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0. Introduction

The theory presented below is an attempt to overcome by
proper definitions some problems in optimization theorysuch
as existence or stability of the (classical) solutions. This
problems are felt rather artificial from the viewpoint of
practically oriented engineers, economists, etc. Indeed, in
practice it is entirely sufficient to find an "almost" feas-
ible solution (say up to a small £>0) which is, at the same
time, "almost" optimal (again up to £>0). Then the question
whether there is an exact minimizer is not so important. As
to possible unstability of a solution, it means simply that,
roughly speaking, the solution varies considerably when data
are changed only a little, or also that around the solution
there are points enough at which the mappings in question
have "nearly" the same values as at the solution, hence the
"quality" of the solution may not be much worsened when it
moves. Therefore the unstability of the solution is to be
understood in fact as a good property, which is due to the

general character of optimization problems as inverse ones.



Our approach will reflect these engineering feelings
and, at the same time, will be exact to satisfy mathemati-
cians. It should be emphasized, however, that this approach
has a limited application: e.g. if we are to solve an equa-—
tion having a potential via minimizing this potential, we
must look for accurate minimizers only, and in such case the
classical existence and stability requirements are sensible

indeed.

1. Topological background

We briefly outline some topics from the proximity-space
theory which was proposed axiomatically by Efremovid [1]and
which becomes now quite usual tool in general topology - for
a survey (also historical) we refer to [2].

The pair (X,¥) will be called a proximity space if =
is a binary relation on oX satisfying the following six
axioms:

i) XX,

ii) A>B =) A DB,

iii) A4 DAL »By DBy = A{>By,
iv) Ay>B, Ao>»B = A0A5 3B,
v) A®»B = (X-B)>(X-4),
vi) A> A, = IB: Ay >B>A,.

If A>B, we say that A is a proximal neighbourhood of B,
Particularly, this relation induces a topology on X when B

is taking as a singleton. The proximity 5 is a binary rela-



tion on 2% defined by AFB iff (Y-B)>> A (5 means the negation
of §). Thanks to v), both § and § are symmetric. If A§B
(or AFB), we say that A and B are near to (or far from) each
other. A natural example is the proximity induced by a
metric d: AP»B iff A contains some €-neighbourhood of B,
i.e. 48>0 VxeB: a(x,y)et=>yeA.

more

Let us recall briefly some definitions%? A uniformity %

on X is a filter on XxX such that YUe€U: AcU, U le), and

U fexa %] 0 €U} and
dVeW: VeV CU, where A= {(x1,x2)| x1~x2}Vm
3::3: (x1,x3)EU, (x3,x2)€V}. A filter base B on X is a
subset of 2% such that BB, B &R, Ay,AeR S ANAy€R,
If, in addition, A4D Ay6R =2 A4€R , then B is called a
filter on X. The sets‘U(B)={xEX' dx4€B: (x,x1)€U} with some
Ueh are called uniform neighbourhoods of B. The uniformity
U is precompact if YUe) Ja finite subset M of X: X=U(M).
A uniformity is precompact if and only if the completion
with respect to this uniformity is compact.

There exists just one precompact uniformity on X such
that A>»B iff A is a uniform neighbourhood of B. The
completion X of X with respect to this uniformity is thus
compact and is called the Smirnov compactification of the
proximity space (X,®»); see [7]. If X and Y are two uniform
spaces, then every uniformly continuous mapping X—Y can be
extended continuously to a mapping X—¥ (i,? are the corres-
ronding Smirnov compactifications of X,Y regarding to the
proximities induced by the respective uniformities). This
extension is unique and, if X is a metric space, then even
only uniformly continuous mappings can be thus extended.

The significant role of the proximity structure in op-



timization has been underlined in [3]. A full characteriza-
tion of the Smirnov compactification by means of the possi-
bility to extend (ip a stable way) an explicitely con-
strained optimization problem has been stated in [6]: Let us
consider a family of optimization problems (péP is a para-
meter):

f(x,p) — inf ] x € G(p),

where f:XxP—}-ﬁ=RU§+m ,—o] and G:P—2X (in other words, G
is a multivalued mapping from P to X). Let P be a topologi-
cal space, X be endowed by a uniformity %, f£(.,p):X—R be
uniformly continuous for every p€P, the family of functions
{f(x,Q):P—éﬁ}xGX be equicontinuous (we employ +the com-—
pactness of E), and G be upper and lower Hausdorff semicon-
tinuous with respect to Y. Consider another uniformity )V~

on X and the extended problem

fv'(x,p) — inf ‘ - EGV(p),

where fV;Xf%P—?E is defined by kax,p)=liminf§ﬁx’§exf(§,p),

XV- is the completion of X with respect to V’, and GV(p) is
the closure of G(p) in XVZ Then the multivalued mapping P—
Xv, assigning to p the set of minimizers of the correspon-—
ding extended problem, is upper semicontinuous and the infi-
ma of both the original and the extended problems are the
same (for all families of the problems satisfying the hypo-
theses) if and only if Xr is the Smirnov compactification

of X regarding to the proximity induced by U. Then also fyﬁ

is the continuous extension of f.



2, Optimization problems treated with tolerance

Let us consider an abstract optimization problem with

functional constraints:
f(x) — inf | xeX, g(x)eC,

where f:X—R is a cost function, g:X—Y, and CCY. We want to
follow the philosophy of Introduction: to minimize f only
"up to £€>0" and to fulfil the constraint also only "up to
£>0". For this we need some structures on R and Y. We con-—
fine ourselves to a metric case (for more general case see
[5]) supposing we are given by some metric d on Y inducing
the relation > on 27, Naturally, we employ on R both the
standard ordering and the only proximity inducing the stan-
dard compact topology of R. We define the binary relation >
on R as follows: a>b iff [-w,a]is a proximal neighbour-
hood of [-w Jﬂ; Clearly this relation has got the obvious
meaning but the only exception: +®o> +o . We will include
the relations > and 3 into the data determining our
problem, believing that it is more natural from the
engineering point of view. Then our problem is degéined by
the 5-touple (f,g,C, >, ), and we will write it

symbolically as follows:

P: f(x)—inf with tolerance given by > )xEX, g(x)€C with

tolerance given by > .

From now on we suppose a generalized controlability condi-



tion: g(X) and C are near to each other (in the classical
setting of the problem without tolerance we would have to
suppose that g(X) and C intersect each other). To define
notions analogous with the sets of solutions or of feasible
points, we will investigate here the collection of level

sets (L€ R):
R={t"([-w,a]dn &1 | a>«, Cnch

It can be proved that there exists Qe'ﬁ such that ,Zi( is a
filter base on X if and only if A>2; Particularly, ,Rd is a
filter base for «=+@ . It is natural to declare 2 as the
infimum of the problem, denoted by inf(P), and the filter
generated on X by .Bo( with o<=2 (or «=+w ) as a minimizing
(or a feasible) filter, denoted by JH(P) (or ¥F(P)), respec-—
tively. In other words, M(P) has got a base consisting of
the sets:

{xeX | £(x)g inf(P)+ ¢ , dist(a(x),0) st}

with ¢>0; dist(y,0)=inf{d(y,'§') l ?eC}.’ For a given accuracy
¢ this set contains just the elements for which the con-
straint is fulfilled "up to £ " and, at the same time, the
cost function takes the lowest possible value (with regards
to all £€>0) "up to & ". These "g-solutions" are obviously
of the engineering or economical interest. Let us also men-
tion the "principles of optimality" by D.A.Molodcov[9]since
some of them can be considered as patterns from which the
minimizing and the feasible filters can be obtained after a

slight modification and generalization. Note that inf(P)



depends on the chosen metric d: the finer the metric d,
the greater the infimum of P. Particularly, for the discrete
metric d we get the greatest value inf(P)=inf f(g_1(0)),
which is the classical infimum of the problem treated with-
out any tolerance.

Let us define by the usual manner, ecf. [8]: a sequence
S=§Xn§neN is feasible if 1imn+mdist(g(xn),0))=0, and minimizing
if it is feasible and limsupy, f(xn)§;limsupn¢m f(§n> for
every feasible sequence §=§§nzneN; A sequence s generates
on X the so-called sequencial filter J(s) by means of the
base 'igxn[ngm}]meN} . The following assertion justifies
our terminology: a sequence s is minimizing or feasible if
and only if the sequencial filter f(s) is finer than the
minimizing or feasible filter, respectively.

On the contrary to the classical setting of the optimi-
zation problem without tolerance, our notions defined "with
tolerance" are stable with respect to some perturbations of
the data f, g, and C, which makes them sensible. Generali-
zing the "stability from above" of the optimality principles
by D;A;Molodcov[9l, we say that a filter F is a lower
bound for a sequence of filters g?g}neN if YAeF ImeN Ynem:
Ae¢ F,. It is interesting that there always exists (just one)
finest lower bound, denote it by liminf th The notion
of the lower bound can be used for certain stability of the
sequences by means of the following assertion: if 1iminfn+0D

?&1:>?f, F has a countable base, sn={xﬁzk€N be . sequences
such that 3T3n):)Fh, then there is ®:N—N such that for
every S‘“‘S_Xﬁ(n)}neﬁ with k(n)»%(n) we have J(s)>F. Hence,

for perturbed problems P, we get a staﬁility of the minimi-



zing or feasible sequences if we prove that J(P) or F(P)
is a lower bound for &ﬂ(Pn)EnGN or {;(Pn)}neN, respective-
ly. Indeed we have the following results: If f, converge to
f uniformly (it suffices from below), g, converge to g uni-
formly with respect to the metric d, and C, converge "from
above" to C in the sense YC»C ImeN Ynpm: CnCE, then
inf(Py) 2 inf(P) and liminf, T(PH)D?(P), where

llmlni‘n Y

P, means naturally the perturbed problem arising from P by

n
replacing f, g, C with f,, &,, Cu, respectively. Under
stronger assumptions we can prove even more: If fn converge
to f uniformly, g,=g, C, converge to C "from above", and
C,>C, then inf(P,)—>inf(P) (i.e. the infimum depends conti-
nuously on the data), liminfn_mﬂ(Pn)DJ‘((P) and liminf,
F(ry) = F(B).
The +tolerance approach is closely related with some
usual numerical methods which avoid the implicit constraint,
especially with the exterior penalty function method. Let

h:R—R be an increasing, continuous function with h(0)=0. We

can pose the penalized, unconstrained problem (r€R™):
P.: f.(x) — inf with tolerance given by > ‘ xeX,

where fo(x)=f(x)+r.h(dist(g(x),C)). Applying the above
introduced definitions to (Pr)’ we get clearly:
inf(P)=inf £.(X), F(P)={X}, and A(P,) = {AcX [Ja>inf(P,):
ADf?([-—oo,a]) . Supposing f to be bounded from below and
inf(P)#+w , we can obtain the convergence results:
inf(P,) ~» inf(P) and liminfr_bwﬂ(PI.):)}((P); Moreover, if we

define for £>0 the fil‘ters J‘(E(Pr) = fACXIA D f;1([—m



5 inf(Pr)+£]) and the nonincreasing nonnegative function
e:Ry—R by e(r)=inf(P)-inf(P,), we have even M(P) =
liminfr,g ¢30,85e(r) J((PI.); Convergence results can be
obtained also for a large class of the augmented Lagrangeans
methods; we refer to [5]; We may observe that there is a
large class of dual problems that have the same supremum
depending, in fact, only on the chosen proximity on Y.
Besides, this supremum is equal to inf(P), it means that
there is no (i.e. zero) duality gap. It is caused simply
by consistency of the setting of P with tolerance and of
the construction of the dual problem by the same tolerance,
using the Lindberg perturbational theory of duality. On the
contrary, in standard approach such consistency is missing,
hence it is not surprising that additional requirements must

be imposed on the data to ensure zero duality gap.

3. Compactification of the optimization problems

We may have observed that the optimization problems
posed with tolerance exhibit good behavior like problems
with continuous mappings f and g, closed C, and compact X,
which will be explained in what follows. Let f:X—R, g:X—Y,

Cc¥. The optimization problem:
P £(x) — inf \ xeX, g(x)eC

(considered in the classical sense, i.e. without tolerance)
will be called a compactification of P if X is a compact

topological space with a topology E','X is a G-dense subset



o REY

of f, ch?, Y is a uniform space with a uniformity nghose
traceon Y induces the same proximity as the given metric
s f and g are continuous and their restrictions on X
are just f and g, respectively, and C is the closure of C
in Y. Every problem P admits at least one compactifica--
tion that can be constructed as follows: take the discrete
proximity on X (i.e. every disjoint subsets are far from
each other) and the proximity induced by d on Y; then f and
g are obviously proximally continuous (i.e. they map sets
that are near to each other onto sets being again near to
each other) and can be thus extended continuously on the
corresponding Smirnov compactifications of X and Y which are
taken for X and.‘T, respectively. This is the "largest"
compactification in +the sense +that it uses the finest
compactification of X (the elements of X can be then identi-
fied just with the ultrafilters on X). Nevertheles, P may
admit generally a large amount of the compactifications.
E.g. if X is a uniform space and f and g are uniformly
continuous, we can take for X the Smirnov compactification
of X regarding to the proximity induced by the considered
uniformity; cf. [4]. This compactification is even the
"smalest" one in the sense that, under these uniform-conti-
nuity assumptions, we cannot use any strictly coarser
compactification of X. If X is a normed linear space (consi-
dered as a uniform space), we can extend on this compactifi-
cation also the neccessary conditions for the minimum of P
by using of the Ekeland ¢-variational principle; for the
unconstrained case see [3];

All the compactifications of P has the following common



= A s

properties: inf(P)=min(P), and H(P) or F(P) is the trace
on X of the E»neighbourhood filter of the set of minimizers
of P or of the set of feasible points of 5, respectively. It
enables to prove the results stated in Sec.2 and also some
other results by the following way: first, transfer the
properties of the data to the extended, compactified prob-
lem; then use standard techniques exploiting the compact-
ness; and afterwards transfer the obtained results back to
the original problem. Thus via compactification we can study
either the problems posed with tolerance, or the classical
minimizing and feasible sequences. Alternatively we may
declare the compactified problem as a natural extension of
the original problem, obtaining thus certain generalized
solutions of it; cf. [4]. It is analogical with what is made
in the relaxed-control theory [81where the situation is,
however, rather simple from the viewpoint of our general
approach Dbecause X, the space of all measurable functions
from [O,T]to a compact subset S of Rn, is precompact in the
uniformity induced by imbedding this set properly into the
dual space of L1(O,T;C°(S)) (L1 and C° means the space of
integrable and of continuous functions, respectively)

endowed with the weak uniformity; for details see [3].
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