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Abstract

Influence of shape of a specimen is questioned by computational modeling. A new
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1 Introduction

We pursue a two-fold goal. First, we want to demonstrate how shape of a
bulk ferromagnet explicitly influences the hysteretic response. To do this, we
follow the second goal by introducing a suitable model which handles the
anisotropy of the magnet like in conventional Landau-Lifshitz’ micromagnet-
ical model but, because of bulk situation, suppresses the exchange energy
contribution and describes the microstructure only on a “mesoscopical” level.
This enables us practical computational modeling of “macroscopically” spa-
tial inhomogeneities of magnetization. This inhomogeneity is responsible for
roundness of observed main hysteresis loops but, rather surprisingly, cannot
cause any minor hysteresis loops in M /H-diagrams if only a single activation
threshold (i.e. the coercive field) is considered in the model. It seems that our
model allows for these minor loops only if a multi-threshold response of the
ferromagnetic material is assumed.

These effects are basically not surprising (cf., e.g., the work by Wiirschmidt
[43] from 1925) but no explicit and, to a good extent, accurate study seems
to be performed so far. The exception is for specimens of an ellipsoidal shape
magnetized in a homogeneous external magnetic field H parallel to some axis
where the demagnetization field Hy as well a “macroscopical” magnetization
M remain homogeneous and then Hy = NM/ug where i is the vacuum per-
meability and N is the so-called demagnetizing factor which can be calculated
even analytically (as, in general, a diagonal tensor), see Osborn [28] or also,
e.g., [13, Sect.3.2.5]. In non-ellipsoidal shapes, the demagnetizing factors can
approximately be calculated in special cases (see, e.g., Aharoni [1], Chikazumi
[7, Sect.2.2] or O’'Handley [27, Sect.2.3]) but under a simplifying assumptions,
typically that M is spatially homogeneous. Such considerations, however, ig-
nore complex interactions of the demagnetizing field with the magnetization
evolving not homogeneously at particular points of the magnet. This evolution
of M = M(x,t) is an activated transformation process with a characteristic
activation threshold (cf. (15) below) and depends reciprocally on the resulting
magnetic field.

Thus it should be emphasized that, for a general shape and general magnetiza-
tion regimes, one must rely only on experimental measurements or numerical
simulations. The latter option, we are focused on in this paper, seems how-
ever difficult to be obtained by conventionally used models which either treat
the microstructure in too much detail (so that the multi-level character of
macroscopical /microsopical effects cannot be properly modeled because of ca-
pacity of usual computers) or replaces the important information about the
microstructure by mere phenomenology and smears thus out the complex in-
terrelations counting macroscopical geometry of a specimen. The former sort
of (domain-like) models includes Gilbert-Landau-Lifshitz’ one [11,21], while



the later one involves, e.g., models based on Rayleigh’s modification [32] of
Prandtl’s and Ishlinskii’s model or Preisach’s model [30] (see also Jiles [15],
Mayergoyz [25], or Visintin [40]). Another one is, e.g., due to Jiles and Ather-
ton [17] and its modifications as, e.g., [16,19].

It can roughly be said that, in the model used here, we combine the so-called
dry-friction idea with the mesoscopical-level description of microstructure by
using basically volume fractions (expressed through Young’s [39] parameter-
ized probability measures). In fact, the notion of “dry-friction” is related to
the maximum-dissipation principle used routinely in (quasi)plasticity, as men-
tioned in Section 2.3 more in detail. Let us also mention that the dry-friction
is very natural in the context of ferromagnetism, and has been already used in
a Jiles-Atherton-like model by Bergqvist [3], in a micromagnetical-type model
and in a model based on macroscopical magnetization M (cf. (6)) by Visintin
in [41] and [42], respectively. The mesoscopical description of the magnetiza-
tion has been used by DeSimone [9], James and Kinderlehrer [14], and Rogers
[33] (see also [18]) but in a mere Gibbs-energy minimization framework only.

Let us remark that shape influence has, in fact, been investigated computa-
tionally already in occasions other than bulk ferromagnets by other models;
e.g. for a single nanowire versus array of (20 000 of) nanowires see Raposo at
al. [31] or for a multilayered media see Schrefl [38].

A mesoscopical-level evolution model in ferromagnetism has been proposed
also in [33] (see also [18]) but no rate-independent dissipation has been involved
and the hysteretic response has been obtained by adding a rather nonstandard
nonconvex nonlocal term into the steady-state energy E.

2 The mesoscopical-level model

We briefly introduce the mathematical model which can capture the shape in-
fluence as outlined above. For a rigorous mathematical analysis of this model
(involving still a certain regularizing term) we refer to [36] while its anisother-
mal extension has been outlined in [35].

2.1 Stored enerqgy

In the classical “microscopical” theory of rigid ferromagnetic bodies as pre-
sented by Brown [4-6], based mainly on works of Landau and Lifshitz [21], the
state is described by a “microscopical” magnetization m : Q — R?® depending
on a position z € Q, where Q C R® denotes a fixed domain (i.e. the body)



occupied by a homogeneous ferromagnetic material. A usual Heisenberg- Weiss
constraint, i.e.

im(z)| = M, (1)

is considered, where M; is the saturation magnetization at a fixed tempera-
ture (assumed below Curie’s point). In the so-called no-exchange formulation
which is well acceptable for large ferromagnets (where an exchange energy
contribution is indeed negligible, cf. DeSimone [9]) the overall stored energy
FE consists of two parts:

Bm) = [ ¢m(@) dz+ 5 [ [Vun ()P dr, ©)

where u,, : 2 — R is a potential of an induced magnetic field. The first term
in (2) is an anisotropy energy with a density ¢ which is an even nonnega-
tive function depending on material properties and exhibiting crystallographic
symmetry. The second term in (2) is a magnetostatic energy coupled with the
magnetization field through the equation

div(—po Vi, + mxa) =0, (3)
where p1 is the vacuum permeability and yq : R® — {0, 1} is the characteristic
function of €, i.e. xo(z) =1 if x € Q while xq(z) = 0 if z ¢ Q. This equation
stems from the Maxwell equations

div B=0 , curl H3 =0, (4)
where B is the magnetic induction and Hy the demagnetization field. By the
usual constitutive relation, it holds B = pugH4+m and, in the special potential
case (4), Hy = —Vu,, for some potential u,,. The equation (3) for u,, then

follows immediately.

Then, the Gibbs free energy (for a fixed temperature) is

G(m) = E(m) — / H(z) -m(z) dz (5)

where H : R® — R? is an applied ezternal magnetic field. The second term in
(5) is called an interaction energy.



2.2  Mesoscopical description of magnetization

The steady state of a soft ferromagnetic material in the external magnetic field
can be described as a minimum of the free energy G from (5). However, in
case of (2), the minimizing configuration m may not exist, as shown in [14] for
H = 0. This nonexistence comes from the competition of the anisotropy energy
preferring the magnetization of the constant length and the self-induced field
energy preferring to be zero. This (quite generic) non-attainment is caused
by the fact that the development of finer and finer self-similar structure de-
creases the energy but keeps the average “macroscopic” magnetization con-
stant. Hence, we can look at how a given macroscopic magnetization M, which
does not have necessarily the given magnitude M, can be obtained from a
combination of fine structure magnetizations.

To do this, it is useful to collect a certain information about the fine structure
“around” a current point x € € in the form of a probability measure, denoted
by v, supported on the sphere S? in R® of the radius M,. Hence we write
v, € M{(S?), the set of all probability measures on S?. Let us furthermore
denote the ball in R® of the radius Mg by B®. The collection v = {v,}cq is
often called a Young measure [39] and can be considered as a certain “meso-
scopical” description of the magnetization. The macroscopical magnetization
at a material point x € € is then its first momentum, i.e.

M(z) = /m vg(dm) . (6)

Note that the macroscopical magnetization M : Q — B® C R® “forgets” a
detailed information about microstructure in contrast with the mesoscopical
magnetization v : Q — M{(S?) which can capture volume fraction related
with particular directions of magnetization. It should be emphasized that,
though we speak about (collections of) probability measures, our approach is
purely deterministic (not probabilistic).

On the mesoscopical level, it is then natural to consider the stored energy E
and the free energy G respectively as

Bw)= [ [etmpa(dm) dz+ J [ [Vuu(x) da, (7)

Q52

Gv)=E(v) — / H(z) - M(z)dz 8)

Q

where M = M (v) according to (6) and uy, is determined by



An interesting property of both E and G is that they are convex with respect
to the natural geometry of the considered parameterized probability measures
v’s, let us denote this (also convex) set as Y(£2; S?), and that the minimum
of G on Y(£2;S?) is indeed attained. The mesoscopical steady-state configu-
ration v minimizing G' describes how “to organize” the fine scale structure
(microstructure) in order to get the right macroscopic behavior. We refer to
[9,14,29,33] for mathematically rigorous reasoning and for relation between the
microscopical and mesoscopical steady-state energy-minimization problems.

2.8  FEvolution, rate-independent dissipation

Minimization of the free energy (8) can model a steady state or also quasi-
stationary evolution under low-frequency applied field H = H(t) of soft mag-
netic materials with a reasonable accuracy. Varying the applied external mag-
netic field H then does not produce any hysteresis on M/H-diagram. On the
other hand, magnetically hard materials exhibit significant hysteresis and thus
cannot be modeled by mere minimization of the free energy G. Let us remind
that G is convex so it does not have any local minima, but even if a mini-
mization of the “microscopical” nonconvex free energy G (possibly with an
exchange-energy term) would be considered, some hysteresis can result but it
cannot be controlled by an independent parameter which may lead to incor-
rect numerical effects, cf. [31] where a coercive field for cobalt resulted as 900
Oe instead of an experimentally observed (see [7, p.19]) value 10 Oe.

As the hysteretic response is rate-independent at least for H varying not with
extremely high-frequencies, we can be inspired by plasticity theory where so-
called Hill’s [12] mazimum-dissipation principle typically governs activated
processes arising there. This involves Rayleigh’s dissipation potential R which
is necessarily convex, non-negative and positively homogeneous. Its subdiffer-
ential, denoted by OR(v) = {w; V0 : R(7) > R(v)+ (w,? —v)}, is a so-called
maximal responsive set-valued map, see Eve, Reddy, and Rockafellar [10] for
a deep investigation. The desired evolution v = v(t) is then governed by a
simple first-order differential inclusion

dv _ _
E) +0E(v) > H(t) (10)

OR(
with an initial condition v|;—y = ©°, where OF denotes the subdifferential

of E (considered as extended on the whole space of parameterized measures
Le(Q; M(S?) by E(v) = oo if v & Y(Q;5?), see [36] for more details)



and H = H(t) stands for the linear functional related in a natural way with
H = H(t) by the formula v — [, H(t) - M dz with M = M (v) depending
linearly on v through (6).

Obviously, (10) can be written as

w+0E(v)> H(t), weodR(dv/dt). (11)

As the subdifferential R is assumed maximal responsive, by [10, Lemma 4.1(c,d)]
the latter inclusion in (11) is equivalent to

dv dv

- = — & 12
where the convex set € = OR(0) = {w; Vv : (w,v) < R(v)} determines the
region of nondissipative (i.e. nonhysteretic) response. The relation (12) is just
what is called the maximum dissipation principle, and expresses the rule that
the rate of change of microstructure v is normal to € at w.

The potential R = R() is to describe phenomenologically all dissipative mech-
anisms observed on the mesoscopical level. This enables us not to have to deal
with all details connected with complicated domain evolution on the micro-
scopical level and to model it in a simplified but effective way only bearing in
mind an experimentally observed macroscopical energetics. Besides a form of
, this represents the only phenomenology built in our model. It is especially
simple for uniarial magnets where we should basically only set up the energy,
denoted by © (cf. (19) below), needed for (or, in other words, dissipated by)
the transformation of the magnetization from one pole to the other or vice
versa. This effect can be obtained by choosing

/ A(m)vp(dm)| dz (13)

5'2

R(v) = /

with A : S? — R being constant near each poles. Considering the unit vector
e3 = (0,0,1) as the easy-magnetization axis, the poles will be at m = +M;e;.
For a dominant anisotropy, one can assume that the magnetization will be
mostly in a close vicinity of the poles, i.e. m ~ +M;es, and then the landscape
of X out of the poles is nearly insignificant. Hence one can simply take A linear:

A(m) = H.m-e3 = Homg (14)

with the scalar parameter H. having the meaning of the coercive field con-
sidered as fixed, i.e. no “isotropic hardening” effects (like in [2]) that could



model a virgin magnetization curve are considered. In particular, no dissipa-
tion (or, equivalently, no activation threshold) appears for changing m; or my
components of the magnetization vector m = (my, mg, m3), which agrees with
experimental observations for uniaxial ferromagnetical single-crystals. Thus A
basically indicates whether the magnetization lives around the particular pole
m ~ +M;ges according to approaching the scalar value A\(m) ~ +H M. As
such, A can be understood as a certain pole indicator, playing the role what
is often called the “order parameter”. Note that, due to (6) and (14), we now
have R(v) = [ H.|M3(z)| dz.

By analyzing the abstract maximum-dissipation principle (12) for the special
case (13)—(14), one can identify the point-wise explicit activation rule that
triggers the magnetization evolution process:

=0«= -H.<$H< H,,

dM.
dt3 >0=9H=1H, (15)

<0= $H=-H.

cf. [36, Formula (5.13)]. Moreover, the first inclusion in (11) says, after a
detailed analysis, that the scalar function $ = $(x,t) appearing in (15), which
plays a role of an effective field which activates the magnetization process,
satisfies

$H(z,t) € Hesign(Ms), (16)

where sign(M3) denotes the multivalued function being equal to 1 (resp. —1)
for Mj positive (resp. negative) and to the interval [-1,1] for M3 = 0. In addi-
tion, the probability measure v, describing “mesoscopically” magnetization
at a point z €  and time ¢ must be supported only at those points s € 52
where the function

m— p(m)+9Hmg+ (Hg — H)-m (17)
is minimized, cf. [36, Formulae (5.4g) and (5.6)].

Though the behavior controlled by (15)—(17) might not be convincing, the
main theoretical justification of the model relies on the energy balance. This
can be got by testing (10) by the rate of mesoscopical magnetization dv/dt
and integrating it over a considered time interval [t, t5]. This gives

E(v(ty)) — E(v(t))+ H. | Var Mjs(z,t)dz

t1 <t<t
q hstst



://H(t) : aa—ﬂjdxdt, (18)

where the symbol “Var” denotes the total variation over the interval [ti, t5]
indicated below it. Therefore this term basically counts, roughly speaking, how
many times the magnetization was reversed between the two poles during the
time interval [t1,%5] at a current point z € €, independently of how fast the
transformation process was. Hence (18) says that the difference between the
stored energies at the final time ¢t = ¢5 and at the initial time ¢ = ¢; plus the
total energy dissipated during the pole transformations over the interval [t;, 5]
at each point x € ) equals to the work done by the external magnetic field H.
This also determines the area of the main hysteresis loop in the M/H-diagram
which must be exactly 4V H. provided the magnetization after completing
the magnetization process lies exactly at the pole Mges or —M;ges. Hence the
specific energy needed for transformation of one pole to the other is

D = 2M,H,. (19)

It is important that this energy can be chosen as an independent phenomeno-
logical parameter (in particular, independently of the landscape of the anisotropy
energy ¢) which enables us to incorporate all main experimental data into the
model. For example, impurities or dislocations in the atomic grid may consid-
erably influence the energy ® without changing considerably the anisotropy
energy . Contrary to this phenomenology, the macroscopical interactions
taking into the account the geometrical shape of the specimen (2 are treated
independently and with a full rigor through (9).

Let us still remark that the situation in cubic magnets having 6 or 8 poles
would differ only by a necessity to design the dissipative potential in a more
complex way to describe energy needed to activate (or, in other words, dissi-
pated by) various pole transformation processes.

2.4 Numerics and tmplementation

Though numerical approximation, analysis, and implementation of the model
(10) is not the essential point in this paper, we mention only briefly these
(otherwise quite important) issues; for more details see [20)].

We use implicit time discretization of (10) with a constant time step 7. Denot-
ing v* the approximate value of v(t) at time ¢ = k7, we consider the so-called
backward Euler scheme:



OR(————) + 0E(v*) > H(kr1) (20)

for k = 1,2, ... recursively. Of course, for k = 0, we take v as the initial
condition for (10). Taking into account the convexity of both R and FE, one
can calculate the solution v* of (20) simply as a minimizer of the convex
function

v — kal

v E) + TR(f) — (H(kT),v) (21)

on the convex set Y(Q;S?).

The finite-element method (in fact, here rather the finite-volume method) is
used to solve the above problem numerically. Taking d; > 0, the domain (2
is divided into subdomains {Qj};-v:(‘lil), called finite elements, with diameter
not exceeding d;. Further, as the Young measure is supported on S?, for any
dy > 0 we choose N(ds) different points {mfiz}fi({iz) on S? which make the
support of an approximate Young measure v¢ = {12}, d = (dy, dy). Thus, at
a current time level k, v¢ is considered to be constant on each finite element

and of the form

vt = Z Yo(2)6i , T EQ, (22)

da

where 4, denotes Dirac’s mass supported at m € S? and +;(z) > 0 and
3 Nd) vi(x) =1 for all z € €, i.e., 7 are element-wise constant as well.

At a current time level k, in view of (6), the approximate macroscopic mag-
netization M is then given by

N(ds)
M4 (z) = Y ya(x)myg, . (23)

i=1

As the 3-dimensional situation is computationally very demanding, we con-
fine ourselves to axi-symmetrical situations that can be reduced to a two-
dimensional problems. Thus the sphere S? reduces to a circle S'. Here, we
consider two different cylinders, and a cylinder with two coaxial holes in up-
per and lower bases which creates an “H-shaped” cross-section, see Figure 1
below. Moreover, all our examples admit a planar symmetry with respect to
the horizontal plane {z3 = 0}, cf. again Figure 1 below, which enables us to
make another reduction of variables. The demagnetizing field Vu,, from (9)
produced by a subdomain €; can be calculated for any 2 € R® exactly through

10



Vo (a ( ) div M (y) d
,Uo

\x —y3
.7

/ = \x—y\?’.n(y) dy)’ (24)

00

where n denotes the unit outer normal to the boundary 0€2; of €;. As we
consider the magnetization to be constant within each subdomain €2; the first
term on the right hand side of (24) vanishes. Eventually, the second term on
the right hand side of (24) is evaluated using a numerical quadrature rule,
which can be considered as a version of the dipole formula; cf. e.g. [31]. Each
subdomain is uniformly copied 18 times by a rotation around z3 (i.e. each 20
degrees) and magnetization vectors in such a rotated subdomain are considered
to be the rotated magnetizations from the original domain.

Although (21) is a nonsmooth problem it can be turned into a smooth linear-
quadratic programming problem with some additional linear constraints and
auxiliary variables. The circle S has been discretized to N(dy) = 8 points
and the number of elements was N(d;) = 32 on one quarter actually calcu-
lated. The resulting linear-quadratic program for 74 and auxiliary variables
was solved by Schittkowski’s NLPQL [37]. We refer to [20,36] for implemen-
tation details.

3 Computations of ferromagnets of various shapes

As announced above, we now want to present usage of the above introduced
model for investigation of influence of shape of a specimen of a uniaxial ferro-
magnet on its M/H-response. Simulating real experiment, we must naturally
set up three mutually independent data sets: material, geometrical shape of
(2, and the external magnetic field H = H(x,t).

As to the material data, to be more specific, let us consider as in [8] a
CoZrDy homogeneous amorphous alloy (at the temperature 4.2 K) which
has indeed uniaxial structure assumed in (13)-(14). Considering again the
easy-magnetization axis to be parallel with the unit vector e3 = (0,0, 1), the
uniaxial anisotropy energy density is taken as

¢o(m) = Ksin*0 (25)
with 6 the angle between the vectors m and e3, K = 40 kJ/m? and the sat-

uration magnetization Mg = 0.05T; cf. [8]. Then, considering the dissipative
energy (13)—(14), it remains to determine the coercive field H; here, we take

11



H. =20 MA/m. In accord with (19), this gives the specific pole-transformation
energy ® = 2 MJ/m?.

As to the external magnetic field H = H(x,t), we consider it spatially homo-
geneous (i.e. independent of x € Q) as it is, with high accuracy, often the case
in lab experiments. Hence only a time-dependence of H = H(t) is to be set
up. As the model is rate independent, in fact only a direction and the reached
magnitude of H is essential. Up to the (irrelevant) velocity, the used function
H = H(t) can thus be easily reconstructed from the presented H/M-diagrams
and therefore will not be specified.

Finally, the geometrical shape of a specimen varied. All the specimens are
axially symmetric with respect to the vertical axis x3 and symmetric with
respect to the horizontal plane {z3 = 0}. Figure 1 below shows planar cuts by
a plane containing the axis x3. In all cases, the easy magnetization axis e3 is
vertical, as well as the applied field H, i.e., H = (0,0, H3).

v

‘

‘

|

e
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4((>>>>>>\i
g A

|

@ -~~~ : MR
12— - ©
- PV YV VYN 4 A
The gray scale: SO
T T T ;
Mg Mg

Fig.1: Cross-sections of various specimens with computed inhomogeneous
magnetization (and for B also the demagnetizing field around) dis-
played at specific time instances.

The gray levels correspond to the macroscopical magnetization M3z (white
means Ms(x) = Mg while black is M3(z) = —M;) at the average magnetiza-
tion about 23 mT for A and B and at about 35 mT for C on the right-hand
branch of the hysteresis loop. We can therefore easily see the nonhomogeneity
of the magnetization resulting from an interaction with the self-induced de-
magnetizing field. Besides, the magnetization vector field M (z) in the magnet
Q2 and, in case B, also the demagnetizing field Hq(z) outside 2 is displayed by
the arrows. The corresponding main hysteresis loops (the spatially averaged
component M3 vs. the H3 component of the external field) are on Figure 2.
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Fig.2: Corresponding hysteresis loops.

We can see that magnetizing a longer magnet (Fig.1b) produces the hystere-
sis loop more up-righted in comparison with a flat magnet (Fig.1a), which
is a well known effect usually described roughly by speaking about a larger
demagnetizing factor. In any case, however, it is not possible to produce mi-
nor hysteresis loops; more precisely, the minor loops have the zero area and
degenerate thus to perfectly horizontal lines.

To produce minor loops, it seems indeed inevitable to consider more than only
one activation threshold H.. We demonstrate this effect simply by imposing a
spatial inhomogeneity of the coercive field H. = H.(z). E.g. a random varia-
tion £45% of H. around the previously used value H. = 20 MA/m (i.e. H.(z)
being piece-wise constant and uniformly randomly distributed over the inter-
val [11,29] MA/m) changes the response from Fig.2 (Case A) as follows:

— CASE () M | 50imT]

--- CASE (i)
=

7 100[MA/m]

150

-100

Fig.83: Minor hysteresis loops on the specimen A but with inhomogeneous mate-
rial having randomly distributed coercive field H, = 20(+45%) MA /m.

Two test cases of (pseudo)random distribution of H. are displayed.

An interesting, but perhaps not entirely surprising effect is that, although

H.(z) is distributed randomly, the resulting macroscopical magnetization Ms(z)
is self-organized by collective interactions to vertical stripes, which is obviously

to minimize the energy of the created demagnetizing field. This is displayed

on the following snapshots corresponding to those test cases at one specific

time:
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CASE (i) CASE (ii)

Fig.4: Computed magnetization on the specimen A with the two cases of
inhomogeneous material.

4 Concluding remarks

We presented an efficient and rigorous method how to compute demagnetizing-
field effects in ferromagnets of arbitrary shape. In particular, we showed very
explicitly how main hysteresis loops are made round as a consequence of an
non-ellipsoidal shape of the specimen. This effect is additional to the overall
averaged inclination of the hysteresis loop which is, of course, also affected by
the specimen shape, but this effect was well known even for ellipsoidal-shape
bodies through the demagnetizing factor. Moreover, we showed that a suitable
shape can thus effectively produce two (or certainly even more) significantly
different demagnetizing factors at the single specimen, cf. again Figure 2C.

Moreover, we also showed that minor hysteretic loops cannot be produced,
perhaps rather surprisingly, as a mere consequence of the macroscopical ge-
ometry but result ultimately from a multi-threshold behavior of the material
itself.

The method can be used in a more sophisticated arrangement: relying on
the formula (25), one can first fit the material parameters ¢, i.e. here K
in accord to (25), and H, and M with an experiment made on a specimen
with a specific shape, and then one can predict hysteretic response for other
experiments made possibly on specimen of a different shape or under a different
magnetization regimes.
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