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Abstract

This contribution surveys various numerical approximation techniques applicable to
relaxed vectorial variation problems describing, e.g., a steady-state configuration of
cristalline martensitic materials.
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1 THE ORIGINAL PROBLEM

A steady-state configuration of elastic both geometrically and meterially nonlinear solid
bodies occupying a bounded domain Ω ⊂ IRn with a Lipschitz boundary Γ is governed by
a vectorial variational problem

(VP)
∫

Ω
ϕ(x, y(x),∇y(x))dx +

∫

Γ
ϕ1(x, y(x))dS → inf, y ∈ W 1,p(Ω; IRm) ,

where y : Ω → IRm is a displacement, ϕ : Ω × IRm × IRm×n → IR is a potential-energy
density and ϕ1 : Γ × IRn → IR is a surface energy density, 1 < p < +∞. We admit
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also n 6= m though in elasticity n = m except some symmetrical situations like, e.g.,
the anti-plane deformation where m = 1. We are especially interested in crystalline
materials composed from several phases (typically several lower-symmetry martensitic
phase and possibly also higher-symmetry austenite) which may exhibit a microstructure.
In this situation, the potential ϕ(x, r, ·) has several rotationally invariant wells, each of
them corresponds to one phase. Therefore, we must admit a certain nonconvexity of
ϕ(x, r, ·) : IRm×n → IR (more precisely, ϕ(x, r, ·) need not be quasiconvex) and then (VP)
need not possess any solution so that its extension (=relaxation) must be done. Recall that
a function v : IRm×n → IR is called quasiconvex if v(A) ≤meas(Ω)−1

∫

Ω v(A +∇y(x))dx
for any A ∈ IRm×n and any y ∈ W 1,p

0 (Ω; IRm), cf. [7].

2 THE RELAXED PROBLEM

We will treat a continuous extension of (VP), which preserves a detailed “limit” infor-
mation about the possible fine oscillations of the gradient of minimizing sequences for
(VP), i.e. the so-called microstructure. Neglecting some technicalities, the continuously
extended relaxed problem involves Young measures in place of ∇y (cf. e.g. [1, 2, 4]):

(RP)



















Minimize
∫

Ω

∫

IRm×n ϕ(x, y(x), A)νx(dA)dx+
∫

Γ ϕ1(x, y(x))dS ,

subject to
∫

IRm×n Aνx(dA) = ∇y(x) for a.a. x ∈ Ω,

y ∈ W 1,p(Ω; IRm), ν ∈ Gp(Ω; IRm×n),

where Gp(Ω; IRm×n) = {ν = {νx}x∈Ω; ∃{yk}k∈IN ⊂ W 1,p(Ω; IRm) bounded & ∀h ∈
L1(Ω;C0(IR

m×n)) : limk→∞

∫

Ω h(x,∇yk) =
∫

Ω

∫

IRm×n h(x,A)νx(dA)dx} denotes the set of
all so-called gradient Lp-Young measures. The continuous relaxation yields a detailed in-
formation about a microstructure described by a Young measure (= a weakly measurable
collection of probability measures parametrized by x ∈ Ω) ν and also avoids a necessity to
evaluate the quasiconvex envelope of ϕ(x, r, ·), which arises within lower-semicontinuous
relaxation, but creates invevitably another difficulty because the set Gp(Ω; IRm×n) is not
effectively defined.

We assume the following data qualification: ϕ and ϕ1 are Carathéodory functions with
a suitable growth and coercivity, namely

c0|A|
p ≤ ϕ(x, r, A) ≤ a0(x) + c1(|r|

p + |A|p) , b(x)|r|β ≤ ϕ1(x, r) ≤ a1(x) + c1|r|
p (1)

with a0 ∈ L1(Ω), a1 ∈ L1(Γ), c0, c1, β > 0, b ≥ 0 nonvanishing on Γ, 1 < p < +∞, and
such that ϕ(x, ·, A) is Lipschitz continuous in the sense

|ϕ(x, r1, A)− ϕ(x, r2, A)| ≤ (a(x) + c|r1|
p−1 + c|r2|

p−1 + c|A|p−1)|r1 − r2| (2)

with some a ∈ Lp/(p−1)(Ω) and c > 0. Then it is possible to show that (RP) is a correct
relaxation of the original problem (VP) in the sense that (RP) always posseses a solution,
the set of all solutions to (RP) is stable (more precisely, upper semicontinuous) with
respect to a suitable data perturbations, every minimizing sequence for (VP) has a weak*
cluster point which solves (RP) and, conversely, every solution to (RP) is attainable by a
minimizing net for (VP), for details see [18].
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3 APPROXIMATION OF THE RELAXED PROBLEM

The main aim of this contribution is to present a state of art in approximation theory
of the relaxed vectorial variational problem (RP); due to the restricted scope, the results
will be presented without proofs, referring to the references, especially to [17, 18].

We will not consider a direct finite-element approximation of (VP) (cf. a series of
works by Chipot, Collins, Gremaud, Luskin, Kinderlehrer Nicolaides, Riordan, and Wang
[3, 5, 6, 8, 10, 13, 14]) which always converges to (RP) but expectedly very slowly.

Rather we can make a direct finite-element approximation of (RP) by making a tri-
angulation Td of Ω such that all elements (=simplexes) from Td have diameter less than
d > 0, and then by restriction of (RP) to y element-wise affine and ν element-wise con-
stant; let us denote the resulted problem by (RPd). It is known that, for d → 0, the
solution of (RPd) converges to a solution of (RP) in the sense that

lim
d→0

min(RPd) = min(RP) (3)

and every cluster point of every sequence of solutions to (RPd) solves (RP), which can be
written shortly in terms of the Kuratowski upper limit “Limsup” as

Limsup
d→0

Argmin(RPd) ⊂ Argmin(RP), (4)

where “Argmin” denotes the set of all solutions to the indicated problem; we refer to [17]
or also to [18, Proposition 6.3.7] for details. For ϕ(x, r, A) independent of x and r the
scheme (RPd) has been also proposed by Pedregal [16].

Anyhow, the problem how to describe effectively the set Gp(Ω; IRm×n) still remains.
Therefore, further approximation is needed. The general philosophy is to replace
Gp(Ω; IRm×n) by another set (either smaller or larger) which can be defined effectively.

As to the former case, one can take all 2k-atomic pair-wise rank-one connected Young
measures, the resulted set being denoted by Gp

k(Ω; IR
m×n) and the resulted problem by

(RPk
d); i.e. this problem consists in minimization of the same functional as in (RP) but for

y ∈ W 1,p(Ω; IRn) element-wise affine on the triangulation Td and ν element-wise constant
on T⌈ and of the form

νx =
2k
∑

l=1

al(x)δAl(x) (5)

with al = al(x) and Al = Al(x) satisfying the following recursive conditions invented by
Dacorogna [7] and called (HN)-condition:

al =
∏k

j=1 c[(l−1)2j−k ]+1,j , Al = Al,k , l = 1, ..., 2k

c2i,jA2i,j + c2i−1,jA2i−1,j = Ai,j−1,

c2i,j + c2i−1,j = 1, c2i,j , c2i−1,j ≥ 0, Rank(A2i,j −A2i−1,j) ≤ 1,

i = 1, ..., 2j−1, j = 1, ..., k, A1,0 = ∇y ∈ IRm×n.































(6)

where [·] denotes the integer part. The scheme (RPk
d) has been proposed by Nicolaides

and Walkington [9], see also [19], using basically the same ideas as Dacorogna [7, Sec-
tion 5.1.1.2] and Kohn and Strang [11, Section 5C].
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As to the latter case, one can take all Lp-Young measures which satisfy the Jensen
inequality for all quasiconvex functions from a prescibed finite setX , the resulted set being
denoted by Gp

X(Ω; IR
m×n) and the resulted problem by (RPd,X); i.e. this problem consists

in minimization of the same functional as in (RP) but for y ∈ W 1,p(Ω; IRn) element-wise
affine on the triangulation Td and ν element-wise constant on T⌈ and satisfying

∀v ∈ X :
∫

IRm×n
v(A)νx(dA) ≥ v(

∫

IRm×n
Aνx(dA)) . (7)

As Gp
k(Ω; IR

m×n) ⊂ Gp(Ω; IRm×n) ⊂ Gp
X(Ω; IR

m×n), we have always the two-side estimate

min(RPk
d) ≥ min(RPd) ≥ min(RPd,X) (8)

provided X contains all linear functions, or (which is basically equally effective) all func-
tions A 7→ ±[A]ij .

The convergence of the scheme (RPk
d) is based on the results by Dacorogna [7] and

Kohn and Strang [11]: if the rank-one convex envelope of ϕd(x, r, ·), where ϕd denotes
the potential ϕ averaged over the particular elements of Td, coincide with the quasiconvex
one (cf. [7] for definitions of these envelopes), then

lim
k→∞

min(RPk
d) = min(RPd), and (9)

Limsup
k→∞

Argmin(RPk
d) ⊂ Argmin(RPd). (10)

If the rank-one and the quasi-convex envelopes differ from each other less than ε/|Ω| or if

min(RPk
d)−min(RPd) ≤ ε, (11)

then we can say at least that any solution to (RPk
d) with k large enough is an ε-approximate

solution to (RPd). The difference (11) is actually often rather small and can be justified
experimentally by using the two-side estimate (8).

The character of convergence of (RPd,X) is a bit different. We have always the conver-
gence

lim
X→X∞

min(RPd,X) = min(RPd) (12)

where X → X∞ indicates that X ranges the collection of all finite subsets of the set
X∞ of the quasiconvex functions with a growth less than p; of course, this collection is
considered as directed by the inclusion. Then we have also

Limsup
X→X∞

Argmin(RPd,X) ⊂ Argmin(RPd). (13)

However, X∞ is not effectively defined so that this convergence is purely theoretical
only. Taking X all ±subdeterminants (and p > min(n,m)), then Gp

X(Ω; IR
m×n) is com-

posed from the so-called polyconvex Young measures (cf. Pedregal [15]) and immediately
min(RPd,X) = min(RPd) if the quasiconvex envelope of ϕd(x, r, ·) coincides with the poly-
convex one; for the definition of the polyconvex envelope see, e.g., [7]. If they differ from
each other by no more than ε/|Ω| or if

min(RPd)−min(RPd,X) ≤ ε, (14)
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then solutions to (RPd,X) are in a suitable sense also ε-approximate solutions to (RPd).
More precisely, if (y, ν) solves min(RPd,X), then there is a modified Young measure ν̃ such
that the pair (y, ν̃) is an ε-approximate solution to (RPd), i.e.

(y, ν̃) ∈ W 1,p(Ω; IRm)×Gp
H(Ω; IR

m×n),
∫

IRm×n Aν̃(dA) = ∇y(x), ν̃ element-wise constant on Td,
∫

Ω̄

∫

IRm×n ϕ(x, y(x), A)ν̃(dA) dx+
∫

Γ ϕ1(x, y(x))dS ≤ min(RPd) + ε,



















(15)

and certain momenta of ν and ν̃ coincide with each other, namely

∀v subdeterminant :
∫

IRm×n
v(A)νx(dA) =

∫

IRm×n
v(A)ν̃x(dA) . (16)

This fact can be proved by taking ν̃ ∈ Gp(Ω; IRm×n) element-wise constant such
that

∫

IRm×n Aν̃(dA) = ∇y(x) and
∫

Ω

∫

IRm×n ϕd(x, y, A)ν̃(dA)dx = ϕd(x, y,∇y(x))qcdx,
where (·)qc denotes the quasiconvex hull; such ν̃ always exists due to the assumed
coercivity of ϕ, cf. (1). The pair (y, ν̃) apparently satisfies (13). Moreover, since
X contains ±adjk (here adjk denotes some subdeterminant of the order k, we have
∫

IRm×n adjk(A)ν(dA) = adjk(∇y(x)). Also we have
∫

IRm×n Aν(dA) = ∇y(x) at our dis-
posal. Then every ν̃ ∈ Gp(Ω; IRm×n) such that

∫

IRm×n Aν̃(dA) = ∇y(x) satisfies also
∫

IRm×n adjk(A)ν̃(dA) = adjk(∇y(x)) from which (16) already follows.
To implement the scheme min(RPd,X) with X consisting from ±subdeterminants,

we can always consider ν as a convex combination of a finite number (namely 1 +
∑min(m,n)

k=1 (mk )(
n
k) Dirac measures. The tolerance ε from (14) can be again justified ex-

perimentally by means of the two-side estimate (8).
Let us still remark that, by introducing suitable envelopes, these results can be gener-

alized for larger X which contains, beside all ±subdeterminants, also a finite number of
some quasiconvex (but not polyconvex) functions.

Let us also note that the scheme (RPk
d) results (after a suitable transformation)

to a nonconvex mathematical-programming problem with several box-constraints only,
while the scheme (RPd,X) with X containing all ±determinants yields a nonconvex

mathematical-programming problem with mn + 1 linear but also
∑min(m,n)

k=2 (mk )(
n
k) non-

linear equality constraints on each element. This makes the latter scheme a bit more
delicate for calculations but we cannot rely only on the former scheme because no other
estimate of the energy error than (8) does not exist in general situations. Numerical
examples for model two-dimensional problems with two rotationally invariant wells de-
scribing materials having two phases (tetragonal, monoclinic, or cubic) which are or are
not rank-one connected have been calculated by Kruž́ık [12], where a detailed numerical
experience can be found.
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[12] Kruž́ık, M.: Numerical approach to double well problems. (submitted)

[13] Luskin, M.: Numerical analysis of microstructure for crystals with a nonconvex energy density.
In: The Metz Days Surveys 1989-90 (M.Chipot, J. Saint Jean Paulin, eds.), Pitman Res. Notes in
Math., Longman, 1991, pp.156–165.

[14] Luskin, M.: Approximation of a laminated microstructure for a rotationally invariant, double well
energy density. IMA Preprint No. 1325, Minneapolis, 1995.

[15] Pedregal, P.: Laminates and microstructure. Euro. J. Appl. Math. 4 (1993), 121–149.

[16] Pedregal, P.: On the numerical analysis of non-convex variational problems. Numer. Anal.
(submitted)
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