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Abstract: The model combining non-Newtonigmpower-law generalization of the Navier-Stokes equatiorbarycen-
tric velocity with Nernst-Planck equation for concentoat$ of particular mutually reacting ionic constituent® teat
equation, and also the Poisson equation for self-inducedistatic electric field is presented. Existence of wealt-sol
tions for certain specific values @f> 9/4 and, in a special isothermal case, also uniqueness aregrov
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1 Introduction regularity results of Malek, Ne€as, and Rizitka [12]
for such fluids with a shear-thickening:power-law
. . . viscosity. Being an extended version of [23], this pa-
Chemically reacting mixtures represent a framewao r proves existence of a weak solution for the full
for modelling of various complicated processes in t& stem if 225 < p < 2.3027 and uniqueness for the
ology and chemistry. My research n this area h?s%thermal case, which extends the results from [23]
APhere only a weak solution in the case of one spec-
ted value ofp has been considerédAnyhow, this
\per confirms that [23] is correct at least in the sense

before he passed away, spoke about “living fluid
although he never elaborated any concept of such

'ds'thT 0 cotr_nplromlse tnermogy?amlc amgnab'gg’ % at a specifig, for which weak solutions exist, does
mathematical rigor, the model proposed in [20, ist. Due to an extremely late distribution of spe-

uses incompressible Newtonian framework with ﬂzz?fic strict requirements from WSEAS concerning the

barycentric impulse balance. This “barycentric” aps:cnded version of [231. the areat part of this pa-
proach is called the Eckart-Prigogine’s [7, 17] Cotkar coyid arise during[ a kouplegof we%ks only (ocl?:u-

cept; in the compressible case, see also [1, 4, 5, : " : : :

. e pied, in addition, primarily by making already sched-
The incompressibility refers here both to each partifr, 4'400-page prgofs of [éZ]))/ and thgrefore t)rlle author
ular constituent and, through volume-additivity hYépoIogizes for incidental imperfections.
pothesis as in e.g. [13, 19], also to the overall mix-
ture. To cover biological applications on a cellular

or subcellular level where intensity of electric fiel

on cell membranes is very high, the self-induc The model

electrostatic field must be considered; recall that the , _ _ _
intra-cellular electric potential ranges usually ovélVe consider a mixture df mutually reacting chemi-
60-100 mV while the thickness of cell membranes &l ionic constituents. Our model consists in a system
of the order of 10 nm, which results to intensity of—

electric field of the order of 10 MV/m. To be more specific, [23] consideps— 5/2 but the argu-
ments supporting just this value pfdoes not seem fully justified

In comparison with [20, 21] or [22, Sect. 12.6], we [23] because the last space in (28) below is drfi3(1;L4(Q))
consider here a non-Newtonian concept and use degp = 5/2 but notL*/3(1;L5(Q)) as incorrectly claimed in [23].
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of n+L+2 differential equations combining thnen- The system (1) is to be completed by the initial con-
Newtonianmadification of theNavier-Stokes equa-ditions

tion (balancing the barycentric momentumw), the
Nernst-Planck equatiomodified for moving media _

(balancing the mass of particular constituents), the/(@:) =vo,  ¢(0.)=Cw, 6(0,)=6 (3)
heat equatior{balancing the internal energy8), and

the quasistatid®oisson equatioffior the electrostatic on the considered fixed bounded Lipschitz domain

field (balancing the electric inductiaile): Q ¢ R", and by the boundary conditions correspond-
ing_, e.g., t(_) a closed container, which, in some sim-
p%’ + p(v-O)v—divt(DV) plified version, leads to:
+ Om= —qde, div(v) =0, la
e ) (12) v=0, ¢/ =Csx, Sa—(pza((Pz—(P), K@ZO (4)
oc, . on on
e div(dOc, + ma (e, —q)Op— cov)

=r(cy,...,c,8), £=1,..L, (Lb) onZ:=(0,T)xaQ,wherefiis the unit outward nor-
mal to the boundargQ andc,s andq;s are prescribed.

C"?)_? — div(k06 — c,v8) = 1(Dv):Dv

L
2
+d0g D+ 5 maef|Oo 3 Physical comments to the model

L
—mcf|0dg — [z h(B)r,(c,0), (1c) The body force in (1a) comes froborenz’ forceact-
=1 ing on a charge moving in the electromagnetic field

L (E,B), i.e. q(E + v x B) after the simplification that
div(eg) +q=0, q= ; erc . (1d) the intensity of electric field iE = —Ogand the mag-
=1 netic inductionB vanishes.
. . The phenomenological fluxj, := —dOc, +
;Ze‘alr\]/;rgllgblesa 1T, ¢/, 6, @ and g have the following me(q—e)0 in (1b) equals to—m(c,O — fr)
: . where
v barycenter velocity,
TLpressure,
¢, concentration of-constituent, W = e+ Eln(c[), (5)
@ electrostatic potential, m
0 temperature,
q the total electric charge, plays the role of arelectrochemical potentiaand
where the concentratiortg are to satisfy where
- fr == q0@ (6)

; cr =1, c, > 0. (2)
=1

is a “reaction forcé keeping the natural requirement
In (1c) and later ong¢ abbreviateqcy,...,c.). The z(%:lj(g = 0 satisfied, which eventually fixes also the

meaning of the data is: equality constraint in (2).
T =1(Dv) stress tensor, D= 3(0Ov) "+ 10y, To show conservation of thiotal energy let us
p > 0 mass density, assume naturally the electric-charge conservation in
e, valence (=charge) dFconstituent, chemical reactions, i.e.
€ > 0 permitivity,
re(cs,...,c,0) £-constituent production rate, L
h, = hy(8) enthalpy of the/~constituent, /Z ery(c,0) =0 @)
K > 0 thermal conductivity, =1

¢, >0 heat capacity,
d > 0 a diffusion coefficient, and and put, for simplicitya = 0 in the boundary condi-
m> 0 a mobility coefficient. tions (4), and then calculate the rate of electrostatic
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energy: e The firstternmt(Dv) : Dvrepresents the heat pro-
duction rate due to the loss of kinetic energy by
ed 2 0p viscosity.
——/|D(p| dx:/sD(p-D—dx _ _
2dt Ja Q ot e The second terrd(g-Cgis the power (per unit
0] L 9 volume) of the electric current arising by the dif-
= —/quﬂadx: /Q(P[z egﬁdx fusion flux, which can create local cooling ef-
=1 fects. A global cooling effect seems possible via
L . interaction with the environment i # 0, ex-
= /Q ¢ [Zlef (re(c,8) — div(je +cv))dx pectedly related with the so-callé&ltier effect
L If o =0, one can however see that the overall
_ - production due to this term ove® is nonneg-
- —/Q(p;lengV(jg—FCgV)dX ative: indeed, by using Green's formula twice,

one gets

L L
= [ Oeo- e'+cvdx—/ e je-ndS (8
/Q ¢ [Zl (o) r(p[; e (®) /Dq-D(pdx: —/sD(A(p)-qujx:/s|A(p|2dx
Q Q Q

where (1d) and (1b) have been used together with 0 B
(7) and twice Green’s formula counting also with the —/FSA(p—ﬁdSZ /rqa((g— —Q)dS=0. (12)
boundary conditions (4). Testing (1a) aywe obtain

rate of kinetic energy
d V2 L
a/ p%dx:/;cg(fg-v)—p((vﬂ)v)-v
Q Q&= e The fourth term—mc?|0¢> = —mf2 is the
) , & rate of cooling by the force which balances the
—v|Dv|“dx = —/QV|DV| +; ceey0g- vax. (9) volume-additivity constraint, and its influence is
=1 presumably very small as usual_lyﬂ is much
The rate of internal energy can be obtained simply by Smaller than max.; _ |e/|. Besides, Joule’s
integration of (1c) ove® and using Green’s theorem ~ N€at always dominates this cooling effect be-
with the considered boundary conditiond /0 = 0: cause

e The third termy’_; mge?|0@? is the power of
Joule’s heaproduced by the electric currenis

d 2 I_ce2>(|_ce>2 (13)
a/gcvedX:/QVmW glu— /;H
L

. if (2) holds, cf. [20, Remark 2.2].
— e jedo+he(0)ry(c,0))dx. 10
[Zl( J+h(O)re(c.6))dx.  (10) e The last termyb_; hy(8)r(c,8) is the heat pro-
I o (8)~(10) and 150 (1b) duced or consumed by chemical reactions.
Altogether, summing (8)—(10) and using also (1b) in- , o
tegrated ovef) and Green’s formula, we obtain the !t Should be emphasized that many simplifications

following balance: are adopted in the presented model:
o we consider small electrical currents (i.e. mag-
d [/ |v? |O¢? netic field is neglected), o
E/Q <P7+ET +Cv9) dx o we adopt the mentioned volume-additivity and

L L incompressibﬂityde};su_mptic(l)n, - g f
_ . - o we assume the diffusion fluxes independent o
/Q [Zlhé(e)w’(c’ Bl /r"’gle“” dS, (11) other constituent’s gradients (cross-effects are
neglected) as well as of the temperature gradi-
where we used the boundary conditions (4). Hence, ent (i.e. Soret’s effect is neglected)
(11) just says that the total energy rate, i.e. the rateo in agreement with Onsager’s reciprocity princi-
of the sum of kinetic, electrostatic, and internal en- ple, we also assume the heat flux independent of

ergy 3p|v|>+ 3€|0¢| + c,8 overQ, is balanced with the concentration gradients (i.e. Dufour’s effect
the enthalpy production rafg}_, hr, overQ and the is neglected), . .
normal flux of electro-energ§’_; gej, - ii through ~ © We assume the temperature-independent diffu-
the boundary . sion g:pefﬁments, mobility coefficients, and_mass

The meaning of the five heat-source terms on the plensmes that are the same for each constituents,
right-hand side of (1c) is the following: i.e.d, m, andp, respectively.
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In 60ties, there appeared a newer and more ratiy

nal concept by Truesdell [29, 30, 31] balancing im- )

pulsespcyv, (with v, denoting the velocity of the ]

¢-constituent) of all constituents separately together (&) = ﬁ, &/ = max¥,0),
with interactive forces between them, see also [2, 14, k=1%k

15, 18, 24, 25, 26, 28]. Then our barycentric velog; : :

ity v equals toz(%:l cve. Recently, Samohyl [27] deﬁvhereM denotes the affine manifold
rived the model (1) by various simplifications from L

this rational model of Truesdell. In particular, [27] M= {EERL; [Z &= 1}. (18)
showed that the reaction fordg from (6) in (1b) can =1

be derived from a so-called Hittorf referential system

related to the velocity of a dominant un-charged nohet us note thaK is continuous and bounded 6.
reacting constituent (typically water) after transfofconsideringy = (y1,...,y.) = “old” concentrations
mation to the barycentric system related to our velog?d 8 = an “old” temperature field, we define the
ity v under the assumptions (among others) of ve@igadruple(v,c,8,) as the weak solution to thee-
diluted solution and negligible diffusion velocities. coupled “retracted” system

17)

ov

4 Existence of weak solutions P TP(v-Hv—dvt(Dy)

+ On= —qde, div(v) =0, (19a)
We naturally assume the mass conservation in all

chemical reactions and nonnegative production rate ~* — div(dOc; + mKy(y) (e;—q)Op— cyv)

of /th constituent if its concentration vanishes, and

the volume-additivity constraint holds for the initial =r¢(K(y),9), (=1,.,L, (19Db)

and the boundary conditions, i.e. 90
CVE — div(k06 — c,v8) = 1(Dv):Dv

L L
+ d[Z e/0c,-Op+ m[z Ke(y)€|Og?
=1 =1

L
/Z re(cs,...,c.,0) =0, (14a)
=1

rf(cla"‘acffl)O?CZJrla"‘aCLae) > Oa (l4b)

L
L L - mq2|D(P|2—[Z h(8)re(K(y),d), (19¢)
/Z Cio = ; cs=1 ©c0p>0, c5>0. (l4c) =1
/=1 =1

L
div(edg) +q=0, =95 ekK 19d
Further, we assumg(D) = @'(|D|?), @ : R — R*, (E0e)+a | gl el (199
and, for some& > 0,C € R, it satisfies
with the initial and boundary conditions (3)—(4). Ob-
®(0)=0, '(0)=0, (15a) viously, given(y,d), we are to solve subsequently the
(now decoupled) equations (19d), (19a), (19b), and

1 2 —2 2
®"(IDI*)(B,B) = €(1+’D‘p )’B‘ ) (15b) (19c¢) to obtairy, v, ¢, andb, respectively.
|¢N(|D|z)| < C(1+ |D|p‘2) (15c¢) For simplicity we assume
for anyD, B € R™" symmetric. The Korn inequality re,hy continuous and bounded (20)
and (15a,b) imply (cf. [12, Lemma 2.1]) that, for anY o _
Ver,z(Q.Rn) n some simplified cases, a certain (although only
0 ) )

sub-linear) growth of,(c,-) may be admitted, too;
. 2 cf. [20]. Let us abbreviateé:= (0,T) andQ =1 x Q.
/(T(Dvl)—T(sz)):D(vl—vz)dx2 Z||ovt|; (16)
@ Proposition 1 Let the assumptions (14), (15), (20)
for someZ > 0 depending o and onQ and for||- ||, hold, let b € Wyb, (Q;R"), ¢ € L2(Q;RY), 8 €
the norm inLP(Q;R™"); later, it will also abbreviate | 2(Q), let Q be of class €, and a and s (t,-) be
the norm inLP(Q) or LP(Q;R"). smooth, r< 3, and
We will prove the existence of a weak solution by N
Schauder’s fixed point technique like in [20]. We de- 9 1+/13
fine a retracK : M — {EeM; §, >0, £ =1,...,L} 2SP<——: (21)
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Let(y,d) € L?(Q;Rb) x L2(1;W2(Q)) be given such  Testing (19b) by, gives (23e) standardly when we
that 5%y, = 1 a.e. on Q. Then, for some<C+ o realize that the term
independent dfy,d), (19) has a unique weak solution

which satisfies div(mKe(y)(e,—a)0@) —re(K(y), ) (26)
L is certainly bounded in L®(I;W%/5(Q)*) ¢
0= ; ¢=1 aeonQ (22) L2(1;W2(Q)*) and when we also use

(although ¢ > 0 need not hold!), and also the follow- / cyv-deydx = }/ v-Dc% dx

ing a-priori estimates Q 2 19 .

_ —5/ (divvZdx=0.  (27)
Q

<
pél(l;wz’%(Q;R”)) =G, (23&)

Iv H (LWLP(Q;RM)NL
6_\/
ot
HeHL2(I;W1-2(Q))HL°°(I;L2(Q))
06

Then (23f) follows by testing (19b) by arbitrage
<C, (23b) L2(1;w12(Q)).
Now, by the Sobolev embedding™% P+ (Q)
<C, (230) g | _
L% (P~ (Q) which holds fom < 3, let us realize that
(23a) is the estimate of

L2(1;L2(Q;RM))

<C, (23d)
L2(hbw2(Q)*)
HCHLZ(I;WLZ(Q;RL))ML“’(I;LZ(Q;RL)) <C, (23e) Ovin L*(1LP(Q;R™) ﬂl-p (L (Q RM). (28)
ac <C (23f) To work in terms of weak solutions of the heat
ot llLzawi2Qrrys) = equation, we need to embed this space into
190l awez(a) < C- (23g) L2P(I;LEP/5+8(Q;RM)) with somee > 0. By usual in-

terpolation between the spaces in (28) with a coeffi-

Proof First, we prove (22). By summing (19c) for gientA € [0,1], it needs the conditions

¢=1,...,L and by (14a), one gets _ -
A ANCEY Ly (29a)
oo L « 2 2p
re(K(y),9) +div|{ ddo +vo A (1-N)(p-1 5
ot le (Kw.?) ( A AR 5 (29b)
p 6 6p
- [Z m(y) (e - Z aki(y )D‘P> The smallesth > 0 satisfying (29a) ish = (p? —
— dAc— v, (24) P~ 1)/(p? — p). For thisA, (29b) results top? —

p— 3 < 0 after a simple algebra. This condi-

t gives the upper bound in (21). Hav-
cf. also [20, Formula (3.18)]. Due to (14c), the unlqut on jus
solution to thus obtained equation ing now v € L2P(I;LOP/5F¢(Q;RM), due to (15a,0),
1(Dv):Dv is then certainly bounded i?(1;L%/5(Q))

oo which is a subset of the natural “right-hand-side
5 ~dho+vlo=0 (25) space”L2(1;W'2(Q)*) for the heat equation. By
(23e,9), we also know thde-Oc)-Og is bounded in
iso=1. L2(1;L%2(Q)). The other three terms on the right-

Further, we realize that the charge= eK(y) hand side of (19c) are even better. Then (23c) follows
in (19d) is always bounded and, in particular, #tandardly by testing (19c) §; and (23d) then fol-
is in L*(1;L?(Q)), and (23g) follows by usuallows by using a test by arbitrae L2(1;W2(Q))
W22-regularity of theA-operator with (4). Then for (19c).
also the driving forcegde in (19a) is bounded in Eventually, the uniqueness of solutions to (19b,c,d)
L=(I;L8(Q;R")), hence certainly ir.?(Q;R"), and follows standardly because these equations are de-
we can use [12] where the estimates (23a,b) haseupled and linear, while uniqueness for (19a) is non-
been derived by a very sophisticated usage of a shiivial and has been proved in [12] if> 9/4. O
technique and a test by a truncated Laplacean under
the restrictionp > 9/4, which is just the lower boundProposition 2 Let the assumptions of Proposition 1
in (21). hold, then the mappindy,d) — (v,c,0,9) with
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zkzlyg = 1is continuous from the weak topology oRroof. The fact that¥ : ¢ — ( follows from Propo-
W1 with sition 1 becaus€ from (23c-f) does not depend on
(y,9) at all, hence everf : W+t — . We use
W= L2(1;W2(Q)) nWE2(1;W2(Q)*)  (30) C equipped with the weak topology. The continu-
ity of F in thi_s topology.was proved in Proposition 2.
to the weak* topology related to the spaces from t&€ fixed point then exists by Schauder's theorem (in
i Tikhonov’s modification).
estimates (23). ) ; & :
Finally, by testing byc, the resulted equation for
. Cy, i.e. (19b) withK(c) in place ofK(y), we obtain
Proof. Take a sequencg(yi,di)jken converging c, = 0if (14b,c) is taken into account; the important

weakly to somey, 3) in W+, Take the correspond-g, . i thatk,(u)0c, = 0 because, for a.gt,x) € Q,
ing (vk,ck,ek,_(n() and choose asgbsequence convergs, (u(t /x)) —0/(if ¢/(t,x) < 0) or gy (t,X)~ =0
ing weakly* in the spaces specified in the estimat ot f() N ’O) Hence (52) A proved ari:;l 7 K/ (0
(23). By Aubin-Lions’ compact-embedding theore ) ) VT A
[3, 10], cf. also e.g. [22, Lemma 7.7], the estimat gthat the retrad can eventually be forgotten at this

(23c,d) imply that ixed point. 0
i - Let us remark that the bounds in (21) are very

2/1.16 L
Ve v in LA(LTHQIRD) (31) tight; note that the length of this interval is only

. . . about 0.0528. Therefore, it would be worth trying
in the norm topology with ang > 0, which allows gijther to improve regularity results from [12] by us-
us to pass to the limiK(yk) — K(y) and also en- jnq aiso the fact that the driving force on the right-
sures@ — @ strongly in LY¢(1;W?2(Q)). Then hand sidegde of (1a) is not only inL2(Q) but even
we get|0@d? — |02 in LY(2)(1;1L3(Q)) to exploit in L°(1;W/¢(Q;RM)) if a W2Y£-regularity for the

for (19c). Using again Aubin-Lions’ theorem showg-gperator would be used,> 0 arbitrary, or to seek
9k — 9 strongly inL?(1;L%#(Q)), which allows us for a more general solution. The former option is cer-
to pass to the limity(9«) — hy(8) andr,(y,9x) — tainly extremely difficult, while the latter one seems
re(y,d). Moreover, again by Aubin-Lions’ theoremo be more promising although there are some tech-
and by interpolation like in the proof of Proposition Injcal obstacles too. E.g., one can think about a distri-

butional solutiond € L*(1;L1(Q)) as in [16], which

Ov — Ov in L2P(1;L87/5(Q; RM)) (32) might allow for p < 3, but, due to the advection term
div(v8) in (19c), it is not obvious whether such dis-
in the norm topology, hence tributional solution depends depends continuously

on (y,9) as needed for the fixed-point argument.
T(Dv):Dv — T(DV):Dv in L2(1;L%5(Q)), (33)
which is essential for the limit passage in (19c) t% Unlqueness in the isothermal case
obtain a conventional weak solution. The limit Pag-ot
sage in (19) is then routine. The uniqueness prov. t%
in Proposition 1 with help of [12] ensures eventuall
the convergence of the whole sequence. O

us confine ourselves on the case that the temper-

re variations can be neglected, hence instead of

¢ = re(c,0) we consider onlyr, = r,(c); it is cer-

tainly well satisfied, e.g., in biological applications

on cellular level. Then (1) decouples to (1a,b,d) and

Proposition 3 Let again the assumptions of Propogic). To show uniqueness, it suffices to consider only

sition 1 hold, then the mapping : (v,9) — (c,0), (1a,b,d) because (1c) will follow.

where(c,0) is uniquely determined by (19), maps the

set Proposition 4 Let (15c) hold, y be Lipschitz contin-

uous,Q be of the G-class,a and s be smooth, 13,

C:={(c,8)e W™ ||c| 4 <C, and p>5/2. Then there is at most one weak solution

18]lp <C, c(-,-)EM ae.on@  (34) 1O the problem (1a,b,d),(3),(4).

with C from (23c-f) into itself and has a fixed poinE’rOOfL For notational S|mpI|_C|ty, lep=1. Recall that

(c,8) € C. Moreover, considering the corresponding =3 /1€ =: eu. Consider the two weak solu-
@and v, the quadruplév,c,8, @) is a weak solution tions (¢*,ct,v}) and (¢?,¢%,v?) to (1a,b,d), and de-
to (1)—(4). note @2 := @'—¢?, c'?:=cl—c?, andv? := vi—\2,
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Test the difference of (1a) (resp. (1b)) written for tw&ronwall’s inequality. Now we estimate the terigs

solutions by!? (resp.c}?), and use (16) to get: with 13=S%_; 13, in (35) as
a(!!v”H§+[ZlHC%ZHE) +2)| v = Q(cAeg q") 00~ cF (e~ ) 0¢? ) - Dt el

3m

< T lePl5le — Iz ]1oe 2
3m 2 2 2

+ =175 lec™15l 09,

3m
Sl I [Ce el

L

2
erngDc%sz:/Q<((\/2-D)v2—(vl-D)vl)vl2
+ (PO¢? — q'Og') v

L
+m; (c%(eg—qz)Dcpz—cﬂeg—ql)Dcpl)-DC%Z g ,
L:1 +FnHDC%2H2:T1+”'+T4' (36)
+[Z (cjvt — cAv?) Ocp?
=] Now we employ the regularity oA=? : L*(Q) —
WL=(Q); this follows by the standardnv?Y/e-
2\\ 12 . ’
+(r(ch) —r(c?)) ¢! )dx:. lit...+ls (35) regularity theory withe < 1/n, cf. e.g. [8], so that
O¢' € L*(Q;R"), which is needed for botfi; and
The terml; in (35), arising from the convective term 2. These terms are then to be treated by Gronwall’s

can be handled as in [11, Theorem 4.29] modifigdequality. As toTs, estima’geH_D(ple% < Cllec™?|l5,
with zero-Dirichlet boundary condition providgzi> Which will lead to Gronwall’s inequality, whildy is

5/2, namely to be absorbed in the left-hand side. Further, using
also (27) (here withv! andc}? instead ofv andcy, re-
_ 12 112 spectively) we estimatky in the termls= ZIE:1I4€ in
l; = —/ (vi2.0)vtvdx (35) as

<S Dvlz 2—|—Cg DVl 2p/(2p_n) Dvlz 2
<e|| 2 I Hp I I3 » ::/ (c}vl—cfvz)-Dc(}zdx:/C%VlZ-DC}ZdX

Q Q
for e< and then treated by Gronwall’s inequality. 1, 5121 1212 d 12112

Furthermore, from (1d) we geg?> = A~(e-c'?) < aHCZHwHV 15+ ZHDC@ [ 37)

whereA~! denotes the inverse operatortoinder the . . .
homogeneous boundary conditions (4), édp/dri+ Eventually, denoting by, the Lipschitz constant of
ag = 0. Estimate the tern, in (35), for each¢ = r:RL — RY, we estimate the terg in as
1,..L,as

' ls:= [ (r(c}) —r(c?)-cix < Lc||c?[2.  (39)
i [ (G0 hoe) v =), o

Then we suml; + ... +|s and use the mentioned

1 2 2 2 o . :
< EHC%ZHZHD(le4+ e[V %rzoivgélls inequality to obtain bothv!2 = 0 anDd
_ 1
+ HchiHDA 1(e-c12)H§+ ZHVHHE = Ti+.Ta. Let us remark that, in fact, more sophisticated tech-

nique from [12] forl; allows even forp > %, which is
By (23e), q < |_2(|;W112(Q)), and thenOg' e consistent with the investigations in Section 4. In the
L2(1;W22(Q; RM) C L2(1;L4(Q;RM)) for n< 3 (here isothermal case, the existence of a weak solution was
even n < 8 is allowed) through standartive2- shown also in [21] or [22, Sec_t.12.6] in the Navier-
regularity results for the linear boundary-value prof2iokes case (i.ep =2 was admitted).
lem (1d)—(4). Then the terrif; will be handled by
Gronwall's inequality. As tol, < eN2?||0v2||3, we
will absorb it in the respective term coming from the
viscosity term (1a) it < {/N? whereN is the norm
of the embeddingv?(Q) c L*(Q). As to Tz, we use AcknowledgmentsThis work has been partly sup-
0" < Clle-ct?||, with someC depending o2 ported by the grants 201/03/0934 (GBR) and
and ona, and then will handle it together witly by MSM 0021620839 (MMT CR).
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