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M. Kruž́ık a,∗, T. Roub́ıček b,a
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CZ-182 08 Praha 8, Czech Republic.

bFaculty of Mathematics and Physics, Charles University,
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of width of minor loops in bulk ferromagnets during magnetization processes is scru-
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teresis. The activation threshold is allowed to depend, again by a rate-independent
manner, on local history of a magnetization process, which reflects (only on a meso-
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the specimen is thus automatically involved via nonlocal interactions through the
demagnetizing field.
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1 Introduction

The aim of this contribution is to study the mutual influence of the stray (de-
magnetizing) field and the gradual development of width of minor hysteresis
loops (related with activation threshold for changing magnetization) during
a magnetization process starting from a completely demagnetized specimen.
Thus, indirectly, the shape of a ferromagnetic specimen is involved through
long-distance interactions via this demagnetizing field. Microscopically, this
minor-loop development is due to gradual evolution of the magnetic-domain
structure during the magnetization process and, being analogous to gradual
development of a dislocation structure in plastic materials during loading, is
occasionally called hardening; we refer e.g. to Aktaa and von der Weth [2].

In this way, using only a few material data (which is, however, rather sim-
plistic phenomenological description of complicated microscopical processes
in domain structure evolution) together with information about the specimen
shape, we can rigorously (at least as far the influence of a specimen shape
on the resulting response) describe quite complex behavior of the specimen
before the domain structure is fully developed in the whole bulk, i.e. complex
hysteretic response inside the parent loop. In particular, it concerns the virgin
magnetization curve describing a magnetization process of the demagnetized
specimen to its magnetic saturation and various minor loops resulting from
spatial inhomogeneities of the activation thresholds. The local phenomena,
of course, interact non-locally with the whole bulk ferromagnet via the stray
(demagnetizing) field whose energy favors a divergence free magnetization (in
particular, its zero flux through the specimen boundary). Hence the virgin
curve and the minor loops are related not only to a particular material but
equally to the shape of the magnetized specimen. Although this phenomenon
is qualitatively well-known in literature the rational quantitative study of it
does not seem scrutinized so far.

The method, we use, is based on rigorous mathematical modeling especially
as far as the nonlocal interactions concerns, combined with a certain phe-
nomenology describing local properties of the material as well as with trustwor-
thy physical principles of minimization of Gibb’s magnetic energy competing
with the maximum-dissipation principle governing rate-independent dissipa-
tive processes which are typical for hysteretic behavior of ferromagnets. The
magnetic-domain microstructure is described by volume fractions expressed
through Young’s [40] parameterized probability measures, which we call a
mesoscopical-level description [36,37], which advantageously compromises a
microscopical full-detail pointwise description and macroscopical averaged de-
scription. We confine ourselves to low-frequency exterior magnetic fields which
allows us to neglect all rate-dependent dissipation mechanisms and to simplify
the full Maxwell system to the static situation, and we also confine ourselves
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to considering only an isothermal case, assuming processes so slow that all
heat produced by dissipation mechanisms can be transferred out.

Let us also mention that the activated dissipation is very natural in the con-
text of ferromagnetism, and has been already used in a Jiles-Atherton-like
model by Bergqvist [3], in a micromagnetic-type model and in a model based
on macroscopical magnetization M (cf. (3)) by Visintin in [42] and [43], re-
spectively. The mesoscopical description of the magnetization has been used
by DeSimone [8], James and Kinderlehrer [13], and Rogers [33] (see also [17])
but in a mere Gibbs-energy minimization framework only.

2 The mesoscopical-level model

We briefly introduce a mathematical model which can capture the shape in-
fluence as outlined above. For a rigorous mathematical analysis of this model
(involving still a certain regularizing term) we refer to [37].

2.1 Mesoscopical description of magnetization

In the classical “microscopical” theory of rigid ferromagnetic bodies as pre-
sented by Brown [5] (see also e.g. [4]), based mainly on works of Landau and
Lifshitz [21], the conventional description of the state is through the a “mi-

croscopical” magnetization vector m = m(x) subjected to Heisenberg-Weiss’

constraint

|m(x)| = Ms , (1)

where Ms is the saturation magnetization at a considered fixed temperature
(below Curie’s point). In bulks, m typically exhibits fine spatial oscillations,
creating a domain structure. In case of soft ferromagnetic materials in the
steady state, this can be explained by minimization of the Gibbs’s stored
energy G(m) =

∫

Ω ϕ(m(x))−H(x) ·m(x) dx+ 1
2

∫

R3 |∇um(x)|
2 dx where Ω ⊂

R
3 denotes the domain occupied by the ferromagnet. The first term in G is

an anisotropy energy with density ϕ which is an even nonnegative function
depending on material properties and exhibiting crystallographic symmetry.
The second term in G is an energy of the interaction with an applied external

magnetic field H = H(x) (sometimes called the Zeeman energy). The last
term in G is a magnetostatic energy involving the scalar potential um, induced
by the magnetization m and governed by the equation
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div(−µ0∇um +mχΩ) = 0, (2)

where µ0 is the vacuum permeability and χΩ : R3 → {0, 1} is the character-
istic function of Ω, i.e. χΩ(x) = 1 if x ∈ Ω while χΩ(x) = 0 if x 6∈ Ω. This
form of G is the so-called no-exchange formulation which is well acceptable
for sufficiently large ferromagnets where an exchange energy contribution is
indeed negligible, cf. DeSimone [8]. There is a competition of the anisotropy
energy in G preferring the magnetization of the constant length and the de-
magnetizing field energy preferring it to be zero, which is just what explains
quite generic occurrence of the domain microstructure. Mathematically, this
is expressed by nonexistence of an exact minimizer of G and by finer and finer
self-similar spatial oscillations necessarily developed in any sequence which
asymptotically minimizes G.

To pursue evolution in a reasonably efficient manner, it is useful to collect
certain information about the fine structure “around” a current point x ∈ Ω
in the form of a probability measure, denoted by νx, supported on the sphere S2

in R
3 of the radius Ms. Hence we write νx ∈ M+

0 (S
2), the set of all probability

measures on S
2. Let us furthermore denote the ball B3 = {M ∈ R

3; |M | ≤ Ms}
in R

3 of the radius Ms. The collection ν = {νx}x∈Ω is often called a Young
measure [40] and can be considered as a certain “mesoscopical” description
of the magnetization. The average, let us call it macroscopical magnetization,
M = M(x) at a material point x ∈ Ω still remains a worthwhile quantity; it
is just the first momentum of the Young measure ν = {νx}x∈Ω, i.e.

M(x) =
∫

S2

mνx( dm) . (3)

Note that the macroscopical magnetization M : Ω → B
3 ⊂ R

3 “forgets” de-
tailed information about the microstructure in contrast with the mesoscopical
magnetization ν : Ω → M+

0 (S
2) which can capture volume fractions related

to particular directions of the magnetization. It should be emphasized that,
though we speak about (collections of) probability measures, our approach is
purely deterministic (not probabilistic).

2.2 Free energy on the mesoscopical level

On the mesoscopical level, we will write the Gibbs’ free energy G in terms of
the Young measure ν = {νx}x∈Ω as

G(ν) =
∫

Ω

(

∫

S2

ϕ(m)νx( dm) (4)
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−H(x)·M(x)

)

dx+
1

2

∫

R3

|∇uM(x)|2 dx,

where M = M(ν) according to (3) and uM is determined by (2) with M
instead of m, however. We dare use again the symbol G in (4) because, in
fact, this G is merely a continuous extension of the “microscopical” Gibb’s
energy mentioned in Section 2.1. An interesting property of G is that it is now
convex with respect to the natural geometry of the considered parameterized
probability measures ν’s, let us denote this (also convex) set as Y(Ω; S2), and
that the minimum of G on Y(Ω; S2) is indeed attained. The mesoscopical
steady-state configuration ν minimizing G describes how “to organize” the
fine scale structure (microstructure) in order to get the right macroscopic
behavior. We refer to [8,13,29,33] for mathematically rigorous reasoning and
for a relation between the microscopical and mesoscopical steady-state energy-
minimization problems.

2.3 Dissipation potential and rate-independent evolution

Minimization of the free energy (4) can model a steady state or also quasi-
stationary evolution under low-frequency applied field H = H(t) of soft mag-
netic materials with a reasonable accuracy. Varying the applied external mag-
netic field H then produces only a functional graph on M/H-diagram but
no hysteresis loop, where the M/H diagram just means a plot of the spatial
average of M vs. H projected into a specific direction. On the other hand,
magnetically hard materials exhibit significant hysteresis and thus cannot be
modeled by mere minimization of the free energy G. Some approaches to
magnetic hysteresis deal with minimization of the “microscopical” free en-
ergy (possibly with an exchange-energy term), producing hysteresis due to
the nonconvex energy landscape which, however, cannot be controlled by an
independent parameter. This cannot reflect, e.g., influence of impurities or
dislocations in the atomic grid (which may influence the dissipation without
changing considerably the anisotropy energy ϕ) and may even lead to incor-
rect numerical effects, cf. [31] where a coercive field for cobalt resulted as 900
Oe instead of an experimentally observed (see [6, p.19]) value 10 Oe.

As the hysteretic response is rate-independent at least for H varying not with
too high frequencies, we can be inspired by plasticity theory where so-called
Hill’s [11] maximum-dissipation principle typically governs activated processes
arising there. This involves Rayleigh’s dissipation potential R = R(ζ, ν̇) which
is necessarily convex, non-negative and positively homogeneous in terms of
rates, i.e. here in terms of ν̇ := dν/ dt, and involves also a multiplier ζ to
be identified with an activation threshold. This potential R is to describe
phenomenologically all dissipative mechanisms observed on the mesoscopical
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level. This enables us not to have to deal with all details connected with
complicated domain evolution on the microscopical level and to model it in
a simplified but efficient way only bearing in mind experimentally observed
macroscopical energetics. A reasonably general form of R can be, e.g.,

R(ζ, ν̇) =
∫

Ω

ζ(x, t)

∣

∣

∣

∣

∣

∫

S2

λ(m)ν̇x( dm)

∣

∣

∣

∣

∣

dx (5)

with λ : S
2 → R being constant near each pole. Let us confine ourselves

to uni-axial magnets, which simplifies our considerations (and calculations).
Considering the unit vector e3 = (0, 0, 1) as the easy-magnetization axis, the
poles will be atm = ±Mse3. For dominant anisotropy, one can assume that the
magnetization will be mostly in a close vicinity of the poles, i.e. m ∼ ±Mse3,
and then the landscape of λ out of the poles is nearly insignificant. Hence one
can simply take λ linear:

λ(m) = m · e3 ≡ m3 . (6)

In particular, no dissipation (or, equivalently, no activation threshold) ap-
pears for changing m1 or m2 components of the magnetization vector m =
(m1, m2, m3), which agrees with experimental observations for uniaxial ferro-
magnetical single-crystals. Thus λ basically indicates whether the magnetiza-
tion lives around the particular pole m ∼ ±Mse3 according to approaching
the scalar value λ(m) ∼ ±Ms. As such, λ can be understood as a certain pole

indicator, playing the rôle of what is often called the “order parameter”.

We consider G defined by (4) now with a time-dependent external magnetic
field H = H(x, t). We can still formally extend G on the whole space of
parameterized measures L∞

w (Ω;M(S2)) by G(t, ν) = +∞ if ν 6∈ Y(Ω; S2). The
desired evolution ν = ν(t) is then governed by a simple first-order, doubly
nonlinear differential inclusion

∂ν̇R
(

ζ,
dν

dt

)

+ ∂νG(t, ν) ∋ 0 (7)

with an initial condition ν|t=0 = ν0, where the convex set ∂νG(t, ν) = {ω; ∀ν̃ :
G(t, ν̃) ≥ G(t, ν)+〈ω, ν̃−ν〉} is the so-called subdifferential ofG(t, ·). Likewise,
the (partial) subdifferential of R(ζ, ·) means ∂ν̇R(ζ, ν̇) = {ω; ∀ν̃ : R(ζ, ν̃) ≥
R(ζ, ν̇) + 〈ω, ν̃ − ν̇〉}. We refer to [36,37] for more details.

Obviously, (7) can be written as

ω + ∂νG(t, ν) ∋ 0, ω ∈ ∂ν̇R
(

ζ,
dν

dt

)

. (8)
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By [9, Lemma 4.1(c,d)], the latter inclusion in (8) is equivalent to

〈 dν

dt
, ω
〉

= max
ω̃∈C(ζ)

〈 dν

dt
, ω̃
〉

(9)

where the convex set C(ζ) = ∂ν̇R(ζ, 0) = {ω; ∀ν : 〈ω, ν〉 ≤ R(ζ, ν)} deter-
mines the region of nondissipative (i.e. nonhysteretic) response. The relation
(9) is just what is called the maximum-dissipation principle, and expresses the
rule that the rate of change of microstructure ν is normal to C at ω.

As announced above, the multiplier ζ is, however, not a constant but it is as-
sumed to increase in dependence on the magnetization history at the material
point x ∈ Ω. In view of the special uni-axial case, cf. (6), it seems quite reason-
able to consider the activation threshold ζ dependent only on the history of
the component M3 of the macroscopical-magnetization vector M = M(x, t),
i.e.,

ζ(x, t) = max
0≤τ≤t

h(|M3(x, τ)|), (10)

where h : [0,Ms] → R
+ is a function describing phenomenologically the acti-

vation threshold development process.

Let us mention that we can augment the dissipation potential as well as Gibbs’
energy suitably so that one can formulate (7) and (10) in the form of a single
doubly nonlinear first-orded inclusion of the type (7) but working with the
couple (ν, ζ). This formulation enables, after a certain regularization of Gibbs’
energy, a rigorous analysis as far as existence of solutions and their constructive
approximation concerns, cf. [37] for details.

2.4 Computer implementation

Though numerical approximation, analysis, and implementation of the model
(7) is not the essential point in this paper, we mention only briefly these
(otherwise quite important) issues; for more details see [19,37].

We use implicit time discretization of (7) with a constant time step τ . Denoting
νk the approximate value of ν(t) at time t = kτ , we consider the so-called
backward Euler scheme:

∂ν̇R(ζk−1,
νk − νk−1

τ
) + ∂G(kτ, νk) ∋ 0 (11)

for k = 1, 2, ... recursively, with
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ζk−1(x) := ζ(x, (k − 1)τ) = max
0≤l≤k−1

h
(

M l
3

)

. (12)

When solving (11) for k = 0, we take ν0 as the initial condition for (7). Taking
into account the convexity of both R(ζk−1, ·) and G(kτ, ·), one can calculate
the solution νk of (11) simply as a minimizer of the convex function

ν 7→ G(kτ, ν) + τR

(

ζk−1,
ν − νk−1

τ

)

(13)

on the convex set Y(Ω; S2). For our computational implementation, we used a
finite-element method (in fact, here rather the finite-volume method) and re-
stricted (13) only on a finite-dimensional convex subset of Y(Ω; S2) consisting
of element-wise constant Young measures. Likewise, ζk−1 from (12) has been
restricted in an element-wise constant manner, see [19,36,37] for details.

As the 3-dimensional situation is computationally very demanding, we confine
ourselves to axi-symmetric situations that can be reduced to two-dimensional
problems. Thus the sphere S

2 reduces to a circle S1. Moreover, all our exam-
ples admit a planar symmetry with respect to the horizontal plane {x3 = 0},
cf. again Figure 1 below, which enables us to make another reduction of vari-
ables. The demagnetizing field ∇uM from (2) produced by a subdomain Ωj

can be calculated for any x ∈ R
3 exactly through the singular-integral formula

∇uM(x) =−
1

µ0

(
∫

Ωj

(x− y) divM(y)

|x− y|3
dy (14)

−
∫

∂Ωj

(x− y)M(y)·n(y)

|x− y|3
dy
)

,

where n denotes the unit outer normal to the boundary ∂Ωj of Ωj . As we con-
sider the magnetization to be constant within each subdomain Ωi the first term
on the right-hand side of (14) vanishes. Eventually, the second term on the
right-hand side of (14) is evaluated using a numerical quadrature rule, which
can be considered as a version of the dipole formula; cf. e.g. [31], namely: each
subdomain is uniformly copied 18 times by a rotation around x3 (i.e. each 20
degrees) and magnetization vectors in such a rotated subdomain are consid-
ered to be the rotated magnetizations from the original domain.

Although (13) is a nonsmooth problem, it can be turned into a smooth linear-
quadratic programming problem with some additional linear constraints and
auxiliary variables. The circle S1 has been discretized to 8 points and the
number of elements was 32 on one quarter actually calculated. The resulting
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linear-quadratic program was solved by Schittkowski’s NLPQL [38]. We refer
to [19,36] for implementation details.

3 Computer simulations of CoZrDy ferromagnets

In this section we now want to present usage of the above model for computing
the virgin magnetization curve and hysteresis loops of a specific ferromagnetic
material. Simulating real experiment, we must naturally set up three mutu-
ally independent data sets: material, geometric shape of Ω, and the external
magnetic field H = H(x, t).

As to the material, we wanted to choose a uniaxial material with a sufficiently
wide parent loop to see clearly minor loops (which excluded Cobalt, e.g.)
and with documented material data. To be more specific, let us consider
as in [7] a CoZrDy homogeneous amorphous alloy (at the temperature 4.2 K)
which has indeed a uniaxial structure assumed in (5)–(6) and, moreover, rather
small anisotropy to demonstrate efficiency of the method at least in the axi-
symmetrical case. Let us remark that large anisotropy (e.g. of advanced rare-
earth permanent magnets) would cause the magnetization vector to range over
only a very small neighborhoods of easy-directions magnetization which would
be computationally still much easier. Hence, the material data involves in the
uniaxial anisotropy energy density in the form

ϕ(m) = K sin2 θ (15)

with θ the angle between the vectorsm and the easy axis (i.e. here e3 = (0, 0, 1)
in agreement with (6)), the constant K = 40 kJ/m3 and the saturation magne-
tization Ms = 0.05T; cf. [7]. Then, considering the dissipative energy (5)–(6),
it remains to determine the function h from (12); at this point, however, we
have not any specific experiments reported in literature so we have chosen

h(m3) =
Hc

1.3

( |m3|

Ms

+ 0.3
)

(16)

with the coercive force Hc = 20 MA/m as in [20]; note that the coercive
force is the maximal activation threshold achieved in material magnetized up
to saturation. Besides, the choice (16) yields the activation threshold of the
demagnetized material as h(0)=̇4.6 MA/m. We always consider a spatially ho-
mogeneous time-dependent external magnetic field H(t) = (0, 0, H3(t)). Used
sawtooth external field H3 = H3(t) is shown on Figure 2. In case of Figures 3
and 4, it is not displayed but the reader can easily reconstruct it from the
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hysteresis loops because, due to the rate-independence of the model, only its
direction and amplitude are of importance.

Finally, the geometric shape of a specimen varied. We tested 4 specimens which
are axially symmetric with respect to the vertical axis x3 and symmetric with
respect to the horizontal plane {x3 = 0}. In all cases, the easy magnetization
axis e3 is vertical, as well as the applied field H , i.e., H = (0, 0, H3). Cross-
sections of the specimens are depicted on Figure 1, including a hypothetical
infinitely long specimen (C) which gives an interesting comparison.

c, max

(C)(A) (B)

Scale of the coercive force:

(D)

Hc, min H

Fig. 1: Cross-sections of the specimens and the distribution of the activation
threshold at the first (with respect to process time) local maximum of the
external field from Fig. 2.

The resulting hysteretic response is shown on Figure 2. We can see that mag-
netizing longer magnets produces the hysteresis loops more up-righted in com-
parison with flat magnets; cf. Fig. 2, the sequence (A)–(B)–(C). The limit case
(C) of an infinitely long cylinder magnetized along its easy (=cylindrical) axis
makes the demagnetizing field vanish completely, which results in a rectan-
gular hysteresis loop and then the only decisive material data are ζ(0) and
Hc. The fact that an infinitely long cylinder magnetized along its cylindrical
(coinciding with the easy) axis produces the zero demagnetizing field is well
known and is an example of the so-call pole avoidance principle; cf. e.g. [5].
As we infer from (14) the demagnetizing field vanishes if there are no poles,
i.e., if divM = 0 in the specimen and M is tangent to the specimen boundary.
Note that constant magnetization parallel to the easy axis satisfies this crite-
rion and, moreover, is energetically favorized by ϕ. Peculiarly, no information
about h, but h(0) and h(Ms) can be read from this extreme case (C).
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H3 [MA/m]
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3
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100-100

(D)

(B)(A)

Fig. 2: Virgin magnetization curves and parent loops for the specimens
from Fig. 1. The amplitude of external field increases in time ac-
cording to the left/upper corner diagram; here K = 40 kJ/m3,
Ms = 50 mT and Hc = 20 MA/m.

The more or less up-righting is a well-known effect usually described, in a
very simplified and rough manner, by speaking about a demagnetizing fac-
tor. This is indeed rigorous as far as ellipsoidal specimens concerns if magne-
tized along a main axis. Yet, it is not satisfactory for other shapes especially
when they substantially differ from an ellipsoid. This deviation is, in fact,
responsible for roundness of hysteretic loops, as shown already in [20]. Our
results on Figure 2 (A-B-C) are in agreement with known results (see e.g.
[5, Tab. A.3]) saying that the demagnetizing factor of a circular cylinder de-
creases for “length/diameter” approaching infinity; in particular, Figure 2 (C)
shows the impacts of the mentioned pole-avoidance principle on the hysteretic
response. Here, Figure 2 (D) shows how even a rather small variation of the
shape, cf. Figure 1 (D), can made all hysteretic loops quite substantially more
round.

As the activation threshold ζ increases in time differently at particular spots, it
is inhomogeneous at particular time instances, and thus we can easily produce
minor hysteresis loops as far as the magnetization is not fully saturated in the
whole bulk, i.e. if ζ 6= Hc at some parts. This is the case of Figure 3.
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25

-25

[MA/m]

M3
[mT]

35-35

H
3

Fig. 3: Minor hysteresis loops due to spatially varying
activation threshold resulted by inhomogeneities
of magnetization process; case of Specimen (A).

Minor loops are produced by the above model only if the activation threshold
ζ is spatially inhomogeneous. After the saturation in a very strong external
magnetic fields, the above considered data prevent minor loops. Preservation
of minor loops even after the specimen has been saturated can be caused
by a material inhomogeneity, e.g., as far as the initial activation threshold
ζ(0) concerns. Let us demonstrate it by considering ζ(0) = ζ(0, x) varying
randomly with amplitude ±95%, i.e. in the interval [0.23, 9.0] MA/m, around
the previous value 4.6 MA/m. The resulted minor loops are displayed on
Figure 4 for the geometry of Specimen (A) from Figure 1.

-50

-100

50

[mT]

100

[MA/m]H3

M3

Fig. 4: Minor hysteresis loops in Specimen (A) after
saturation due to material inhomogeneities.

4 Conclusions

Using computational modeling, we quantitatively described rate-independent
magnetic hysteresis of bulk specimens including the virgin magnetization pro-
cess and minor loops. This was obtained by counting rigorously mutual in-
teractions of anisotropy and dissipation energies described by an activation
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threshold that can possibly increase during magnetization process up to the
final threshold, which is what is standardly called the coercive force, and non-
local interactions through self-induced demagnetizing field which naturally
engages the specimen shape into the calculations. We demonstrated it on sim-
ulations of uniaxial CoZrDy ferromagnets which has rather low anisotropy,
high-anisotropy advanced rare-earth permanent magnets being computational
even easier. Besides explaining one of possible mechanisms leading to rich
menagerie of curves inside the parent loops, this method is capable of predict-
ing a hysteresis response of new ferromagnets if the local material properties
and the shape of the magnet are known, or of identifying some unknown ma-
terial properties “cleaned” from influence of the shape of a specimen itself.
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[36] T. Roub́ıček, M. Kruž́ık, (Preprint No.3/2000, caesar, Bonn) Zeit. Angew.
Math. Physik, in print.
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