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Pod vodárenskou věžı́ 4, CZ-182 08 Praha 8,
CZECH REPUBLIC

tomas.roubicek@mff.cuni.cz, http://www.karlin.mff.cuni.cz/ r̃oubicek

Abstract:The model combining non-Newtonianp-power-law generalization of the Navier-Stokes equation for barycen-
tric velocity with Nernst-Planck equation for concentrations of particular mutually reacting ionic constituents, the heat
equation, and also the Poisson equation for self-induced quasistatic electric field is presented. Existence of weak solu-
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1 Introduction

Chemically reacting mixtures represent a framework
for modelling of various complicated processes in bi-
ology and chemistry. My research in this area has
been initiated by J. Nečas who, during many years
before he passed away, spoke about “living fluids”,
although he never elaborated any concept of such flu-
ids. To compromise thermodynamic amenability and
mathematical rigor, the model proposed in [20, 21]
uses incompressible Newtonian framework with the
barycentric impulse balance. This “barycentric” ap-
proach is called the Eckart-Prigogine’s [7, 17] con-
cept; in the compressible case, see also [1, 4, 5, 9].
The incompressibility refers here both to each partic-
ular constituent and, through volume-additivity hy-
pothesis as in e.g. [13, 19], also to the overall mix-
ture. To cover biological applications on a cellular
or subcellular level where intensity of electric field
on cell membranes is very high, the self-induced
electrostatic field must be considered; recall that the
intra-cellular electric potential ranges usually over
60-100 mV while the thickness of cell membranes is
of the order of 10 nm, which results to intensity of
electric field of the order of 10 MV/m.

In comparison with [20, 21] or [22, Sect. 12.6], we
consider here a non-Newtonian concept and use deep

regularity results of Málek, Nečas, and Růžička [12]
for such fluids with a shear-thickeningp-power-law
viscosity. Being an extended version of [23], this pa-
per proves existence of a weak solution for the full
system if 2.25≤ p≤ 2.3027 and uniqueness for the
isothermal case, which extends the results from [23]
where only a weak solution in the case of one spec-
ified value ofp has been considered.1 Anyhow, this
paper confirms that [23] is correct at least in the sense
that a specificp, for which weak solutions exist, does
exist. Due to an extremely late distribution of spe-
cific strict requirements from WSEAS concerning the
extended version of [23], the great part of this pa-
per could arise during a couple of weeks only (occu-
pied, in addition, primarily by making already sched-
uled 400-page proofs of [22]) and therefore the author
apologizes for incidental imperfections.

2 The model

We consider a mixture ofL mutually reacting chemi-
cal ionic constituents. Our model consists in a system

1To be more specific, [23] considersp = 5/2 but the argu-
ments supporting just this value ofp does not seem fully justified
in [23] because the last space in (28) below is onlyL4/3(I ;L4(Ω))
for p= 5/2 but notL4/3(I ;L5(Ω)) as incorrectly claimed in [23].
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of n+L+2 differential equations combining thenon-
Newtonianmodification of theNavier-Stokes equa-
tion (balancing the barycentric momentumρv), the
Nernst-Planck equationmodified for moving media
(balancing the mass of particular constituents), the
heat equation(balancing the internal energycvθ), and
the quasistaticPoisson equationfor the electrostatic
field (balancing the electric inductionε∇φ):

ρ
∂v
∂t

+ ρ(v·∇)v−divτ(Dv)

+ ∇π = −q∇φ , div(v) = 0, (1a)

∂c`

∂t
−div

(

d∇c` +mc̀ (è −q)∇φ−c`v
)

= r`(c1, ...,cL,θ) , ` = 1, ...,L , (1b)

cv
∂θ
∂t

−div
(

κ∇θ−cvvθ
)

= τ(Dv):Dv

+d∇q·∇φ+
L

∑̀
=1

mc̀ e2
` |∇φ|2

−mq2|∇φ|2−
L

∑̀
=1

h`(θ)r`(c,θ), (1c)

div(ε∇φ)+q = 0, q =
L

∑̀
=1

è c` . (1d)

The variablesv, π, c`, θ, φ andq have the following
meaning:

v barycenter velocity,
π pressure,
c` concentration of̀ -constituent,
φ electrostatic potential,
θ temperature,
q the total electric charge,

where the concentrationsc` are to satisfy

L

∑̀
=1

c` = 1, c` ≥ 0. (2)

In (1c) and later on,c abbreviates(c1, ...,cL). The
meaning of the data is:

τ = τ(Dv) stress tensor, Dv = 1
2(∇v)>+ 1

2∇v,
ρ > 0 mass density,
è valence (=charge) of̀-constituent,
ε > 0 permitivity,
r`(c1, ...,cL,θ) `-constituent production rate,
h` = h`(θ) enthalpy of thè -constituent,
κ > 0 thermal conductivity,
cv >0 heat capacity,
d > 0 a diffusion coefficient, and
m>0 a mobility coefficient.

The system (1) is to be completed by the initial con-
ditions

v(0, ·) = v0 , c`(0, ·) = c`0 , θ(0, ·) = θ0 (3)

on the considered fixed bounded Lipschitz domain
Ω ⊂ R

n, and by the boundary conditions correspond-
ing, e.g., to a closed container, which, in some sim-
plified version, leads to:

v = 0, c` = c`Σ, ε
∂φ
∂~n

= α(φΣ−φ), κ
∂θ
∂~n

= 0 (4)

on Σ := (0,T)×∂Ω, where~n is the unit outward nor-
mal to the boundary∂Ω andc`Σ andφΣ are prescribed.

3 Physical comments to the model

The body force in (1a) comes fromLorenz’ forceact-
ing on a chargeq moving in the electromagnetic field
(E,B), i.e. q(E + v×B) after the simplification that
the intensity of electric field isE =−∇φ and the mag-
netic inductionB vanishes.

The phenomenological flux j` := −d∇c` +
mc̀ (q−è )∇φ in (1b) equals to−m(c`∇µ` − fR)
where

µ` = è φ+
d
m

ln(c`), (5)

plays the role of anelectrochemical potentialand
where

fR := q∇φ (6)

is a “reaction force” keeping the natural requirement
∑L

`=1 j` = 0 satisfied, which eventually fixes also the
equality constraint in (2).

To show conservation of thetotal energy, let us
assume naturally the electric-charge conservation in
chemical reactions, i.e.

L

∑̀
=1

è r`(c,θ) = 0 (7)

and put, for simplicity,α = 0 in the boundary condi-
tions (4), and then calculate the rate of electrostatic
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energy:

ε
2

d
dt

∫

Ω
|∇φ|2dx =

∫

Ω
ε∇φ·∇∂φ

∂t
dx

= −
∫

Ω
εφ∆

∂φ
∂t

dx =

∫

Ω
φ

L

∑̀
=1

è
∂c`

∂t
dx

=

∫

Ω
φ

L

∑̀
=1

è
(

r`(c,θ)− div( j` +c`v)
)

dx

= −
∫

Ω
φ

L

∑̀
=1

è div( j` +c`v)dx

=

∫

Ω
∇φ ·

L

∑̀
=1

è ( j`+c`v)dx−
∫

Γ
φ

L

∑̀
=1

è j` ·~ndS (8)

where (1d) and (1b) have been used together with
(7) and twice Green’s formula counting also with the
boundary conditions (4). Testing (1a) byv, we obtain
rate of kinetic energy

d
dt

∫

Ω
ρ
|v|2
2

dx =

∫

Ω

L

∑̀
=1

c`( f` ·v)−ρ
(

(v·∇)v
)

·v

−ν|∇v|2 dx = −
∫

Ω
ν|∇v|2 +

L

∑̀
=1

c`è ∇φ ·vdx. (9)

The rate of internal energy can be obtained simply by
integration of (1c) overΩ and using Green’s theorem
with the considered boundary conditionsκ∂θ/∂~n= 0:

d
dt

∫

Ω
cv θdx =

∫

Ω
ν|∇v|2

−
L

∑̀
=1

(

è j`∇φ+h`(θ)r`(c,θ)
)

dx. (10)

Altogether, summing (8)–(10) and using also (1b) in-
tegrated overΩ and Green’s formula, we obtain the
following balance:

d
dt

∫

Ω

(

ρ
|v|2
2

+ ε
|∇φ|2

2
+cvθ

)

dx

= −
∫

Ω

L

∑̀
=1

h`(θ)r`(c,θ)dx−
∫

Γ
φ

L

∑̀
=1

è j` ·~ndS, (11)

where we used the boundary conditions (4). Hence,
(11) just says that the total energy rate, i.e. the rate
of the sum of kinetic, electrostatic, and internal en-
ergy 1

2ρ|v|2 + 1
2ε|∇φ|2 +cvθ overΩ, is balanced with

the enthalpy production rate∑L
`=1h`r` overΩ and the

normal flux of electro-energy∑L
`=1φè j` ·~n through

the boundaryΓ.
The meaning of the five heat-source terms on the

right-hand side of (1c) is the following:

• The first termτ(Dv) : Dv represents the heat pro-
duction rate due to the loss of kinetic energy by
viscosity.

• The second termd∇q·∇φ is the power (per unit
volume) of the electric current arising by the dif-
fusion flux, which can create local cooling ef-
fects. A global cooling effect seems possible via
interaction with the environment ifα 6= 0, ex-
pectedly related with the so-calledPeltier effect.
If α = 0, one can however see that the overall
production due to this term overΩ is nonneg-
ative: indeed, by using Green’s formula twice,
one gets

∫

Ω
∇q·∇φdx = −

∫

Ω
ε∇(∆φ)·∇φdx =

∫

Ω
ε|∆φ|2dx

−
∫

Γ
ε∆φ

∂φ
∂~n

dS≥
∫

Γ
qα(φΓ −φ)dS= 0. (12)

• The third term∑L
`=1mc̀ e2

` |∇φ|2 is the power of
Joule’s heatproduced by the electric currentsj`.

• The fourth term−mq2|∇φ|2 = −m f2R is the
rate of cooling by the force which balances the
volume-additivity constraint, and its influence is
presumably very small as usually|q| is much
smaller than max̀=1,...,L |è |. Besides, Joule’s
heat always dominates this cooling effect be-
cause

L

∑̀
=1

c`e
2
` ≥

( L

∑̀
=1

c`è
)2

(13)

if (2) holds, cf. [20, Remark 2.2].
• The last term∑L

`=1h`(θ)r`(c,θ) is the heat pro-
duced or consumed by chemical reactions.

It should be emphasized that many simplifications
are adopted in the presented model:

◦ we consider small electrical currents (i.e. mag-
netic field is neglected),

◦ we adopt the mentioned volume-additivity and
incompressibility assumption,

◦ we assume the diffusion fluxes independent of
other constituent’s gradients (cross-effects are
neglected) as well as of the temperature gradi-
ent (i.e. Soret’s effect is neglected)

◦ in agreement with Onsager’s reciprocity princi-
ple, we also assume the heat flux independent of
the concentration gradients (i.e. Dufour’s effect
is neglected),

◦ we assume the temperature-independent diffu-
sion coefficients, mobility coefficients, and mass
densities that are the same for each constituents,
i.e. d, m, andρ, respectively.
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In 60ties, there appeared a newer and more ratio-
nal concept by Truesdell [29, 30, 31] balancing im-
pulsesρc`v` (with v` denoting the velocity of the
`-constituent) of all constituents separately together
with interactive forces between them, see also [2, 14,
15, 18, 24, 25, 26, 28]. Then our barycentric veloc-
ity v equals to∑L

`=1c`v`. Recently, Samohýl [27] de-
rived the model (1) by various simplifications from
this rational model of Truesdell. In particular, [27]
showed that the reaction forcefR from (6) in (1b) can
be derived from a so-called Hittorf referential system
related to the velocity of a dominant un-charged non-
reacting constituent (typically water) after transfor-
mation to the barycentric system related to our veloc-
ity v under the assumptions (among others) of very
diluted solution and negligible diffusion velocities.

4 Existence of weak solutions

We naturally assume the mass conservation in all
chemical reactions and nonnegative production rate
of `th constituent if its concentration vanishes, and
the volume-additivity constraint holds for the initial
and the boundary conditions, i.e.

L

∑̀
=1

r`(c1, ...,cL,θ) = 0, (14a)

r`(c1, ...,c`−1,0,c`+1, ...,cL,θ) ≥ 0, (14b)
L

∑̀
=1

c`0 =
L

∑̀
=1

c`Σ = 1, c`0 ≥ 0, c`Σ ≥ 0. (14c)

Further, we assumeτ(D) = Φ′(|D|2), Φ : R → R
+,

and, for someε > 0,C ∈ R, it satisfies

Φ(0) = 0, Φ′(0) = 0, (15a)

Φ′′(|D|2)(B,B) ≥ ε
(

1+ |D|p−2)|B|2, (15b)
∣

∣Φ′′(|D|2)
∣

∣ ≤C
(

1+ |D|p−2) (15c)

for anyD,B∈ R
n×n symmetric. The Korn inequality

and (15a,b) imply (cf. [12, Lemma 2.1]) that, for any
v∈W1,2

0 (Ω;Rn),

∫

Ω
(τ(Dv1)−τ(Dv2)):D(v1−v2)dx≥ ζ

∥

∥∇v12
∥

∥

2
2 (16)

for someζ > 0 depending onε and onΩ and for‖·‖p
the norm inLp(Ω;Rn×n); later, it will also abbreviate
the norm inLp(Ω) or Lp(Ω;Rn).

We will prove the existence of a weak solution by
Schauder’s fixed point technique like in [20]. We de-
fine a retractK : M → {ξ∈M ; ξ` ≥ 0, ` = 1, ...,L}

by

K`(ξ) :=
ξ+

`

∑L
k=1 ξ+

k

, ξ+
` := max(ξ`,0), (17)

whereM denotes the affine manifold

M :=
{

ξ∈R
L;

L

∑̀
=1

ξ` = 1
}

. (18)

Let us note thatK is continuous and bounded onM .
Consideringγ = (γ1, ...,γL) = “old” concentrations
and ϑ = an “old” temperature field, we define the
quadruple(v,c,θ,φ) as the weak solution to thede-
coupled “retracted” system:

ρ
∂v
∂t

+ ρ(v·∇)v−divτ(Dv)

+ ∇π = −q∇φ , div(v) = 0, (19a)

∂c`

∂t
−div

(

d∇c` +mK̀ (γ)(è −q)∇φ−c`v
)

= r`(K(γ),ϑ) , ` = 1, ...,L , (19b)

cv
∂θ
∂t

−div
(

κ∇θ−cvvθ
)

= τ(Dv):Dv

+d
L

∑̀
=1

è ∇c`·∇φ+m
L

∑̀
=1

K`(γ)e2
` |∇φ|2

−mq2|∇φ|2−
L

∑̀
=1

h`(ϑ)r`(K(γ),ϑ), (19c)

div(ε∇φ)+q = 0, q =
L

∑̀
=1

è K`(γ) (19d)

with the initial and boundary conditions (3)–(4). Ob-
viously, given(γ,ϑ), we are to solve subsequently the
(now decoupled) equations (19d), (19a), (19b), and
(19c) to obtainφ, v, c, andθ, respectively.

For simplicity we assume

r`,h` continuous and bounded. (20)

In some simplified cases, a certain (although only
sub-linear) growth ofr`(c, ·) may be admitted, too;
cf. [20]. Let us abbreviateI := (0,T) andQ = I ×Ω.

Proposition 1 Let the assumptions (14), (15), (20)
hold, let v0 ∈ W1,p

0,DIV(Ω;Rn), c0 ∈ L2(Ω;RL), θ0 ∈
L2(Ω), let Ω be of class C3, and α and φΣ(t, ·) be
smooth, n≤ 3, and

9
4
≤ p <

1+
√

13
2

. (21)
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Let(γ,ϑ)∈ L2(Q;RL)×L2(I ;W1,2(Ω)) be given such
that ∑L

`=1γ` = 1 a.e. on Q. Then, for some C< + ∞
independent of(γ,ϑ), (19) has a unique weak solution
which satisfies

σ :=
L

∑̀
=1

c` = 1 a.e. on Q (22)

(although c̀ ≥ 0 need not hold!), and also the follow-
ing a-priori estimates

∥

∥v
∥

∥

L∞(I ;W1,p(Ω;Rn))∩L
2

p−1 (I ;W
2, 6

p+1 (Ω;Rn))
≤C, (23a)

∥

∥

∥

∂v
∂t

∥

∥

∥

L2(I ;L2(Ω;Rn))
≤C, (23b)

∥

∥θ
∥

∥

L2(I ;W1,2(Ω))∩L∞(I ;L2(Ω))
≤C, (23c)

∥

∥

∥

∂θ
∂t

∥

∥

∥

L2(I ;W1,2(Ω)∗)
≤C, (23d)

∥

∥c
∥

∥

L2(I ;W1,2(Ω;RL))∩L∞(I ;L2(Ω;RL))
≤C, (23e)

∥

∥

∥

∂c
∂t

∥

∥

∥

L2(I ;W1,2(Ω;RL)∗)
≤C, (23f)

∥

∥φ
∥

∥

L∞(I ;W2,2(Ω))
≤C. (23g)

Proof. First, we prove (22). By summing (19c) for
` = 1, ...,L and by (14a), one gets

∂σ
∂t

=
L

∑̀
=1

r`

(

K(γ),ϑ
)

+div

(

d∇σ+vσ

−
L

∑̀
=1

mK̀ (γ)
(

è −
L

∑
l=1

el Kl(γ)
)

∇φ
)

= d∆σ−v·∇σ, (24)

cf. also [20, Formula (3.18)]. Due to (14c), the unique
solution to thus obtained equation

∂σ
∂t

−d∆σ+v·∇σ = 0 (25)

is σ ≡ 1.
Further, we realize that the chargeq = e·K(γ)

in (19d) is always bounded and, in particular, it
is in L∞(I ;L2(Ω)), and (23g) follows by usual
W2,2-regularity of the∆-operator with (4). Then
also the driving forceq∇φ in (19a) is bounded in
L∞(I ;L6(Ω;Rn)), hence certainly inL2(Q;Rn), and
we can use [12] where the estimates (23a,b) have
been derived by a very sophisticated usage of a shift
technique and a test by a truncated Laplacean under
the restrictionp≥ 9/4, which is just the lower bound
in (21).

Testing (19b) byc` gives (23e) standardly when we
realize that the term

div(mK̀ (γ)(è −q)∇φ)− r`(K(γ),ϑ) (26)

is certainly bounded in L∞(I ;W1,6/5(Ω)∗) ⊂
L2(I ;W1,2(Ω)∗) and when we also use

∫

Ω
c`v·∇c` dx =

1
2

∫

Ω
v·∇c2

` dx

= −1
2

∫

Ω
(divv)c2

` dx = 0. (27)

Then (23f) follows by testing (19b) by arbitraryz∈
L2(I ;W1,2(Ω)).

Now, by the Sobolev embeddingW1,6/(p+1)(Ω) ⊂
L6/(p−1)(Ω) which holds forn≤ 3, let us realize that
(23a) is the estimate of

∇v in L∞(I ;Lp(Ω;Rn))∩L
2

p−1 (I ;L
6

p−1(Ω;Rn)). (28)

To work in terms of weak solutions of the heat
equation, we need to embed this space into
L2p(I ;L6p/5+ε(Ω;Rn)) with someε > 0. By usual in-
terpolation between the spaces in (28) with a coeffi-
cientλ ∈ [0,1], it needs the conditions

λ
∞

+
(1−λ)(p−1)

2
≤ 1

2p
, and (29a)

λ
p

+
(1−λ)(p−1)

6
<

5
6p

. (29b)

The smallestλ ≥ 0 satisfying (29a) isλ = (p2 −
p− 1)/(p2 − p). For this λ, (29b) results top2 −
p − 3 < 0 after a simple algebra. This condi-
tion just gives the upper bound in (21). Hav-
ing now v ∈ L2p(I ;L6p/5+ε(Ω;Rn)), due to (15a,c),
τ(Dv):Dv is then certainly bounded inL2(I ;L6/5(Ω))
which is a subset of the natural “right-hand-side
space” L2(I ;W1,2(Ω)∗) for the heat equation. By
(23e,g), we also know that(e·∇c)·∇φ is bounded in
L2(I ;L3/2(Ω)). The other three terms on the right-
hand side of (19c) are even better. Then (23c) follows
standardly by testing (19c) byθ, and (23d) then fol-
lows by using a test by arbitraryz∈ L2(I ;W1,2(Ω))
for (19c).

Eventually, the uniqueness of solutions to (19b,c,d)
follows standardly because these equations are de-
coupled and linear, while uniqueness for (19a) is non-
trivial and has been proved in [12] ifp≥ 9/4. �

Proposition 2 Let the assumptions of Proposition 1
hold, then the mapping(γ,ϑ) 7→ (v,c,θ,φ) with
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∑L
`=1γ` = 1 is continuous from the weak topology on

W L+1 with

W := L2(I ;W1,2(Ω))∩W1,2(I ;W1,2(Ω)∗) (30)

to the weak* topology related to the spaces from the
estimates (23).

Proof. Take a sequence{(γk,ϑk)}k∈N converging
weakly to some(γ,ϑ) in W L+1. Take the correspond-
ing (vk,ck,θk,φk) and choose a subsequence converg-
ing weakly* in the spaces specified in the estimates
(23). By Aubin-Lions’ compact-embedding theorem
[3, 10], cf. also e.g. [22, Lemma 7.7], the estimates
(23c,d) imply that

γk → γ in L2(I ;L6−ε(Ω;RL)) (31)

in the norm topology with anyε > 0, which allows
us to pass to the limitK(γk) → K(γ) and also en-
suresφk → φ strongly in L1/ε(I ;W2,2(Ω)). Then
we get|∇φk|2 → |∇φ|2 in L1/(2ε)(I ;L3(Ω)) to exploit
for (19c). Using again Aubin-Lions’ theorem shows
ϑk → ϑ strongly inL2(I ;L6−ε(Ω)), which allows us
to pass to the limith`(ϑk) → h`(ϑ) andr`(γk,ϑk) →
r`(γ,ϑ). Moreover, again by Aubin-Lions’ theorem
and by interpolation like in the proof of Proposition 1,

∇vk → ∇v in L2p(I ;L6p/5(Ω;Rn)) (32)

in the norm topology, hence

τ(Dvk):Dvk → τ(Dv):Dv in L2(I ;L6/5(Ω)), (33)

which is essential for the limit passage in (19c) to
obtain a conventional weak solution. The limit pas-
sage in (19) is then routine. The uniqueness proved
in Proposition 1 with help of [12] ensures eventually
the convergence of the whole sequence. �

Proposition 3 Let again the assumptions of Propo-
sition 1 hold, then the mappingF : (γ,ϑ) 7→ (c,θ),
where(c,θ) is uniquely determined by (19), maps the
set

C :=
{

(c,θ)∈W L+1; ‖c‖W L ≤C,

‖θ‖W ≤C, c(·, ·)∈M a.e. on Q
}

(34)

with C from (23c-f) into itself and has a fixed point
(c,θ) ∈ C . Moreover, considering the corresponding
φ and v, the quadruple(v,c,θ,φ) is a weak solution
to (1)–(4).

Proof. The fact thatF : C → C follows from Propo-
sition 1 becauseC from (23c-f) does not depend on
(γ,ϑ) at all, hence evenF : W L+1 → C . We use
C equipped with the weak topology. The continu-
ity of F in this topology was proved in Proposition 2.
The fixed point then exists by Schauder’s theorem (in
Tikhonov’s modification).

Finally, by testing byc−` the resulted equation for
c`, i.e. (19b) withK(c) in place ofK(γ), we obtain
c−` = 0 if (14b,c) is taken into account; the important
fact is thatK`(u)∇c−` = 0 because, for a.a.(t,x) ∈ Q,
eitherK`(u(t,x)) = 0 (if c`(t,x)≤ 0) or∇c`(t,x)− = 0
(if c`(t,x) > 0). Hence (2) is proved, andc` = K`(c),
so that the retractK can eventually be forgotten at this
fixed point. �

Let us remark that the bounds in (21) are very
tight; note that the length of this interval is only
about 0.0528. Therefore, it would be worth trying
either to improve regularity results from [12] by us-
ing also the fact that the driving force on the right-
hand sideq∇φ of (1a) is not only inL2(Q) but even
in L∞(I ;W1,1/ε(Ω;Rn)) if a W2,1/ε-regularity for the
∆-operator would be used,ε > 0 arbitrary, or to seek
for a more general solution. The former option is cer-
tainly extremely difficult, while the latter one seems
to be more promising although there are some tech-
nical obstacles too. E.g., one can think about a distri-
butional solutionθ ∈ L∞(I ;L1(Ω)) as in [16], which
might allow for p < 3, but, due to the advection term
div(v∇θ) in (19c), it is not obvious whether such dis-
tributional solutionθ depends depends continuously
on (γ,ϑ) as needed for the fixed-point argument.

5 Uniqueness in the isothermal case

Let us confine ourselves on the case that the temper-
ature variations can be neglected, hence instead of
r` = r`(c,θ) we consider onlyr` = r`(c); it is cer-
tainly well satisfied, e.g., in biological applications
on cellular level. Then (1) decouples to (1a,b,d) and
(1c). To show uniqueness, it suffices to consider only
(1a,b,d) because (1c) will follow.

Proposition 4 Let (15c) hold, r̀ be Lipschitz contin-
uous,Ω be of the C3-class,α andφΣ be smooth, n≤3,
and p≥5/2. Then there is at most one weak solution
to the problem (1a,b,d),(3),(4).

Proof. For notational simplicity, letρ=1. Recall that
q =∑L

`=1 è c` =: e·u. Consider the two weak solu-
tions (φ1,c1,v1) and (φ2,c2,v2) to (1a,b,d), and de-
noteφ12 := φ1−φ2, c12 := c1−c2, andv12 := v1−v2.
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Test the difference of (1a) (resp. (1b)) written for two
solutions byv12 (resp.c12

` ), and use (16) to get:

d
dt

(

∥

∥v12
∥

∥

2
2 +

L

∑̀
=1

∥

∥c12
`

∥

∥

2
2

)

+ ζ
∥

∥∇v12
∥

∥

2
2

+d
L

∑̀
=1

∥

∥∇c12
`

∥

∥

2
2 =

∫

Ω

(

(

(v2·∇)v2− (v1·∇)v1)v12

+
(

q2∇φ2−q1∇φ1)·v12

+m
L

∑̀
=1

(

c2
`(è −q2)∇φ2−c1

`(è −q1)∇φ1
)

·∇c12
`

+
L

∑̀
=1

(

c1
`v1−c2

`v
2)∇c12

`

+
(

r(c1)− r(c2)
)

·c12
)

dx =: I1 + ...+ I5 (35)

The termI1 in (35), arising from the convective term,
can be handled as in [11, Theorem 4.29] modified
with zero-Dirichlet boundary condition providedp≥
5/2, namely

I1 = −
∫

Ω
(v12·∇)v1·v12dx

≤ ε
∥

∥∇v12
∥

∥

2
2 +Cε

∥

∥∇v1
∥

∥

2p/(2p−n)

p

∥

∥∇v12
∥

∥

2
2

for ε<ζ and then treated by Gronwall’s inequality.
Furthermore, from (1d) we getφ12 = ∆−1(e·c12)

where∆−1 denotes the inverse operator to∆ under the
homogeneous boundary conditions (4), i.e.ε∂φ/∂~n+
αφ = 0. Estimate the termI2 in (35), for each̀ =
1, ...L, as

I2 :=
∫

Ω

(

c2
`∇φ2−c1

`∇φ1
)

·v12dx

≤ 1
4ε

∥

∥c12
`

∥

∥

2
2

∥

∥∇φ1
∥

∥

2
4 + ε

∥

∥v12
∥

∥

2
4

+
∥

∥c2
`

∥

∥

2
∞

∥

∥∇∆−1(e·c12)
∥

∥

2
2+

1
4

∥

∥v12
∥

∥

2
2 =: T1+ ..T4.

By (23e), q ∈ L2(I ;W1,2(Ω)), and then ∇φ1 ∈
L2(I ;W2,2(Ω;Rn))⊂ L2(I ;L4(Ω;Rn)) for n≤ 3 (here
even n ≤ 8 is allowed) through standardW3,2-
regularity results for the linear boundary-value prob-
lem (1d)–(4). Then the termT1 will be handled by
Gronwall’s inequality. As toT2 ≤ εN2‖∇v12‖2

2, we
will absorb it in the respective term coming from the
viscosity term (1a) ifε < ζ/N2 whereN is the norm
of the embeddingW1,2(Ω)⊂ L4(Ω). As toT3, we use
‖∇φ12‖2 ≤ C‖e·c12‖2 with someC depending onΩ
and onα, and then will handle it together withT4 by

Gronwall’s inequality. Now we estimate the termsI3`

with I3=∑L
`=1 I3` in (35) as

I3`

m
:=

∫

Ω

(

c1
`(è −q1)∇φ1−c2

`(è −q2)∇φ2
)

·∇c12
` dx

≤ 3m
d

∥

∥c12
`

∥

∥

2
2

∥

∥è −q1
∥

∥

2
∞

∥

∥∇φ1
∥

∥

2
∞

+
3m
d

∥

∥c2
`

∥

∥

2
∞

∥

∥e·c12
∥

∥

2
2

∥

∥∇φ1
∥

∥

2
∞

+
3m
d

∥

∥c2
`

∥

∥

2
∞

∥

∥è −q2
∥

∥

2
∞

∥

∥∇φ12
∥

∥

2
2

+
d

4m

∥

∥∇c12
`

∥

∥

2
2 = T1 + ...+T4. (36)

Now we employ the regularity of∆−1 : L∞(Ω) →
W1,∞(Ω); this follows by the standardW2,1/ε-
regularity theory withε < 1/n, cf. e.g. [8], so that
∇φ1 ∈ L∞(Q;Rn), which is needed for bothT1 and
T2. These terms are then to be treated by Gronwall’s
inequality. As toT3, estimate‖∇φ12‖2

2 ≤ C‖e·c12‖2
2,

which will lead to Gronwall’s inequality, whileT4 is
to be absorbed in the left-hand side. Further, using
also (27) (here withv1 andc12

` instead ofv andc`, re-
spectively) we estimateI4` in the termI4=∑L

`=1 I4` in
(35) as

I4` :=
∫

Ω

(

c1
`v1−c2

`v2)·∇c12
` dx =

∫

Ω
c2
`v12·∇c12

` dx

≤ 1
d

∥

∥c2
`

∥

∥

2
∞

∥

∥v12
∥

∥

2
2 +

d
4

∥

∥∇c12
`

∥

∥

2
2. (37)

Eventually, denoting byLr the Lipschitz constant of
r : R

L → R
L, we estimate the termI5 in as

I5 :=
∫

Ω

(

r(c1)− r(c2)
)

·c12dx≤ Lr
∥

∥c12
∥

∥

2
2. (38)

Then we sumI1 + ... + I5 and use the mentioned
Gronwall’s inequality to obtain bothv12 = 0 and
c12
` = 0. �

Let us remark that, in fact, more sophisticated tech-
nique from [12] forI1 allows even forp≥ 9

4, which is
consistent with the investigations in Section 4. In the
isothermal case, the existence of a weak solution was
shown also in [21] or [22, Sect.12.6] in the Navier-
Stokes case (i.e.p = 2 was admitted).
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[28] I. Samohýl, M.Šilhavý: Mixture invariance and
its applications.Archive Rat. Mech. Anal.109
(1990), 299–321.

[29] C. Truesdell, W. Noll:The nonlinear field the-
ories of mechanics.Handbuch der Physik III/3,
Springer, Berlin, 1965.

[30] C. Truesdell, K.R. Rajagopal:An introduction
to the Mechanics of Fluids. Birkhäuser, Boston,
2000.

[31] C. Truesdell, R. Toupin:The Classical Field
Theories.Handbuch der Physik III/1, Springer,
Berlin, 1960.

1197


