations is

Q :=
{
(u, ν, λ)∈W 1,p(Ω; IRd)×Gp(Ω; IRd×d)×L∞(Ω; IRL); ∇u=I •ν, λ=L •ν

}
, (15)

where • is defined as in (11) but now, additionally to L, also the identity on I : IRd×d →

IRd×d is used.
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3.1 Rate-dependent model

Neglecting any rate-dependent (i.e. here kinetic and viscous) effects, in [29], Mielke and
Theil introduced a suitable and efficient definition of a solution to rate-independent processes
generally applicable e.g. to plasticity, ferromagnetics, delamination, damage, and to SMAs,
too, cf. [27, 28, 30, 31] and for numerical study [11]. Mielke-Theil’s definition plays merely
with energetics of the process q : [0, T ] → Q, requiring, beside the initial condition q(0) = q0,
its stability (16a) and the energy inequality (16b) in the sense:

∀ t ∀q̃ ∈ Q : G
(
t, q(t)

)
≤ G(t, q̃) + R

(
q(t) − q̃

)
, (16a)

∀ t ≥ s : G
(
t, q(t)

)
+ VarR(q; s, t) ≤ G

(
s, q(s)

)
+

∫ t

s

∂G

∂ϑ

(
ϑ, q(ϑ)

)
dϑ (16b)

where VarR(q; s, t) := VarL(λ; s, t) is the total variation over the time interval [s, t] of the
process q = (u, ν, λ), cf. (25) below. Moreover, here in (16), we consider

G(t, q) = G(t, u, ν, λ) =

{
V (t, q) if q ∈ Q,
+∞ elsewhere (17)

is the Gibbs stored energy with V = V (t, q) the stored energy postulated by

V (t, q) = V (t, u, ν, λ) :=

∫
Ω

(
ψ(·, θ(t)) • ν

)
dx + ρ|λ|rWα,r(Ω;IRL)

+
1

2

∫
Γ

(
u(x)−uD(t, x)

)�
A(x)

(
u(x)−uD(t, x)

)
dS (18)

with the specific stored energy ψ from (1) and θ = θ(t) a given temperature regime,
A : Γ → IRd×d, with A(x) symmetric, positive definite, uD : [0, T ] × Γ → IRd deter-
mining a prescribe loading regime, and VarR(q; s, t) is the total variation of the process q
over the time interval [s, t] with respect to the dissipation potential R, cf. (25) below. Again,
• in (18) is defined as in (11) but now with ψ(·, ·, θ(t)) instead of L. Thorough this contri-
bution, we will assume p > 2d/(d + 1) so that the traces on Γ of W 1,p(Ω; IRd)-functions
are (even “compactly”) in L2(Γ; IRd) and therefore the boundary term in (18) has a good
sense. In Sect. 2.1, we considered p = 4 and d = 3 which certainly satisfies this restriction.
Furthermore, ρ > 0 in (18) denotes a (small) regularizing parameter expressing that spatial
variations of volume fractions λ has a certain (small) energy, and r > 1. The semi-norm in
the Sobolev-Slobodetskiı̆ space Wα,r(Ω; IRL) can be considered as

∣∣λ∣∣
Wα,r(Ω;IRL)

:=

(
1

4

∫
Ω

∫
Ω

∣∣λ(x) − λ(ξ)
∣∣r

|x − ξ|d+rα
dξdx

)1/r

, (19)

for a fixed parameter 0 < α < 1 − d(r−1)/r. Such a regularizing term in (18) corresponds
to the (rth-power of the) norm in the Sobolev-Slobodetskiı̆ space Wα,r(Ω, IRL) which is
compactifying if α > 0 and which, for α small enough as indicated, allows us to use piece-
wise constant approximation of λ which has necessarily discontinuities on (d−1)-dimensional
manifolds. Let us remark that this regularization (18) by a higher-order term in λ with ρ > 0
can be interpreted [28, 43] as a limit from the Ericksen-Timoshenko model scrutinized in
[40, 41]. Gradients of mesoscopic volume fractions has already been used in Frémond’s
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model [15, p.364] or also in [28]; this is, however, not suitable for piecewise constant finite-
element approximation. The nonlocal term used here in (18) was proposed in the case d = 1
by Ren, Rogers, and Truskinovsky [40, 41] with either positive or also, for different purposes,
non-positive kernels, and in multidimensional context in [2].

Such a model has been scrutinized in [28] for an isothermal case (i.e. θ constant), and it has
been proved that there is a solution process q : [0, T ] → Q satisfying (16a) and (16b), even
as an equality, and also an initial condition q(0) = q0, and such that, moreover, u(·), λ(·),
and G(·, q(·)) are measurable in time. The assumptions involved, in particular, stability of the
initial state q0, loading W 1,1-smoothness in time of the loading uD, a certain “non-buckling”
hypothesis (see (64) below), and the regularizing gradient term

∫
Ω
|∇λ|2dx has been used

in (18) instead of the Sobolev-Slobodetskiı̆ term
∣∣λ∣∣r

Wα,r(Ω;IRL)
here. A semidiscretization

in time has been used, leading to a recursion of minimization problems involving the set of
gradient Young measures Gp(Ω; IRd×d). While the “non-buckling” hypothesis seems to be
avoidable if a more sophisticated technique [14] would be exploited, the efficient approxima-
tion procedure which guarantees convergence of the model in [28] based on the regularized V
was not obvious so far and is one of the goal of this contribution.

3.2 Volume-fraction solution

The definition from Section 3.1 is based on the set Gp(Ω; IRd×d) which cannot be handled
explicitly. Anyhow, the numerical simulations presented below show a certain convergence
at least in some situations and nice applicability, which calls for some theory to support it
rigorously. A certain way is to weaken the definition of the solution to involve only some
quantities, here the overall stored energy and power of external loading, and the distributed
volume fraction, while the macroscopic displacement u and the Young measure ν are not
involved explicitly. Let us first denote

Q(λ) :=
{

(u, ν) ∈ W 1,p(Ω; IRd) × Gp(Ω; IRd×d) ; (u, ν, λ) ∈ Q
}

. (20)

Then we define the “condensed” stored energy

G(t, λ) := inf
(u,ν)∈Q(λ)

G(t, u, ν, λ), (21)

and abbreviate the set of admissible volume-fraction distributions as

Λ :=
{

λ∈L∞(Ω; IRL); ∃ ν∈Gp(Ω; IRd×d), λ = L •ν
}

. (22)

Also, let us abbreviate

R(λ) :=

∫
Ω

∣∣λ(x)
∣∣
L
dx. (23)

Then (16) turns into

∀ t ∀λ̃ ∈ Λ : G
(
t, λ(t)

)
≤ G(t, λ̃) + R

(
λ(t, ·) − λ̃

)
, (24a)

∀ t ≥ s : G
(
t, λ(t)

)
+ VarL(λ; s, t) ≤ G

(
s, λ(s)

)
+

∫ t

s

∂G

∂ϑ

(
ϑ, λ(ϑ)

)
dϑ (24b)
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where VarL(λ; s, t) is the total variation of the process λ over the time interval [s, t] with
respect to the dissipation potential (12), i.e.

VarL(λ; s, t) =

I∑
i=1

∫
Ω

∣∣λ(ti, x) − λ(ti−1, x)
∣∣
L
dx (25)

where the summation is taken over all partition s = t0<t1<...<tI = t, I ∈ IN.

4 Approximate scheme

As the set Gp(Ω; IRd×d) cannot be explicitly implemented, instead we will work with a
smaller set Gp,k

lam(Ω; IRd×d) from (9). This brings, however, a necessity to treat the rela-
tion λ = L •ν by a “tolerance” because, due to the compactness in λ’s caused by the reg-
ularizing nonlocal �-term in (18), it behaves like a constraint which, if treated without any
tolerance, might destroy the convergence. For this, we make a penalization of the constraint
λ = L •ν in a space to which L∞(Ω; IRL) ∩ Wα,r(Ω; IRL) is embedded compactly, e.g. the
space H−1(Ω; IRL) := W−1,2(Ω; IRL). It should be emphasized that this additional regular-
ization is just to guarantee the convergence and does not affect the original problem.

To construct approximate solutions, we consider a time step τ > 0, assuming T/τ integer
and also that τ → 0 in such a way that the equidistant partitions will be nested; for example,
the reader can think about a sequence of time steps τ = 2−kT for k ∈ IN. Besides, we will
employ the finite-element method, assuming that Ω is a polyhedral domain triangulated by
simplectic triangulation, denoted by Th, h > 0 a mesh parameter, i.e. h = maxS∈Th

diam(S).
Also, we consider a countable set of h’s and assume that Th1

is a refinement of Th2
if h2 ≥

h1 > 0.
We fix an order of lamination κ ≥ 1 in (9). For τ > 0 and h > 0 fixed, and for a

regularizing penalty parameter ε > 0, we consider the fully implicit formula based on the
following recursive increment formula: we put q0

τ = q0 a given initial condition, and, for
k = 1, ..., T/τ we define qε,kτ,h to be a solution of the minimization problem

Minimize V (kτ, q) + R(q−qk−1) + 1
ε

∥∥λ−L •ν
∥∥2

H−1(Ω;IRL)

subject to q = (u, ν, λ), u ∈ W 1,p(Ω; IRd),

∇u = I •ν, λ(x)∈�L for a.a. x∈Ω

ν ∈ Gp,κ
lam(Ω; IRd×d) element-wise constant on Th,

λ ∈ L∞(Ω; IRL) element-wise constant on Th.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

For k = 0, we naturally put qε,kτ,h = q0, a given initial condition. As R involves only λ, the
component λ0 of q0 = (u0, ν0, λ0) is what plays role. Note that each admissible u in (26) is
inevitably element-wise affine on Th.

As (26) is a minimization problem on a finite-dimensional manifold with a functional
coercive on this manifold, a solution to (26) does exist. Let us define qετ,h(t) := qε,kτ,h if
t ∈ ((k−1)τ, kτ ]. The following assertion states a-priori estimates for the λ-component of
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qετ,h, i.e. λετ,h. For this, let us re-define the needed quantities in terms of λ as follows:

G
ε
h(t, λ) := inf

(u,ν)∈W 1,p(Ω;IRd)×Gp,κ

lam
(Ω;IRd×d)

ν is element-wise constant on Th

∇u=I • ν

V (t, u, ν, λ) +
1

ε

∥∥λ−L •ν
∥∥2

H−1(Ω;IRL)
, (27)

G
ε
τ,h(t, λ) := G

ε
h(kτ, λ) for t∈((k−1)τ, kτ ], (28)

Note that this definition admits also t = 0; then k = 0. The component λε,kτ,h from qε,kτ,h solving
(26) now solves the problem

Minimize G
ε
h(kτ, λ) + R(λ − λε,k−1

τ,h )

subject to λ ∈ Λh

}
(29)

with λε,kτ,h = λ0, where R is defined in (23) and

Λh :=
{
λ∈L∞(Ω; IRL) element-wise constant on Th : λ(x)∈�L for a.a. x∈Ω

}
. (30)

Proposition 4.1 Let

uD ∈ W 1,1(0, T ; L2(Γ; IRd)), (31a)

A ∈ L∞(Γ; IRd×d), A(·) positive semidefinite a.e. on Γ

A(·) positive definite on Γ0 ⊂ Γ, measd−1(Γ0) > 0, (31b)

θ ∈ W 1,1(0, T ), θ(·) ≥ δ > 0, (31c)

and let the initial state is a homogeneous equilibrium with respect to the initial loading in the
sense

u0 = 0, uD(0, ·) = 0, ∃ homogeneous ν minimizing ψ(·, θ(0)), λ0 = L •ν. (32)

Then λετ,h is stable in the sense

∀λ̃ ∈ Λh : G
ε
h

(
t, λετ,h(t)

)
≤ G

ε
h

(
t, λ̃

)
+ R

(
λετ,h(t) − λ̃

)
(33)

for all t ∈ [0, T ], and satisfies the two-sided discrete energy inequality∫ t

0

∂G
ε
h

∂ϑ

(
ϑ, λετ,h(ϑ)

)
dϑ ≤ G

ε
τ,h

(
t, λετ,h(t)

)
+ VarL(λετ,h; 0, t)

− G
ε
τ,h(0, λ0) ≤

∫ t

0

∂G
ε
h

∂ϑ

(
ϑ, λετ,h(ϑ − τ)

)
dϑ, (34)

for t = τk, k = 0, 1, ..., T/τ . Also, the following a-priori estimates hold:∥∥λετ,h
∥∥
BV (0,T ;L1(Ω;IRL)) ∩ L∞(0,T ;L∞(Ω;IRL)) ∩ L∞(0,T ;Wα,r(Ω;IRL))

≤ C1, (35)∥∥Gετ,h∥∥BV (0,T )
≤ C2 where Gετ,h(t) := G

ε
τ,h(t, λ

ε
τ,h(t)). (36)
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Proof. As to the discrete stability condition, as in [31, Thm.3.4], by using successively that
λε,kτ,h is a minimizer (cf. (26)) and the triangle inequality (14) for R (written in term of R), we
obtain

G
ε
h(kτ, λε,kτ,h) ≤ G

ε
h(kτ, λ̃) + R(λ̃ − λε,k−1

τ,h ) − R(λε,kτ,h − λε,k−1
τ,h )

≤ G
ε
h(kτ, λ̃) + R(λ̃ − λε,kτ,h) (37)

for any k = 1, ..., K = T/τ . In view of the definition of λετ,h and G
ε
τ,h, it just means (33).

The proof of the energy inequality (34) follows as in [31, eqn. (2.12)]. Since λε,kτ,h mini-
mizes the condensed energy

λ 
→ G
ε
h(kτ, λ) + R(λ − λε,k−1

τ,h ), (38)

over Λh, we deduce, by inserting λ = λε,k−1
τ,h , the estimate

G
ε
h(kτ, λε,kτ,h) − G

ε
h

(
(k−1)τ, λε,k−1

τ,h

)
+ R

(
λε,kτ,h−λε,k−1

τ,h

)
≤ G

ε
h

(
kτ, λε,k−1

τ,h

)
− G

ε
h

(
(k−1)τ, λε,k−1

τ,h

)
=

∫ kτ

(k−1)τ

∂G
ε
h

∂ϑ

(
ϑ, λε,k−1

τ,h

)
dϑ. (39)

Here we used that, by (5) and the W 1,1-smoothness of both θ and uD, ∂
∂tG

ε
h does exist and is

integrable, cf. (42) below.
As to the left-hand part of (34), like in [30, Theorem 4.1] by the stability (37) written for

λε,k−1
τ,h , we can see that λε,k−1

τ,h minimizes the functional λ 
→ G
ε
h((k−1)τ, λ)+R(λ−λε,k−1

τ,h ),
and therefore, by inserting λ = λε,kτ,h, we find

G
ε
h

(
kτ, λε,kτ,h

)
− G

ε
h

(
(k−1)τ, λε,k−1

τ,h

)
+ R

(
λε,kτ,h−λε,k−1

τ,h

)
≥ G

ε
h

(
kτ, λε,kτ,h

)
− G

ε
h

(
(k−1)τ, λε,kτ,h

)
=

∫ kτ

(k−1)τ

∂G
ε
h

∂ϑ

(
ϑ, λε,kτ,h

)
dϑ. (40)

By summing (39) and (40) for k = 1, ..., t/τ , we obtain (34). For k = 1, we used that,
because of (32), λε,0τ,h = λ0 is stable in the sense that

∀λ̃ ∈ Λh : G
ε
h

(
0, λ0

)
≤ G

ε
h

(
0, λ̃

)
+ R

(
λ0 − λ̃

)
(41)

For the a-priori estimates, we need ∂G
ε
h/∂t bounded. By (5),

∣∣∣∂G
ε
h

∂ϑ

(
ϑ, λ

)∣∣∣ ≤ lδ|Ω|
∣∣∣dθ

dϑ

∣∣∣ +

∫
Γ

|A(u − uD)|
∣∣∣∂uD

∂ϑ

∣∣∣dS. (42)

The BV-bound in the estimate (35) then follows directly from (39), while the L∞-bound is
obvious since λετ,h(t, x) ∈ �L for a.a. (t, x) ∈ [0, T ] × Ω and �L ⊂ IRL is bounded, and
eventually by summing (39) for k = 1, 2, ...., we get G

ε
τ,h(t, λ

ε
τ,h(t)) bounded from above

uniformly in t ∈ [0, T ] so that, in view of (18), the bound for |λετ,h(t)|Wα,r(Ω;IRL) uniform in
t ∈ [0, T ] follows.
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By (39) and (40) and also by using (42),

Var(Gετ,h; 0, T ) =

T/τ∑
k=1

∣∣Gε
h(kτ, λε,kτ,h) − G

ε
h((k−1)τ, λε,k−1

τ,h )
∣∣

≤

T/τ∑
k=1

max

( ∫ kτ

(k−1)τ

∂G
ε
h

∂ϑ

(
ϑ, λε,k−1

τ,h

)
dϑ,

R
(
λε,kτ,h−λε,k−1

τ,h

)
+

∫ kτ

(k−1)τ

∣∣∣∂G
ε
h

∂ϑ

(
ϑ, λε,kτ,h

)∣∣∣dϑ

)
≤ lδ|Ω|

∥∥θ
∥∥
W 1,1(0,T )

+ VarL(λετ,h; 0, T )

+
∥∥A(u − uD)

∥∥
L∞(Ω;L2(Γ;IRd))

∥∥uD

∥∥
W 1,1(0,T ;L2(Γ;IRd))

(43)

which proves a bound for ‖Gετ,h‖BV (0,T ) :=
∫ T
0
|Gετ,h|dt + Var(Gετ,h; 0, T ), i.e. (36). �

We say that a collection of triangulations {Th}h>0 is regular if there is c > 0 such that, for
every finite element E ∈ Th, rE/�E > c for any h > 0 where �E is the length of the longest
edge (side) and rE is the radius of the largest ball inscribed into E. We will need

W 1,1(Ω; IRL) ⊂ Wα,r(Ω; IRL) � L1(Ω; IRL), (44)

the latter embedding being compact. This indeed holds if

0 < α < 1 −
r − 1

r
d and 1 < r <

d

d − 1
, (45)

the latter condition guaranteeing just existence of some α satisfying the former condition.
Lemma 4.2 If (45) holds, then

∀λ∈Λ ∃{λh}h>0 : λh ∈ Λh, λh → λ in Wα,r(Ω; IRL). (46)

Proof. We know that C1(Ω; IRL) is dense in Wα,r(Ω; IRL). Each λ̃ ∈ C1(Ω; IRL) can fur-
ther be approximated by λh ∈ Λh in the norm of Wα,r(Ω; IRL) with an arbitrary accuracy
if h > 0 is small enough. Indeed, considering integral averages over each element, we get
an approximation λh converging to λ̃ in L1(Ω; IRL) and, moreover, has the total variation
bounded uniformly with respect to h > 0. By (45) and the standard Sobolev embedding
theorem, (44) holds and this former embedding in (44) is inherited by the respective bid-
uals, i.e. W 1,1(Ω; IRL)∗∗ ⊂ Wα,r(Ω; IRL)∗∗ ∼= Wα,r(Ω; IRL) compactly because r > 1

is assumed so that Wα,r(Ω; IRL) is reflexive. As {λh}h>0 is bounded in BV(Ω; IRL), by
the Hahn-Banach extension argument it can be considered as embedded into W 1,1(Ω; IRL)∗∗

with keeping the same norm, hence it is compact in Wα,r(Ω; IRL). Besides, the conven-
tional smoothing procedure as well as the mentioned integral averaging keep values inside the
convex hull of values of the original λ, i.e. λh(x) ∈ �L can indeed be expected. �

To prove the convergence, we state the following approximation property of G by the se-
quence {Gε

h}ε,h>0; in fact, it is a combination of the Γ-like and the Mosco-like convergences
G
ε
h → G.
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Lemma 4.3 Let in addition to (31), also

lim
th→t

∂uD

∂t
(th, ·) =

∂uD

∂t
(t, ·) a.e. in Ω, (47a)∣∣∣∣∂uD

∂t
(t, ·)

∣∣∣∣ ≤ g(·) a.e. in Ω for any t∈ [0, T ] (47b)

for some g ∈ L2(Γ). Moreover, if the nested collection of triangulations {Th}h>0 is regular
and if θ ∈ C([0, T ]), then

lim inf
ε→0

λε→λ weakly
in Wα,r(Ω;IRL)

lim inf
λh∈Λh, th→t, h→0

λε
h
→λε weakly

in Wα,r(Ω;IRL)

G
ε
h(th, λ

ε
h) ≥ G(t, λ), (48)

lim
ε→0

lim sup
λh→λ in Wα,r(Ω;IRL)
λh∈Λh, th→t, h→0

G
ε
h(th, λh) ≤ G(t, λ) (49)

for all (t, λ) ∈ [0, T ]× Λ.

Proof. Let us define

G
ε(t, λ) := inf

(u,ν)∈W 1,p(Ω;IRd)×Gp(Ω;IRd×d)
∇u=I • ν, λ(x)∈	Lfor a.a. x∈Ω

V (t, u, ν, λ) +
1

ε

∥∥λ−L • ν
∥∥2

H−1(Ω;IRL)
. (50)

Consider λεh → λε weakly in Wα,r(Ω; IRL), λεh ∈ Λh, and th → t for h → 0. As {λεh}h>0

is bounded also in L∞(Ω; IRL), λεh → λε weakly* in L∞(Ω; IRL), too. Moreover, let us
take (uεh, ν

ε
h) ∈ W 1,p(Ω; IRd)×Gp,κ

lam(Ω; IRd×d), uεh piecewise affine on Th and νεh piecewise
constant on Th, which realizes the infimum in (27) for (th, λ

ε
h) in place of (t, λ). Such a couple

(uεh, ν
ε
h) does exist due to the coercivity (4) because, having λ and κ fixed, the admissible

pairs (u, ν) for the minimization problem in (27) represent a finite-dimensional manifold.
By the mentioned coercivity (4), all the sequences {uεh}h>0 and {νεh}h>0 are bounded in
W 1,p(Ω; IRd) and L∞

w (Ω; rca(IRd×d)), respectively, hence, in terms of a subsequence, uεh →

uε weakly in W 1,p(Ω; IRd) and νεh → με weakly* in L∞
w (Ω; rca(IRd×d)) . By compactness of

the trace operator u 
→ u|Γ : W 1,p(Ω; IRd) → L2(Γ; IRd) (here the restriction p > 2d/(d+1)
is used), we have

lim inf
h→0

∫
Ω

ψ(·, ·, θ(th)) •νεhdx + ρ|λεh|
r
Wα,r(Ω;IRL) +

1

ε

∥∥λεh − L • νεh
∥∥2

H−1(Ω;IRL)

+
1

2

∫
Γ

(
uεh(x) − uD(th, x)

)�
A(x)

(
uεh(x) − uD(th, x)

)
dS

≥

∫
Ω

ψ(·, ·, θ(th)) • νεdx + ρ|λε|rWα,r(Ω;IRL) +
1

ε

∥∥λε − L •με
∥∥2

H−1(Ω;IRL)

+
1

2

∫
Γ

(
uε(x) − uD(t, x)

)�
A(x)

(
uε(x) − uD(t, x)

)
dS ≥ G

ε(t, λ). (51)

Note that the inequality in (51) is due to the term | · |r
Wα,r(Ω;IRL)

, while the limit in the other
terms is just by their continuity. This shows that

lim inf
λε

h
→λε weakly in Wα,r(Ω;IRL)
λε

h
∈Λh, th→t, h→0

G
ε
h(th, λ

ε
h) ≥ G

ε(t, λε) (52)
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for ε > 0 fixed. Eventually,

lim inf
ε→0, λε→λ weakly

in Wα,r(Ω;IRL)

G
ε(t, λε) ≥ lim inf

ε→0, λε→λ weakly
in Wα,r(Ω;IRL)

G(t, λε) ≥ G(t, λ) (53)

due to the weak lower-semicontinuity of G(t, ·).
Let (u∗, ν∗) ∈ Q(λ) realize the minimum in (21), in particular, λ = L • ν∗. Let further

λh → λ in Wα,r(Ω; IRL), λh ∈ Λh and let th → t for h → 0. In particular, we again
have λh → λ weakly* in L∞(Ω; IRL). There is a sequence {uh}h>0 ⊂ W 1,p(Ω; IRd), uh
piecewise affine on Th, δ∇uh

→ ν∗ weakly*, where [δ∇uh
]x := δ∇uh(x) for x ∈ Ω, the

last δ denoting the Dirac measure. This can be proved by combining the celebrated results
by Kinderlehrer and Pedregal [22] with classical approximation results for W 1,p-functions
by element-wise affine functions. Here one uses assumed regularity of the triangulations.
Similarly, as in (51) we get

lim
h→0

∫
Ω

ψ(·, ·, θ(th)) •νhdx + ρ|λh|
r
Wα,r(Ω;IRL) +

1

ε

∥∥λh − L • νh
∥∥2

H−1(Ω;IRL)

+
1

2

∫
Γ

(
uh(x) − uD(th, x)

)�
A(x)

(
uh(x) − uD(th, x)

)
dS

=

∫
Ω

ψ(·, ·, θ(t)) • νdx + ρ|λ|rWα,r(Ω;IRL)

+
1

2

∫
Γ

(
u∗(x) − uD(t, x)

)�
A(x)

(
u∗(x) − uD(t, x)

)
dS = G(t, λ). (54)

Here we use the L∞-weak* continuity of the functional (λ, ν) 
→ 1
ε‖λ − L •ν‖2

H−1(Ω;IRL)
.

This shows that

lim sup
λh→λ in Wα,r(Ω;IRL)
λh∈Λh, th→t, h→0

G
ε
h(th, λh) ≤ G(t, λ) . (55)

Let (uε, νε) be a point realizing the infimum in (50). Such (uε, νε) exists by coercivity
and (weak×weak*)-lower semicontinuity of the functional in (50). As this functional is al-
ways majorized by G and coincides with G if (u, ν, λ) is such that (u, ν) ∈ Q(λ), we have
G
ε(t, λ) ≤ G(t, λ). Consequently we have

lim
ε→0

G
ε(t, λ) ≤ G(t, λ). (56)

The limit for ε → 0 indeed exists because {Gε(t, λ)}ε>0 is nondecreasing. Therefore, taking
(u, ν) minimizing G(t, ·, ·, λ) over Q(λ), we have

G(t, uε, νε, λ) ≤ G(t, u, ν, λ) . (57)

Thus (uε, νε) is bounded in W 1,p(Ω; IRd) × L∞
w (Ω; rca(IRd×d)) and we can extract a

subsequence (not relabeled) such that uε → w weakly and νε → σ weakly*. Further we have

lim
ε→0

‖λ − L • νε‖2
H−1(Ω;IRL) = lim

ε→0
ε(Gε(t, λ) − V (t, uε, νε, λ)) = 0, (58)
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which at the same time means that ‖λ − L •σ‖H−1(Ω;IRL) = 0. Therefore, (w, σ) ∈ Q(λ)

and G(t, w, σ, λ) ≥ G(t, λ). On the other hand, the limit passage in (57) for ε → 0 gives
G(t, w, σ, λ) ≤ G(t, λ). Altogether it yields

lim
ε→0

G
ε(t, λ) = G(t, λ). (59)

�

Moreover, let us define the stable set for the continuous and the discrete problems at time
t respectively as

S(t) :=
{
λ ∈ Λ; ∀λ̃ ∈ Λ : G(t, λ) ≤ G(t, λ̃) + R(λ̃ − λ)

}
, (60)

Sεh(t) :=
{
λ∈Λh; ∀λ̃∈Λh : G

ε
h(t, λ) ≤ G

ε
h(t, λ̃) + R(λ̃−λ)

}
. (61)

Denoting by “Limsup” the Kuratowski’s limit, the following assertion can be interpreted, in
other words, as Limsupε→0Limsuph→0Graph(Sεh) ⊂ Graph(S):

Lemma 4.4 Let (31), (45), (47) hold. If λεh ∈ Sεh(th), th → t and limε→0 limh→0 λεh = λ

weakly in Wα,r(Ω; IRL), then λ ∈ S(t). Moreover,

lim
ε→0

lim
h→0

G
ε
h(th, λ

ε
h) = G(t, λ). (62)

Proof. Take λ̃ ∈ Λ arbitrary and, by (46), a sequence λ̃h ∈ Λh approaching to λ̃h in
Wα,r(Ω; IRL). As {λ̃h}h>0 is bounded, we have also λ̃h → λ̃ weakly* in L∞(Ω; IRL).
Then, considering λεh ∈ Sεh(th) such that λεh → λ weakly in Wα,r(Ω; IRL), th → t, by (48),
we have

G(t, λ) ≤ lim inf
ε→0

lim inf
h→0

G
ε
h(th, λ

ε
h) ≤ lim inf

ε→0
lim inf
h→0

G
ε
h(th, λ̃h) + R(λh−λ̃h) (63)

≤ lim
ε→0

lim sup
h→0

G
ε
h(th, λ̃h) + lim

h→0
R(λh−λ̃h) ≤ G(t, λ̃) + R(λ−λ̃).

We used the weak* continuity of R : Wα,r(Ω; IRL) → IR, which is due to the compactness
of the embedding Wα,r(Ω; IRL) ⊂ L1(Ω; IRL) and the continuity of R : L1(Ω; IRL) → IR.
In view of (60), it just says that λ ∈ S(t). Moreover, putting λ̃ := λ into (63) yields (62). �

Further we will use the following “nonbuckling” condition; as already remarked, a finer
technique [14] allows to avoid this not much realistic condition. Anyhow, for (u, ν) a point
realizing the infimum in (27) with a given pair (t, λ), the “nonbuckling” condition says that

th → t & λh → λ weakly* in Wα,r(Ω; IRL) & h → 0 & λh ∈ Λh

⇒ uh → u weakly in W 1,p(Ω; IRd) & νh → ν weakly* in L∞
w (Ω; rca(IRd×d)). (64)

Similar condition has also been used in [28].
Lemma 4.5 If θ ∈ C1([0, T ]) and the “nonbuckling” condition (64) holds then

lim
ε→0, λh∈Λh, th→t, h→0
λh→λ weakly in Wα,r(Ω;IRL)

∂G
ε
h

∂t

(
th, λh

)
=

∂G

∂t

(
t, λ

)
(65)

for all (t, λ) ∈ [0, T ]× Λ.
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Proof. As to (65), we realize that

∂G
ε
h

∂t

(
th, λh

)
=

∫
Γ

A(x)(uh(x) − uD(th, x))
∂uD

∂t
(th, x)dS

+

∫
Ω

(∂ψ

∂θ
(·, θ(th)) •νh

)dθ

dt
(th)dx (66)

where (uh, νh) is the minimizer in the optimization problem involved in (27) with (t, λ) :=

(th, λh). Due to (64), we may suppose that uh → u weakly in W 1,p(Ω; IRd) and νh → ν

weakly* in L∞
w (Ω; rca(IRd×d)). Then also uh|Γ → u|Γ strongly in L2(Γ; IRd). More-

over, by the dominated-convergence theorem, we also have ∂uD

∂t (th, ·) → ∂uD

∂t (t, ·) strongly
in L2(Γ; IRd). As A ∈ L∞(Ω; IRd×d) and uD(th, ·) → uD(t, ·) strongly in L2(Γ; IRd)
we get the convergence of the first term on the right-hand side in (66) to

∫
Γ A(x)(u(x) −

uD(t, x))∂uD

∂t (t, x)dS. Further notice that ∂ψ̂/∂θ(F, ·) with ψ̂ from (3) is continuous for
positive arguments θ. Thus, if θ ∈ C1(I) is positive, we get the convergence of the second
term in the right-hand side of (66) to

∫
Ω(∂ψ∂θ (·, θ(t)) • νh)

dθ
dt (t)dx. �

Using the above results we can prove the convergence:
Proposition 4.6 Let the assumptions (31), (32), (45), (47) (64) be valid, and θ ∈

C1([0, T ]). Then there is a subsequence {λετ,h}τ>0,h>0, denoted for simplicity by the same
index (τ, h), and a limit process λ : [0, T ] → Λ such that:
(i) limε→0 limτ→0,h→0 λετ,h(t) = λ(t), i.e. weak convergence in L1(Ω; IRL) for all t ∈

[0, T ], and λ ∈ L∞([0, T ] × Ω; IRL) ∩ BV([0, T ]; L1(Ω; IRL)),
(ii) limε→0 limτ→0,h→0 G

ε
τ,h(t, λ

ε
τ,h(t)) = G(t, λ(t)) for all t ∈ [0, T ].

Moreover, every such limit process λ is a solution process in the sense that λ(t) is stable in
the sense of (24a) and the energy inequality (24b) holds even as an equality for every s and t
with 0 ≤ s < t ≤ T .

Proof. For clarity, let us divide it into three steps.
Step 1: The points (i)–(ii). By the a-priori estimate (36) and Helly’s selection principle (see
Barbu and Precupanu [7]), we can select the subsequence and a function G ∈ BV([0, T ]) such
that limε→0 limτ→0,h→0 G

ε
τ,h(t, λ

ε
τ,h(t)) = G(t) for all t ∈ [0, T ]. Furthermore, taking into

account the a-priori estimate (35), by a generalized Helly selection principle for Banach-space
valued functions, see [30, Theorem 6.1], we can make the selection in such a way that, for
some λ ∈ BV(0, T ; L1(Ω; IRL)), λετ,h(t) → λ(t) weakly in L1(Ω; IRL) for all t ∈ [0, T ].

By stability (33) and in view of the definition of G
ε
τ,h, we can write G

ε
τ,h(t, λ

ε
τ,h(t)) =

G
ε
h(ϑ(t, τ), λετ,h(t)) for some ϑ(t, τ) ∈ [t, T ] such that limτ→0 ϑ(t, τ) = t; in fact, ϑ(t, τ)

is mink∈IN∪{0}{kτ ≥ t}. As in (62), we now have limε→0 limτ,h→0 G
ε
τ,h(t, λ

ε
τ,h(t)) =

G(t, λ(t)). Comparing it with what we got by Helly’s selection principle, we can see that
G(t) = G(t, λ(t)) for all t ∈ [0, T ], which proves (ii).
Step 2: λ(t) ∈ S(t) for all t. Let us fix t. As λετ,h(t) ∈ Sεh(ϑ(t, τ)) with ϑ(·, ·) from Step 1,
by using Lemma 4.4, we can see that λ(t) ∈ S(t).
Step 3: The energy (in)equality (24b). First, let us consider s = 0 and t as some grid-point
belonging to some partition of [0, T ]. Then (34) is at our disposal for each finer partition
and for the limit passage, we will therefore consider only those partitions, i.e. with τ small
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enough with respect to this t. Again, we use limε→0 limτ→0 G
ε
τ,h(t, λ

ε
τ,h(t)) = G(t, λ(t)).

From the pointwise converge of λετ,h(·) and from the definition (25) of VarL(λετ,h; 0, t), we get
lim infε→0 lim infτ,h→0VarL(λετ,h; 0, t) ≥VarL(λ; 0, t). Moreover, as we proved λετ,h(t) →

λ(t) weakly in L1(Ω; IRL) and, by (35), this sequence is bounded in Wα,r(Ω; IRL) and there-
fore λετ,h(t) → λ(t) weakly also in Wα,r(Ω; IRL). Then, by (65), ∂

∂tG
ε
τ,h

(
t, λετ,h(t)

)
=

∂
∂tG

ε
h

(
ϑ(t, τ), λετ,h(t)

)
→ ∂

∂tG
(
t, λ(t)

)
. Therefore,∫ t

0

∂G
ε
h

∂ϑ

(
ϑ, λετ,h(ϑ)

)
dϑ →

∫ t

0

∂G

∂ϑ

(
ϑ, λ(ϑ)

)
dϑ (67)

by the Lebesgue dominated-convergence theorem when using the a-priori bounds like in (42).
Moreover, λετ,h(ϑ − τ) → λ(t) weakly in L1(Ω; IRL) provided t is a point of continuity of
λ(·), i.e. for a.a. t ∈ [0, T ] because BV-functions are a.e. continuous. Due to the a-priori
estimate (35), again we also have this convergence weakly in Wα,r(Ω; IRL). Therefore also∫ t

0

∂G
ε
h

∂ϑ

(
ϑ, λετ,h(ϑ − τ)

)
dϑ →

∫ t

0

∂G

∂ϑ

(
ϑ, λ(ϑ)

)
dϑ. (68)

Then, we can pass to the limit in both inequalities in (34), proving thus

m(t) := G
(
t, λ(t)

)
− G

(
0, λ0

)
+ VarL(λ; 0, t) +

∫ t

0

∂G

∂ϑ

(
ϑ, λ(ϑ)

)
dϑ = 0 (69)

at each t of the form kτ ∈ [0, T ], k = 1, ..., T/τ , τ from the considered sequence of time
steps. The (only countable) set of such t’s is dense in [0, T ] and thus (69) must hold also at
each t ∈ [0, T ] at which all functions involved in (69) are continuous. Those functions have,
however, a bounded variations and are thus continuous with the exception of at most countable
number of points. Hence (69) holds everywhere on [0, T ] with the only exception of at most
countable number of points.

Then, a proof of continuity of m on [0, T ] can be performed as in [28, Step 6 of the proof
of Theorem 3.4]. Thus (24b) for general s ≤ t can be proved. �

5 Computer implementation of the minimization problem (26)

A computer realization of (26) is made for d = 3 but involves several simplifications. In
particular, we do not implement the regularization of V , i.e. we put ρ = 0 in V , do not
implement the penalization scheme and define ψ̂ := min� ψ̂� which keeps the wells precisely
at the desired orbits SO(3)U�. We implemented piecewise affine tetrahedral finite elements
with a standard division of a prism into five tetrahedra. Thus,

uh ∈ Uh =
{
v ∈ C(Ω̄; IR3); ∀ E ∈ Th : v|E is affine

}
. (70)

This means that ∇uh is element-wise constant, as used for the approximation in Section 4.
In view of the specific experiments in Sect. 6, the choice κ = 1, i.e. the first-order laminates
described in (6), is chosen so that we can write

F1h = ∇uh + (1 − ξh)ah ⊗ nh , F2h = ∇uh − ξhah ⊗ nh ,

where ξh∈L∞(Ω); 0 ≤ ξh ≤ 1, ∀E∈Th : ξh|E is constant,
ah, nh∈L∞(Ω; IR3); ∀E∈Th : ah|E , nh|E are constant. (71)
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Finally, it is clear that

[νh]x = ξh(x)δF1h(x) + (1 − ξh(x))δF2h(x) , x∈Ω, (72)

represents an element-wise constant first-order laminate. Consequently, any Young measure
(72) is fully determined by ∇uh, ξh, ah and nh. As to the construction of the dissipation
potential, we calculate for a given F ∈ Rd×d its right Cauchy-Green tensor C = F�F and
calculate the square of the Euclidean distance of C to all C� = F�

� F�, � = 1, . . . , L. Taking
a smooth function d̃ : IR → IR such that d̃ = 1 in a neighborhood of 0 and d̃ = δ otherwise
for some δ > 0 small, we can see that{

d̃(dist2(C, Cm))∑L
�=1 d̃(dist2(C, C�))

}L

m=1

∈ �L .

This construction defines the mapping L : IRd×d → �L. The norm on IRL is taken as
|λ|L =

∑L
i=1 γi|λi| where γi > 0 for 1 ≤ i ≤ L.

Moreover, we replace the nonsmooth absolute value by its regularization |y| ≈
√

y2 + β
with β = 10−8. Defining

Ψ(t, u, ν, νk−1) =

∫
Ω

∫
IRd×d

ψ̂(F, θ(t))νx(dF ) dx +

∫
Ω

∣∣∣L •ν − L • νk−1
∣∣∣
L

dx (73)

+
1

2

∫
Γ

(u(x) − uD(t, x))�A(x)(u(x) − uD(t, x)) dx (74)

and setting the initial condition ν0 we have the following problem for k = 1, . . . , T/τ :

Minimize Ψ(kτ, u, ν, νk−1)

subject to u ∈ Uh , ν is given by (72).

}
(75)

The problem (75) is solved by the the optimization routine “L-BFGS-B” described in [10].
Due to the multi-well character of ψ̂, (75) is a nonconvex minimization problem, which,
together with rather big number of variables, makes finding a global minimum extremely
difficult. As “L-BFGS-B” is designed for local optimization, we need some strategy to rule
out at least some of local minima. Notice that, since we use a first-order laminate, i.e., a
two-atomic probability measure, we can relatively easily reach a microstructure consisting of
no more than two material phases/variants, while more complicated microstructures can be
reached, as we proved in Section 4, rather theoretically only by using very fine discretizations
allowing indeed fast spatial oscillations. The idea is to neglect some energy wells by assigning
them “infinite” energy and compare obtained values of the minima in (75) for the original ψ̂

and modified ψ̂ with some wells neglected. Our experience shows that at least in simple
experiments this strategy leads to reasonable results.

6 Computational experiments with NiMnGa single crystal

We performed our computational on a prismatic (1,0,0)-oriented single crystal of Ni2MnGa.
This alloy (or, more precisely, intermetalic) undergoes a cubic/tetragonal transformation,
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which is relatively easy to model because the martensite forms only 3 variants, here with
U2 = diag(η2, η1, η1), U3 = diag(η1, η2, η1) and U4 = diag(η1, η1, η2) where η1 = 1.018
and η2 = 0.9608. The stretch tensor of the austenite is the identity, i.e. U1 = diag(1, 1, 1).
Therefore, L = 4 in our example. Using [6] we can see that martensitic variants are rank-
one connected with each other while none of them is rank-one connected with the austenite.
Rank-one connection allows for the formation of a planar interface between two martensitic
variants. We prescribe the dissipation energy density as 0.35 MPa for transformations be-
tween the austenite and any martensitic variant ([1]) and almost no dissipation is assumed for
transformations among martensitic variants. This can be done by taking γ1 = 35 × 104 and
γi = 1 if i �= 1. The equilibrium temperature of the austenite and martensite is about 288 K
(i.e. 35◦C), the energetic minimum of the martensites changes with the temperature at the rate
200 kPa/K. Roughly speaking, after dividing this rate by a transformation strain (here about
6%), we get a so-called Clausius-Clapeyron constant (here about 3 MPa/K). In view of (2)-(3)
with θ0 considered as 288 K, this constant is essentially the difference of the heat capacity c1

in austenite from the heat capacity c2 = c3 = c4 in the martensite.

Elastic moduli of the austenite are taken zero but C1
1111 = 13.6 GPa, C1

1122 = C1
2211 =

9.2 GPa, C1
2323 = C1

2332 = C1
3223 = C1

3232 = 10.2 GPa. Here we are inspired by an experiment
presented in [1] where the measured elastic moduli are artificially taken smaller by a factor 10
to reflect a certain “pre-martensitic transformation” observed experimentally in this particular
alloy. Elastic moduli of all martensitic variants are then taken as those measured in austenite,
i.e. C�1111 = 136 GPa, C�1122 = C�2211 = 92 GPa, C�2323 = C�2332 = C�3223 = C�3232 = 102 GPa
and zero otherwise for � = 2, 3, 4, which is again a rather coarse simplification due to missing
measurements of such constants.

The specimen is a prism, Ω = (0, 9) × (0, 4) × (0, 4) (in mm’s), discretized into 270
tetrahedral elements, cf. Fig.1a. The loading of the specimen is realized through the matrix
A and uD. For Fig. 1b, on the side {0} × (0, 4) × (0, 4) we take A and uD simulating either
zero Dirichlet boundary conditions on u1, this means that A is a diagonal matrix with zeros at
appropriate positions on the diagonal and uD = 0.

Computations have proved to perform much better if the specimen is loaded by a simple
surface force than by a “spring” load defined by A and uD on the side {9} × (0, 4) × (0, 4).
Therefore we applied a normal surface force at the side {9} × (0, 4) × (0, 4). However, this
regime can be seen as a limit case of the “spring” load if |A| → 0 and |uD| → ∞. Other parts
of the boundary Γ are free, i.e., A(x) = 0 if x �= (0, x2, x3).

The loading force on the side {9}× (0, 4)× (0, 4) is of a sawtooth form with 150 steps per
period; note that, as the process is rate-independent, the actual time scale is irrelevant. The
Young-measure initial condition is ν0 = δI in Figures 1,3 and 4, while the initial condition in
Figure 2 is inhomogeneous.

The following figure simulates a simple lab experiment in a pseudo-elastic regime. The
temperature is about 50 ◦C. This calculation serves as a fitting experiment to our model, by
considering experimental data from [1]. Also, in view of both experimental and computa-
tional experience in [1], we rely on that the first-order laminate will well suffice for efficient
simulation in this particular experiment, which is why κ = 1 is chosen, cf. (71)-(72).
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Fig. 1a Geometry of a specimen, two
loaded sides, and a triangulation.

Fig. 1b Loading/compression curve of a Ni2MnGa
single crystal at θ = 50◦C.

For the further calculations, A is a diagonal matrix with large positive entries and again uD =
0 simulating zero Dirichlet boundary conditions on all components of u. The second figure
shows a typical hysteretic behavior of the strain if the specimen is cyclically heated up and
cooled down.

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

288 298 308 318 328 338 348 358

el
on

ga
tio

n 
[m

m
]

temperature [K]

Fig. 2 The specimen under the load of−200 MPa is heated up and
then cooled down. A hysteretic response of the temperature
vs. elongation.

Further, we will demonstrate the influence of the boundary conditions, and in particular we
want to obtain a stress/strain response (cf. Fig. 4 below) closer to typical experimental outlet.
We load the specimen at all directions on the side {0} × (0, 4) × (0, 4), and we can see on
Fig. 3 that the specimen does not transform from the austenite to the martensite close to the
mentioned piece of the boundary.

Fig. 3 Spatial evolution of the martensite (black) in the specimen during the compression load-
ing cycle. The displacement is displayed as 10× magnified.
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Fig. 4 Pseudo-elastic stress-strain response under the compres-
sion test during the loading cycle from Fig. 3.

Our last figure simulates a reorientation of the martensite. We start from an almost stress-
free mixture of martensitic variants with the spatially homogeneous macroscopic deformation
gradient diag(0.998, 0.998, η1). We prescribe [uD]2(x) = 0.002x1, [uD]3(x) = (η1 − 1)x3

if x ∈ {0} × (0, 4) × (0, 4) ∪ {9} × (0, 4) × (0, 4), [uD]1 = 0 on {0} × (0, 4) × (0, 4) and
[uD]1 changes in time on {9}× (0, 4)× (0, 4) giving the strain ±5%. The initial condition is
ν0 = 1

2δU2
+ 1

2δU3
. Note that calculated Young measures consist, in general, of two atoms,

i.e. a nontrivial spatially inhomogeneous first-order laminate occurs during the most periods
of this experiment.

Fig. 5 Evolution of a martensitic reorientation during quasi-plastic cycling at θ = 20◦C showing
martensitic variants U2 (black) and U3 (white) in the specimen during the loading cycle. Evolv-
ing microstructure with the normal of laminates (1, 1, 0) is depicted on one element. The dis-
placement is displayed as magnified by the factor 2. The specimen is here discretized into 120
elements.

All the computations are fairly robust in the sense that the curves of material response do not
significantly change if we use a finer spatial discretization.
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