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Abstract. A general method to construct o-compact extensions of a
Banach space X preserving greater or lesser part of the stiructure
of X is developed by a modification and enrichment of the
technique of compactification of semitopological semigroups,
exploiting here continuous Llinear multiplicative nontrivial
functionals on a suitable ”Fréchet algebra” of functions on X.
when being fine enough, these extensions are also locally
compact. Such method of o-compactification covers, in a unified
manner, e.g. the bidual =space b {endowed with the weak

topology) or the space of types F(X) by Krivine, Maurey [B].
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1. INTRODUCTION, NOTATION

The aim of the paper is to develop a general method for
extension of a Banach space X to a o—compact space together with
a *gertain part” of the coriginal algebraicos/topological structurs
of X. We will use systematically the compactification technigque
by means of linear multiplicative functionals (see =.g. Engelking
[B; Sec.3.12.21]1), which =seems to be - most sulitable for our
purposes and which alsoc enables to employ rich results from the
theory of compactifications of semitopological semigroups; for a
comperhensive survey we refer to Berglund, Milnes, Junghen [1].

ilet us recall briefly some of these results, introducing
also =some notation. As we will treat only Banach spaces, the
general situation (i.e. 11 kinds of compactifications) reduces
considerably {(te 3 kinds only, cf. [i1;p.130]1) thanks to the fact
that the addition in a Banach space makes it a comnutative,
complete metrizable group. We will refer to these kinds in accord
with their main representants: UC (= uniformly continuous), WAP
(= weakly almozt periodic), AP (= almeost pericodic). By C(X} we
denote the C%Malgabra (i.e. the Banach algebra with an involution
»*¥» and with the property I7f I=IfII°) of all continuous, bounded,
complex wvalued functions on X; the Iinvolution is the complex
conjugation and the norm is defined by Hfﬂxsupxexf(x), X will be
always considered with its norm topology. If ¥ is a subspace of
C(X), the topological dual to ¥ is dencoted, as usual, by ¥ . Ve
will always consider # endowed with the weak' topology, i.e. the
relativized UTC(X)%,C(X)) topology. If ¥ is a C%~subalgebra of
C(Xy, #° will denote the subset of #F containing all

multiplicative functionals but the trivial one (=0). Clearly, 7"
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iz compact in # . wWe define the so-called evaluation mapp ing

&: Xs¥ by
(1.13 e{x} (2} = flx), xEX, F&F.

Supposing that ¥ contains constant functions, (X)) iz a dense
subset of ?w, and we thus get a compactification of X. In the
literature, the elements of ¥  are sometimes also called
multiplicative means {peﬁﬁ iz a mean 1if uil)=1 and uyp(FfH=20
whenever £>0), and # is then denoted by MM(F).

For gE$° the mapping Ip;?AaB(X), B(X) is the space of all
bounded functions on X, is defined by Tﬁ(f)(x)my(f(,+x)), FeF,

xeX. Clearly, for xeX, T represents just the shifts £(.) -

e(x)
fl.+x). If ¥ is m-introverted, 1i.e. Tﬁ?ﬁ? for all M€$°$ we can

define a binary operation *+* on F by the formula
(1.2) pty = pel W, vEF .

In the literature this operation is denoted rather by *#" and
called *conveolution”, but we will denote it agalin as the addition
to emphasize that it is an extension of the original addition of

x. €¥X, and

X (note that evidently e(x1)+e(x2)me(x +x2) for any TR

1
in a very special case it can even coincide with the original
addition on X; =mee Section 4.1 when X iz reflexive). On the other
hand, »+” defined on # by (1.2) has nothing common with the
addition in $*. In general, # with the operation *+»” is a right
topological semigroup with zero; *right topological” means that

the mapping pe20+r from ¥ to itself is continuous for every

vEF | Moreover, also the mapping (x,?)sse(x)+r from XxF to ¥ ois
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continous; note that, by the results of Namioka [7] and Rao [8],
see alse [1; pp. 103, 105, 1271, F < UC(X) = {feC(¥); f i=
uniformly continuous} provided ¥ is an m-introverted
C%wsubalgebra of C({X), which just ensures the continulty of the
mapping (x, ) e (x) +2.

A function feC(X) is called (weakly) almost pericdic if the
zmat T@(X}f iz relatively {(weakly) compact in C(X}); the set of all
{weakly) almost periodic functions on ¥ will by denoted by AFP{X)
(or WAP(X)), respectively. It holds UC(X)CWAP{X)cAP(X). If, in
addition, FCWAP(X), # with »+» defined by (1.2} is a commutative
semitopological =semigroup ("semitopological” meanz  that the
addition is separately continucous), and if FCAP(X), # is even a
topological group. Conversely, if ¥ iz a semitopologlical
semigroup or a topological group, then FOWAFP(X) or FCAP(X),
respectively.

The aim of this paper is, by subjecting F to some further
requirements, to extend on ¥  also the multiplication by scalars
and possibly the norm, and eventually also the scalar product if
X is a Hilberi space. However, not to detericrate the continuity
of the multiplication (and also of the scalar product), we must
exclude, roughly speaking, the points of the compactification at
infinity. The remaining subset is then no longer compact, but it
iz still o-compact (l.e. it is a countable unicon of compact
zets), and zometimes sven locally compact.

In Sec.4 we =show that certain special choices of ¥ lead to
some extensions already known, namely ¥  can be thus homgomorphic
to the bidual s=space ){**5 or to the space 7(X) of types on X,
intreduced by Krivine, Maurey ([5}, or to the Leader local

compactification [6]. The general method developed here can be
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thus viewed as a unified theory of these particular extensions.
Besides, the o-compaclt eXxtensions can serve as a proper topl in
optimization theory. The o-compactness then ensures readily
existence and stability of (generalized) minimizers or maximizers
of coercive optimization problems (cf. [9,101), while the remains
of the linear structure still enable to treat optimality
conditions because even in the purest cases we can still speak
about cones in ithe extended space. However, in this paper we will

not deal with the applications in optimization theory.

2. LOCALIZATION ON BOUNDED SETS, EXTENSION OF SCALAR MULTIPLICATION

Let €(X) denote the Freéchet space of all continuous (not
neccessarily bounded) functions on X that are bounded on every
ball Xr = {x€X; ||xji=r}, >0, endowed by the collection of
seminorms {”‘”r}r>o defined by nfﬂr#Her”, where Rr:Q(X)f¢C(Xr)
iz the operator of the restriction f»aflx . Enlarging the classes

r

UC(XY, WAP(X), and AP{(X) by localization of the respective

properties on bounded subsets only, we define:

USX) = (FEB(X); Vr>0: R _FEUC(X )},

WaP(X)

{FEB(X);, ¥r>0: Rr(Te(X )f) iz relatively weakly compact
r
in C(Xr)}’ and

&P X3

i

{FfeB(X);, ¥r>0: RP(T is relatively norm compact

D)
e(Xr)

in C(Xr)}'

Let K be the field of scalars of the Banacﬁ%space X (we consider
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K=R or K=C). For ek, we define the dilatation operator
Da:E(X)w¢8(X) by Ba(f)(x)wf(ax), x€X. For a subspace ¥ of 8(X},
endowed with the topology induced from 8(X), we again define F
and ¥ as in Section 4. # has a sense ocnly if # is an algebra.

The following hypotheses about ¥ will be employed:

(2.13 for all >0, Rr$ iz a C*~$ubalgebra of CEXF) containing
constant functions,

(2.2 % is a Fréchet space,

(2.32) ¥ is m~intorverted, 1i.e. ?Q$C$ for every gé?a,

(2.4) ¥ igs dilatation invariant, i.e. Daﬁc? for every a€ll, and

(2.5) # separates points, i.e. in,xgﬁx AferF: f{xl)ﬁf(xa).

It iz clear that [Rr$]” are certain compactifications of the

balls Xr provided (2.1) is valid. HNote that (2.1) makes F a

subalgebra of €(X) and, if # is closed in 8(X) (that means (2.2)

iz valid), we may call ¥ a ”Fréchet algebra”.

Lemma 2.1. let (2.1) be valid and Rr be considered as a mapping

FermsF X Then the adjoint operator Ri clearly maps ERTEJ* into
r

¥ . Moreover, [R_#1 * is homeomorphically imbedded uvia 2; into ¥ .

Proof. Suppose pe[R #1© is multiplicative. Then RIGD (F ) =
BOR (F £5)) = wp(R FOBR F) = R;:puflm';(y)(fg), that means
Ri(g} is multiplicative, toco. If p#0, i.e. y(Rr(f))¢O for some
Fe¥, then R;(g)(f)ﬁo, which means Ri(g}#O. Thus we have proved
that Ri maps [Rr?3° actually into F .

Now, let us consider a net {gm} in [ErFJ‘ converging to some

HELR 71" weakly*. In other words, o (er)na#(R f} for every fe¥F.
r & v T
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It is equivalent to the convergence Ri(ga)(f)maRi(u}(f), which
means precisely that {R;(“a)} converges to R;(g} weakly*, i.e. in
the topology d(?%,y)v We have thus proved that Ri is a

homeomorphism between [R #1° and Rj([@r$3'>.

Let us denote ¥ endowed only with one seminorm ”'Hr by ?r’

and define again ?ﬁ and ¥ as above; clearly ?*c$* and #.= ?*n?a.
T T r r T
Lemma 2.2. Let (2.1) be valid. Then ¥ = || ¥ , and R,.(IR #1)=%..
>0 I T r r

Proof. We modify the arguments by Kolmogorov, Fomin [4;
Sec.IV.1.4): for every pﬁﬁﬁ there is a neighbourhood of 0¥ on
which p is bounded, that means 3Rr,e>0 VYfeF: ﬂfﬂrﬁa => julf=c,
which implies that g is continuou=s with respect ito some seminorm
“'“r’ hence yﬁfi- Thus we have proved F = Lk>0$j. The
modification for the multiplicative caze is obvious.

Now take any g’E[Rryl‘ and put p=Ri(p’). By Lemma 2.1, uey‘.
Moreover, for every fe¥, Jul(f)| = Eu’(er)l = Hfﬁr, hence u is

continuous with respect to the seminorm |.| i.e. ue¥F

r’ r
Conversely, take any uE?;. As up is continuous with respect to
”‘”r’ we  have u(f1)=u(f2) whenever Hf1~f2ﬂrmo, which means
precisely er1=er2. Define g’:Rrﬁ—dk by @ (£ )=pu(f) where fe¥ is
an arbitrary extension of f’ERr$‘ (=ince p€$;, the particular
choice of F* is not important, and thus g* is well defined). The

facts that p’ﬁ[RrFJ° and Ri(ﬁ’)mp are then obviobus. B

The following assertion, exploiting (2.2), is based on the

well-~known uniform boundedness principle.



Lemma 2.3. Let (2.1) and (2.2) be fulfilled and {#a} be a

converging net in F . Then {ua}t$; for r sufficiently large.

Propf. As the net {ym} weakly* converges, {ya(f)} is bounded for
every Fe€¥. Due to {(2.2), ¥ is complete metrizable space, and we
can apply the uniform boundedness principle in the form [12;
IT.1, Theorem 1]. It gives some &>0 and 0 =such that, for all «,
ﬂfﬂrﬁé implies lga(f)lﬁi. Hence Iga(f)lﬁi/ﬁ whenever Hf”rﬂi,

Particularly, uﬁé?;.

Let us note that the evaluation mapping e defined by (1.1)
maps X into F. Supposing (2.3), we can exXtend the addition to a
binary operation on 7 again by (1.2). Besides, making use (2.4),
we can extend the scalar multiplication (g,x)esax:KxXX—X to a

mapping KXF s by putting
(2.6) ap = peb, peF | aelk.

It is evident that ae(x)=e(ax) for every x€X and a£¥K, hence ihe
definition (2.86) actually extends the original scalar
multiplication on X. The following theorem summarizes the general

properties of 7.

Theorem 2.1. Let ¥ fulfils (2.1)—(2.3). Then ¥ endowed with »+»
defined by (1.2) is «a Housdorff, o-compact, right topological
semigroup with ¢, the evaluation mapping e: X—3F is continuous,
e(X) is dense in ?“, e(x) +tu=pre{x) for every xex,payﬁ, and the
mapping (x,:.,t)h«ae(x)ﬂ,t:}(xa‘-"mma&'q ig (Jointly) continuous. Morecover,

e is injective provided (2.5) is valid. Supposing (2.4), the



scalar multiplication defined by (2.6) is jointly continuous. If,
in addition, FcWaAP(X), then # with »+7 is o commutative
semitopological semigroup. After all, 1f FeaP(X), 7 is also a

topological group.

Remark 2.1. By continuity, we can transfer some properties of the
scalar multiplication from X on 7. Thus we alwavs have: OQu=0,
1=, {alag)n=al(a2u), a(u1+y2)mag1+aya. On the other hand, the
second distributive rule, i.e. (ai+a2)y=a1u+aay, is not valid in
general. Neverthelesg, if FcagP(X), it is wvalid, which makes F a

linear topoleogical space.

Proof of Theorem 2.1. As the weak topology of # is a Hausdorff
one, #"c#" is a Hausdorff space, too. As {Rr?}‘ i® compact, # is
g—-compact as a consequence of Lemmas 2.1 and 2.2. As e(Xr} is
dense in [erlo, e(X) is denme in 5’, too. The continuity of
e: X—¥F is guaranteed by the fact that FcB(X). The fact that
(F°,+) iz a right topological semigroup has been proved
essentially in [1; p.211.

For every f€¥ we have (e(xX)+m)(f) = (e(x)vT“)(f) = (Tyf)(x)
= ”(Te(x)f) = (pte(x)) (f), thus e(x)tu=pte(x) for every xEX,gE?',
Now we are going to prove the joint continuity of the mapping
(x, )= (x)+u. We will modify the technique by [1;p.1051: Take
xeX and gE?' angd nets {xa} and {pa} converging in X and in 7 to
x and g, respectively. By Lemmas 2.1-2.3, for all o« and r large
enough we have e(xm), paeﬁ;. Then also e(xa)+ga§$;r. Now we will
only =how that {h(E(xa}+“a)} converges to h(e(x)+u) for every
hEC(F;T). As the mapping Vieasprte{x) is continuous and

e(x)+v=v+te{x), also v—e(x)+v 1is continuocus. By means of [1;
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Lemma I.1.83, and by ithe compactiness of 3;, it suffices to show
that {h{@(xa)+-)} converges to h{e(x)+.) uniformly on ﬁ;. It

follows from the fact that A, being continuous on a compact set

$£r, iz uniformly continucocus and {e(xa)+v} converges to =(x)+w

uniformly with respect to vﬁﬁ;. The latier fact is a consegusnce

of the estimate: ¥YfeF, vE?r: i(e(xa)+v)(f) -~ (e(x)+) ()] =

(T Ty P = iy, T

e(xa) Té(x))fﬂr where

e{xa)
* . *_ . s
ﬂvﬁr-$upf€ytv(f)f/ﬂfnr; realize that ﬁyﬂrmi since YeF , and

{r

et f in the norm topology of C(Xr) since

xa)f} converges to Te(x)

{xm} converges to x and Ff is uniformly continuous on er; cf.
Theorem 4.3 below.
Similarly we can prove the joint continuity of the extended

zcalar multiplication (a,u) r—au, exploiting the convergence of

{Daaf} to Daf in the norm topology of C(Xr) provided {aa}

converges to ¢ in K and f is uniformly continucus on Xr with r

1 1

sufficiently large.
Now we go on to the ¥dP-casze. If heWaP(X), modifying [1;
p.108] we can see that, for every bounded nets {xa}, {yﬁ} in X,

lim lim h{x lim lim h(x whenever all the limits do

L 5 aﬁyﬁ) p s a+yB)
exigt. By Lemmas 2.1 and 2.2, for every ﬁ,vﬁyﬂ we can take
bounded nets {xa}, {yB} in X converging to g and » in ?h,
respectively. By continuity arguments we thus obtain
h{p+2)=h{r+u) for every continucous function h on 7 provided
Foyar(X). It yields that »+» is commutative on ﬁ', from which the
separate continuity of (u,2) vsu+y appegarantly follows.

It remains to prove the #P-case. For fesaP(X), the set
{Rrva; véﬁ;} is relatively norm compact in C(Xr) because it is

contained in the closure of {RrTe(x}f5 xﬁfr} which is compact in
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C(Xr) by the very definition of the class ¥«4P(X); note that, if a

net {e(xm)} converges to » in 3}, {Té(xa)f} converges to ?&f

pointwise on Xr, and, by sequential compactness, 1t contains a
subnet converging in the norm of C(Xr) to some g, but then gm?yf

and the whole net {Ta(x )f} must converge to Tv in the norm
o

topology of C{Xr)' Now take g,vé?’, a continuous function h on
":r"“

>

and nets {“m}’ {va} converging in # to ¢ and v,

respectively, and suppose FoagP(X). We are to show lim h(ua+va) =
oL

h(uty), that means lim p (T, h) = w(T h) with he¥ such that
oL o

¥(h)=h(E) for every &€¥ ; cof. also (3.3) below. It follows

obviously from the compactness of the net {Ty h} in C(Xr} for
ot

every r (because heFcaAP(X)) and from the fact that gm,vaéy; for r

large enough (thanks to Lemma 2.3).

3. FURTHER STRUCTURE ON SUFFICIENTLY FINE 9—COMPACTIFICATIONS

In view of Theorem 2.1 we can cbserve thalt lhe structure on
#' follows the original structure of X more faitfully provided #
is purer, or we may =say provided the o-compactification is

is coarser g-compactification than F. (or

coarser; we =ay that ¥ n

L

35 is finer than #¥.) if, for every r, (?1); is coarser
compactification of Xr than (ﬁé); in the usual sense, i.e. there
i=m a centinuous surjection {gé);watﬁi); fixing e{Xr). On  the
other hand, if # is rich enough (i.e. the o-compactification is
sufficiently fine), some more structure can be transferred from X

onto ﬁ., which is just to be shown in this Section.

i3
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Firgt we mention a general construction of a continuous
extension of mappings. Let Xi’XE be two Banach spaces, ?1, ?é

Fréchet algebras of functions on Xl and XB’ respectively, and

F:Xi—exa be a mapping such that

(2.1) $2aF < ?1

Then we can define a continucus mapping $;mw$’, denoted again by
F without causing any misplacing, by the formula

{(3.2) F)OF) = u(feF) , Hﬁyla feyz.
The facts that F(u)e€¥, and F is (crcav;*,s»'l),cr(y;,ya))—cantinums
are obvicous. Besides, for all xE%, F(el(x})meaﬁF(x)), where

ei:xi~4?;, i=1,2, are the respective evaluation mappings. Thus

F:ﬁi—aﬁé can be actually considered as the ccntfﬁou& extension of
the mapping F:leaké.
In the special case X1=X, X2=K (=K or £) and ?5%% {then $é

containg the identity on K) we can extend continuously every
fﬁ?iaﬁ, the extended mapping being denoted again by f:?.de for

simplicity, and (3.2) in this special case looks as follows:

(3.3) Flu) = puiH.

Let us now investigate the case when the algebra F contains

the norm of X, i.=.

(3.4) 0.1 & 7.

12



Remark 23.1. By (3.3) we can then extend the norm continuously on
#F', and write {u|| for ue¥ . Supposing (2.1)-(2.4), by continuity
we obtain all the usual properties of the norm:  O=fulid+es,

Tt li<lial+ )l Namli=lalliull, and {ufi>0 provided u#e(0).

Theorem 3.1. Llet (2.1),(2.3) and (3.4) be fulfilled. Then ¥ is
tocally compact and €1 Xt defined by (1.1) realizes «

homeomorphical imbedding of X into 7.

Proof. Take any uaﬁﬁ and put Bm{veﬁﬁ; fell=lli+1y. as .|} is
continuous on ?c, B is obviously a closed neighbourhood of ;. Now
we want to show $C$; with r=lpli+1, which will yield compactness
of B as a consequence of the compactness of [Rr?J. and of Lemmas
2.1 and 2.2. Let »eB. In view of density of e(X) in #' there is a
net {e(xm}}ax aonverging to ¥ in # . Since the case w=e(0) is
trivial, we may suppose v#£e(0) and also ﬂxmﬂaa>o for all o
because {“xa”} converges to {j»||>0. Put ;m:xaﬁvﬂfﬁxmﬁ. Obviously,
;méxr and ”;a-xm“ = EH;mﬂ“ﬂvﬂi, thus {H;m—xaﬂ} converges to zero
thank=s to the continuity of the extended norm. As E(;a) =
e(;a~xa)+e(xa), the net {e(;a)} converges to O0+y hecause of the
joint continuity of +: XxF —F . Since O+v=y, we see that »
belongs to the closure of e(Xr) in ?ﬂ, that means to y;,
Realizing that e 1is injective because (3.4) with (2.3)
implies (2.5), we are only to show that the inverse mapping
e l.e(x)—X is continuous. Indeed, the convergence of a net
{e(xa)} to e(x) in ¥ means precisely that {f(xa}} converges to
Fix} for every Ffe¥. Thanks to (2.2) and (2.4) we can choose for
f€F the function fFf{yw)={v-x|i. Then f(x®}=nxa-xﬂ and Fi{x)=0, which

offers immediately the convergence of {xm} to x in X.

4
&
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et us consider now the case when X is a Hilbert spacs,
<.,.> denoting its =scalar product, and ¥ contains particularly

all linear continucocus functionals on X, 1.e.
{(2.5) X < 7.

Then we can extend the =scalar product to a mapping <.,.>:¥'x?“»ﬁm

by means of the formula
(2.6) <, v> = pllL), u,veF |,  with L,(x)=v(<x,.>), xexX.

Note that LPEX%. Indeed, Lp is linear since vé?*. By Lemma 2.2,
veﬁ; for r large enough, and a net {<xa,.>} converges to <x,.> in
C(XP) provided {xa} converges to x in X, hence {v(<xm,.>)}
converges to v(<{x,.>). In other words, Lv i=m continucus, and thus
actually LyEX%. Bezxides, it i= obvious that {e(x),e{v)>={x,y> for
every x,yeX, hence <.,.>:?'X?OM4K defined by (3.6) actually

represents an extension of the original scalar product.

Theorem 3.2. lel (2.1)-(2.2) and (3.5) be valid. Then the scalar
product extended on F by (3.86) is separaiely continuous and the

mapping {x,u}pa<e(x),u>:Xx?'maK ig (jointly) continuous.

Remark 3.2. By the separate continuity quoted above all the usual
properties of the scalar product can be transferred on ¥ . Thus
we get: <ap,wy=adp,w>, <uptpg, s, wdHdu,,v>, and Lut, vr=<w, >
provided (2.3) and (2.4) are valid; the bar denctes the complex
conjugation for the case K=C. Moreover, <ug,r>={ullll»l provided

also (2.4) is valid.

14



Proof of Theorem 3.2, The continulty of the mapping pr—s<{u,v>
follows readily from the definition (2.6). Let 4 be fixed and
{va} be a net converging to ¥ in " . Then {Pa(f)} converges Lo
»{(f) for every fe€F, and, due to (3.5), particularly for every
fax*, which gives the weak {and by reflexivity also weak)

convergence of {Ly} to Lv in X'. Since 0 is continuocus and
o

linear on ¥ and thus also on X%, we see that {u(Lv Y} converges
o

to g(LP), which means precisely that {<p,va>} converges Lo {u,¥>.

The convergence of {<e(xa},va>} to  <e(x}),v> for {xa}
converging to x in X and {ya} converging to » in ¥ can be proved
completely as in the case of the addition {(cf. the proof of
Theorem 2.1), using the facts that vaéﬁ; for r large encough {due
to Lemma 2.3) and {<xm,.>} converges to <x,.> in C(Xr), which

implies the convergence of {Pa(<xm">)} = {<e(xa),va>} to

w{<{x,.>) = <elx),v>.

4, EXAMPLES

In this section we want to show how the o-compactifications
of X by means of suitable Freéchet algebras % can cover various
standard extensions that can be thus seen from a unified point of

view.

et
4.1, AN EXAMPLE OF THE #AP-KIND: THE BIDUAL SPACE X .

et us take +the class ﬁaff of all continuous affine

)

. X . . 3# . p
functions on X, i.e. ﬁaff—{y(.)+a, VEX gfk}. Denote by E(ﬁaff

15



the minimal ring containing ﬁaff’ i.e.

m T
2@ = {1 T £45005 #1558, 00 mnel }
i=1 j=1

Finally, let ﬁiﬁaff) denote the closure of R(ﬁaff) in 8(¥), Thus

Y matigfies (2.1) and (2.2). Since 3B im dilatation

FIB aff

aff

invariant, ?(ﬁaff) satisfies also (2.4). Since Saff is
appearantly translation invariant (i.e. Te(x)ﬂaffcﬁaff for svery

xeX), R(B f) has this property, too, and modifving [1; p. 1131 we

af

verify alsc (2.3) with F=F(B }. Moreover, ?(ﬁaff) fulfils

aff
evidently (2.8) and (3.5). It is evident that $affaﬁ?(X),

Modifying the arguments of [1; pp. 115 and 110] we can show that
foofo€aP()  implies f f,€#P(X), thus R(B_  IcaP(X). By the
technique [1; pp.25-27]1 we can eventually show that also
y(Baff)Cﬁ?(X). In view of Remark 2.1 we thus can see that

F(B is a linear topological space. The following assertion

afrt’

even identifies it.

Theorem 4.1. [F(3B )17 is homeomorphic with the bidual space x*F

aff

of X sndowed with the weak* topology, and the following diogram
commutes (J denotes the connonical imbedding of X into X%*

)}ﬂ the homeomorphism):

/\

» [F(B_ J’

Frens
and $: X *%[F(Baff

Proof. Let us recall that J:X—X &= is defined by J(x)(y)=y(x),
yveX , xeX. Let us investigate the mapping @:J(X)m@[?(ﬂaff3].

defined by @(J(x))(Ffi=Ff(x), =xeX, f€3fﬁaffﬁ. Note that @eJd=e. We

i6



will show that ¢ is uniformly continucous on bounded subsets of

X from the (relativized) J(x*%,xﬁ}wuniformity to the
* . . :

d([?(ﬂaff)i ,?(ﬁaff))munlformlty, it means ¥Yr>0 ¥erO vﬁﬁﬁﬁﬁaffﬁ

F a finite =set M in X% A&G>0 Vxl,xzﬁxrz { WyeM: Ey{ximsz]ﬁé 3 o=>

if(xl}mf{xg)iﬂs. Indeed, for every r, &, and f, we can take
fi;%Bapp L€ ;00 =y Cova, . with yijex* such that
Ez?ﬂin?wifij(x) - flx)l = g for all xﬁx;, Now it is clear that we
get the desired estinmate if(xl)—f(xa)j < g when take M = {yij;
i=1,n, j=1,m} and &>0C small enough.

Moreover, ¢ is injective due to (2.5), and @nize(X)wa(X) is
uniformly continuous in the mentioned uniformities. Indeed, ¥e>0
Wyex” BFEF(B_..) BOO Vx ,x,€X: |flx)-flx,) |56 => |ylx -x,)|<e
(it suffices to put simply Ff=y and &=e).

Now the assertion to be proved follows from the facts that
the completion of J(Xr) with respect to tihe relativized
U(X**,X*)wuniformity (which coincides with the G(X,X*)-one} is
just Xi* (see e.g. [12; Sec.IV.R]), the completion of e(xr) with

respect to the relativized d([?(ﬁa )]*,?(ﬁaff))muniformity is

fr

ff);, and a uniformly continuous mapping can be extended

continuously on the respective completion. Thus, extending ¢ on

Jus=t g(ﬂa

#

the o (X ,X*)wcompletion of J(Xr)’ we obtain a homeomorphism

b and by continuation with r passing to

¥ -
between Xr and $($aff .

+ we get eventually the homeomorphism @:X**mwﬁ(ﬁaff)c

Remark 4.1. By continuity, $ is simultansously an isomorphism of

the respective algebraic structures (here linsar spaces). ®~1 can

be defined alternatively by assigning to every gﬁﬁ(ﬁaff}# its

restriction on X%C?(ﬁaff) which is  appearantly a linear

. . # Wk
continuous functional on X , hence an slement of X .

k"

17



A4.2. AN EXAMPLE OF THE W#P-KIND: THE SPAGCE OF TYPES.

Let us confine ourselves to the casze when X is a stable

Banach space, which means lim 1lim ﬁxn+ymﬁ = lim lim Hxa+ymn
n m m n

whenever all the limits exist. This class o©of Banach spaces has
been introduced by Krivine and Maurey [5B] {see also [2;
Chap.VIIl, e.g.); it is known that, e.g., ihe spaces 1P of
p-integrable functions are stable if 1spi{+e {(while t* is not
stable). The space of types 7(X) is defined as the closure of
tr ; xeX} in RY when R} is endowed with the product topology; R,
iz the set of non—-negative reals and rx;xm¢m+ iz defined by
Tx(y)mﬂx+yﬂ. The mapping XEST realizes a homeomorphical
imbedding of X into 7(¥), let us denote it by & The addition,
scalar multiplication, and the norm can be extended onto 7(X),
the (separately continuous) extended addition being called
»convolution of types”; cf. [2,5].

To obtain the space of types by our method of

og~compactifications, we consider the set

$type = {arx+b; a,belk, xeX}

) in the previous

and define ?(Stype) analogously as ?(Saff

section. We can again verify {(2.1)-(2.4), (2.4}, and (3.5) with
ﬁh?(ﬁtype), using also the stability assumption, which implies by

fi1: p.108] that B CYAP(X), and thus F(B e)a%ﬁ&(%) by similar

type typ
arguments as those used for ?(ﬁaff)cﬁ?(x) in Section 4.1.

Theorem 4.2, E?(ﬁtype)]’ is homeomorphic with the space of types

7(X) and the following diagram commutes (@;7(x)mwiﬁ(3type)}.

is



denotes the mentioned homeomorphism):

y1°

FX) type

s [F{R

H

Proof. Defining ¢:F(X)—s[F(B )17 as el )=e(x) for all xeX,

type
the proof merely pharaphrazes that one of Theorem 4.1. B

Remark 4.2. Using general considerations, our tLhecory together
with Theoremn 4.2 enables to derive readily most of
algebraicostopological properties of 7(X), usually stated in the

space~of-types theory; see [2,5].

4.3, THE FINEST 9~COMPACTIFICATION

Like the Stone-lech compactification plays an important
role, being the finest compactification of a completely regular
topological space, heres it i1z natural to lock for the finest
og-compactification preserving =still the algebraico/topological
structure transferred partly from the original Banach space. It
iz clear that if ¥F would not be a subalgebra of €(X), the
continuity both of e: X—s¥F and of (x,p)kae(x)+g:Xx$°m4$° would be
lost. Hence we require Fcg(X). Moreover, to extend the addition
by (1.2) we need neccessarily the m-introversion of #. Using and
modifing the results and arguments of Namicka [7] and Rac [8]
(see also {1; pp.103, 105, 127]1) we obtain the class we are

locking for.
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Theorem 4.3. The largest m-introverted subalgebra of B(X)
coincides with UB(X), the set of all functions that are uniformly

continuous on bounded subsets (defined in Section 2).

Proof. Put ME(X)={fe8(X); Vpﬁﬁ(X)': y(?e(.>f}€8(X)}; P HE? stands
for ?multiplicatively continuocus”. By the very definitions, ME(X)
is appearantly the (only) maximal m-introverted subalgebra of
g(X): cf. alsc Rao [8] or [1; pp.102-103). By the arguments of
the proof of Lemma 2.2, every gé@(X)e belongs to some K(X); for r
sufficiently large, and 8(}{}; 2 C(X)" (=pX_, the Stone-Cech
compactification of Xr)' For any §FeUB, Te(,)f iz continuous as
a mapping xr—accxr), which implies Rr(g(T@(.)f))QC(Xr). Thus
u(Te(_)f)}EE(X), In octher words, feM8(X), and thus UBXICHE(N).
It remains to prove that, conversely, MB(X)cUB(X). As ME(X)
is m-introverted, the addition p+» is well defined and the
mapping prsuty is continuous. Since e(x)+uspte(x) (c¢f. the proof
of Theorem 2.1) the mapping (x,#)h@e(x)+y:XxM£(X)’w%M£{X)° is
geparately continuous. Since UB(X) ocbviously satisfies (3.4) and
MBOO >UBXKY, MB(X) satisfies it, as well. Thus Mﬁ(X)° is locally
compact; cf. the proof of Thecrem 2.1. Then we can use readily
the result by Rao [8] that yields the joint continuity of the
mapping (x,u) —e(x)+u, employing also the facts that X is a group
acting on ﬂﬁ(x)' and a complete metric space, hence a Cech
complete, and therefore a strongly countably complete space; for
details see [8]. Following {1; p.1051, take any feMB(X). Then,
for x,veX, “Te(x)fwre{y}f”r =  sup {1 fleC)+u)~Fle(y)+ud i;
peﬂﬁ(X);}, where we have employed also the continuous extension
of f on HEOO ™ by (3.3) and the density of e(X)) in HME(X) . By

the compactiness of M£(X); and the joint continuity of

,
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(3, 1) s (3 +1a, the mapping  xesfle(x)+.): X«@C(ﬁE(X};} is

cont inuous, which gives eventually uTe{x )fmfﬁr converging io
R« 4

rern whenever a net {xm} converges Lo ©. However, 1t mesans
erﬁUC£Hr}, and passing with r to +w, we get [feUBX). The

inclusion ME)CUB{X) has been thus proved.

Remark 4.3. Note that the largest m-introverted subalgebra of
2(X) smatisfies not only (2.3), but also the other conditions
(2.1)~(2.8), (3.4), and {2.B5). The compactification ?;, F=UB(X) ,
of the ball Xr is appearantly homeomorphic with the Smirnov
compactification of Xr endowed naturally with the norm proximity;
for details we refer to [11]1. Then it is clear that the flinest
laccording to Theorem 4.3) o-compactification 7 i, disregarding
the algebralia structure, homeomorphic with the local
compactification by S.Leader [6&)] of the local proximity space
(X,3,8) when the local proximity relation £ as well as the
houndedness ® is induced naturally by the norm; for deltails see

[61.
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