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The aim of this note is to investigate phenomena appearing when a state-constrained optimal 

control (or optimal  shape design, etc.) problem governed by some differential equation is handled 

numerically. Then we are forced to approximate the problem on finite dimension spaces by some 

discretization method like finite diferences or finite elements, and simultaneously to cope with 

the state space constraints by some dual method - here we confine ourselves to the simplest 

one, namely to the penalty function method, but  the augmented Lagrangean method will behave 

essentially by the same manner.  By author 's  knowledge, an interaction between discretization 

and penalization has not  been studied yet, except some investigations in soviet l i terature collected 

in the book by F.P.Vasilev [3] which does not  deal directly with the dual t reatment  of the state 

constraints, however. Though the mat ter  is not too complicated, it is perhaps worth mentioning 

briefly here because, by author 's  experience, all possible events are not  sometimes realized well 

by those who use discretization with penalization simultaneuously. 

As most of the phenomena appear already on an abstract level, we may begin with the following 

abstract optimization problem 

{ m i n i m i z e  f (u) on u E U 
(P) subject to g(u) e C 

where f : U --~ R is a cost function, g : U --. Y a state operator,  U a set of admissible control~, 

Y a space of states, and C C Y a set of admissible states. From now on, we shall suppose 

controlability of (P),  that  is g(U) n C ~ O. After penalization (with a parameter ~ > O) and 

discretization (with a parameter  h > O) we get a family of unconstrained optimization problems, 

each of which can be wri t ten in an abstract form: 

(P~) minimize feb(u) = fh q_ e-,p(ga(u)) on u E U h, 

where fa  : Ua .._,/~, ga : U h ~ y are an approximate cost function and state operator,  respectively, 

U" C U is an internal approximation of the set of admissible controls, and p : Y --, 2~ is an 

appropriate penalty function; for simplicity we suppose that  p is so easy to be evaluated that  it 

need not be approximated by some ph  which is often case, indeed. 
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To simplify the problem as much as possible, we will assume the following, quite strong as- 

sumptions: 

CI) 

(2) 

(z) 

(4) 

(s) 

(6) 

(7) 

U is compact, its topology being denoted by r, 

Y is a metric space, p its metric, C its closed subset, 

f , g  are continuous, f > -oo ,  

p is continuous, p(C) = O, p ( Y \ C )  > O, 

U h is closed in U, fh, gh are continuous in the (relativized) topology r ,  

U n~ C U n2 for hi > h2 > 0, Oh>o U h is dense in U, and 

fh  _.  f ,  gh _.  g uniformly in the sense: 

Ve > 0 qh0 > 0 VO < h < h0 Vu E V ~ : II~(u) - / ( ~ ) 1  < 6, a(gh(u),a(u)) < c .  

Note that the assumptions (i)-(5) obviously guarantee existence of a minimizer both of (p h) 

and of (P), which is, however, not too much important because all phenomena studied below 

appear also in more general setting of the problem where compactness (i) need not be used, cf. 

[2]. 

Though the assumptions (1)-(7) may seem quite powerful on a first look, they cannot ensure 

the convergence of the minima of {P~) to the minimum of (P) (and a/ort iori  the convergence of 

minimizers, either) if only e ,h  x,~ O, as shown by the following example. 

E x a m p l e  1. Consider a very simple situation: U = [-1,11, Y = R,  f (u )  = g(u) = u, C = 

{+I,-I}, V h = [-I + h, II, fh _ L gh = g on U h, and p = 1 - {u[. All the assumptions (I)-(7) 

are fulfilled trivially, and clearly rain(P) = - 1 ,  and Argmin(P)  = { -1} .  On the other hand, 

it is easy to compute that,  for e < hi2,  min(P,  h) = 1 and Armin(P,  h) = {1}, which shows that 

neither the minimum, nor the minimizer of (P))  converge respectively to the min imum or the 

only minimizer of (P) when e, h x,~ 0 and ~ < h/2,  that means when e tends to zero too quickly 

in comparison with h. 

Whet tke assumptions (I)-(7)'can guarantee is only the existence of a stability criterion 

"h _< r/(~)" under which the convergence is ensured: 

T h e o r e m  1. Under the assumptions (1)-(7) there exists tl : R + --4 R+ such that 

(8) lim min(P,  h) = rain(P) , and 

(9) l imsup Argmin(P~) C Argmin{P) , 
,,hx.o. h_<~{,) 

where "l imsup" has the usuM mea.n~ng, i.e. it contains all r-cluster points o[ all chosen auhnet~. 
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The proof is, in fact, contained as a part  of the proof of Theorem 4.3 in [2] and will be thus 

omitted here (however, Theorem 4.3 there itself is stated in terms of so-called minimizing filters 

instead of the sets of minimizers, not supposing any compactness). 

It should be emphasize that  Theorem 1 has a little practical usage because it does not say 

anything about the stability criterion "h < r/C¢)" except its mere existence. The following The- 

orems 2 and 3 provide us with more information, the former one dealing even with the extreme 

situation when no stability criterion is needed: 

T h e o r e m  2. Xr (I)-(7) are ful~lled and moreover 

(10) C = c l r i n t r C  and g(U) n i n t r C  ¢ 0 a n d ,  

(11) V uniform neighbourhood B of  g-~(intrC) 36 > 0 : g- '(C6) c B 

where "clr"  and " in t r "  stand respectively for the closure and the interior in Y and C~ for 6- 

neighbourhood of C in tile metric p . Then (8) and (9) hold with ~ = 1, that means the 

convergence is unconditional. 

Again, the proof is essentially contained in [2] as a part  of the proof of Theorem 4.4 and will 

be omitted here. 

R e m a r k  1. The hypothesis (10) is particularly satisfied if Y is a linear metric space, C is 

convex with nonempty interior and g(U) N i n t r C  ~ ¢; then we come to the s tandard Slater con- 

straint qualification. As for (11), it is particularly satisfied ifg -1 is uniformly continuous, possibly 

in the Haussdorff sense provided g -1 is multivalued. 

Unfortunately, (11) is typically not  fulfilled in optimization problems for systems governed by 

differential equations where usually Y is a normed linear space with a norm strictly coarser than 

the corresponding energetic norm; e.g. Y = L 2 (.) while the energetic space is some Sobolev space 

H~(.) with k > O. In such case we have to perform the analysis more in detail, introducing also 

the auxiliary penalized problem without any discretization: 

(~,,) minimize f,C u) = f +  e-lp(g(u)) on u E U. 

T h e o r e m  3. Let (1)-(7) be fulfilled and the following discretization error is known: 

(12) Vh < ho:  [ rain(P, h) - min(P,)[ < E(e,  ho). 

Then every ~ : R + --+ R + such that iim E(~,r/(~)) = 0 will guarantee (8) and (9). 
c',~o 



148 

The proof of (8) follows from the fact that min(Pr) converges for ¢ ",~ 0 to rain(P) and from 

the obvious estimate: 

[ rain(P, h) - m i n ( P ) l  __ E(e,  t/(¢)) + I m i n ( P , ) -  min(P)l 

provided h < 7/(~). As soon as (8) is proved, (9) is ensured simply by standard compactness 

arguments. 

E x a m p l e  2. We outline a rather model situation dealing with an optimal distributed-control 

problem for a nonlinear elliptic equation to illustrate how Theorem 3 can be applied. Let fl 

be a bounded, polyhedral domain in R", Oft its boundary, U = {u G L°°(f t ) ; -1  _< u(x) <_ 

1 for a.a. x E £/}, r is the topology induced on U from H~(fl)" (which obviously guarantees (1), 

"*" stands for the topological dual space), Y = L2(ft), and g(u) -- y E H~(12) is the weak solution 

of the nonlinear boundary vv.lue problem: 

(13) v ( a ( I V y l ) V y )  -- u on n ,  

(1,1) a ( I V y l ) ~  + y = o on 01"! 

with some nonlinearity a(.) such that  the function ~ ~ a(~)~ is uniformly increasing with a linear 

growth, u is the outward unit normal to Oft. In other words, g(u) = y should fulfil the integral 

identity: 

J" o(Iv l)vy v ,  d= + dS = fo u,, d= 

Furthermore, let 

Vv e H'(• ) .  

P 

(15) f lu)  : Jan g(u) dS, 

c be a dosed subset of L2(n),  and ply) = i n f ~ c  llY - ~lli'lo)" In view of the cost function (lS) 

together with the boundary conditions (14)3 we can see that, speaking in terms of a heat-transfer 

interpretation, we are to choose heat sources distributed around ft in order to minimize the heat 

flux through the boundary Of] representing a lost of energy outside the domain fl, subject to 

some constraints imposed on the heat sources and on the temperature distribution. Hence our 

model problem has a quite reasonable practical interpretation. 

We discretize the problem (13)-(14) by a standard manner, using the finite element method 

(any numerical integration is not needed here). Let {Th}h>0 be a regular family of triangulations of 

11, U h -.= {u  G U ; u  is pieeewise constant on Th}, V h = {y G H l ( n ) ; y  is piecewise linear on Th}, 

fh ~_ f on U h, and gh(u) C V h is the unique solution of the integral identity: 

To derive the estimate of the type (12) we employ the following facts: 

i) f ,  g, and p are Lipschltz continuous on their respective sets of admissible arguments. 
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ii) The rate-of-error estimates which are uniform with respect to the control are known: 

I Ig(u) - g~(.~)ll.~.¢,~ <- ~ ha w e Uh, and 

If(u) - f f (u ) l  < c h a Vu e g h. 

If the regularity g(u) e H2( f l )  is valid, by [3] it is well known that  a = 1 ,  and in the linear case 

(i.e. a ~ const .  > 0) even a = 2. As for fl, its expected value is ] (or -~ in the linear case}, but  

we shall see (cf. Remark 2) that  its concrete value has no influence on mere convergence (8) and 

Co). 

iii) The uniform approximation error est imate is known: 

(16) inf I1~ - uhllu'l°r < c h~ V~ ~ tr. 
uhEU A 

Let us outline the proof of (16). For u E L~(f l )  denote by u h E U h the function defined 

by f a u  h dx = f a u  dx for every simplex A E Th. It is easy to verify that  I1~ - vnllL~Cnl <- 
const.hllvlb~,(.} for every v e H ' ( f l ) .  Realizing that  (u - un ,v  h} = 0 because evidently f a ( u  - 

u h) dx = 0 and v h is constant on A for every A E Th, we obtain the est imate ](u - uh,v) l  = 

I(u - ~ , ~  - ~)1  -< ,o-st .( l l~ll~.c. i  + IluhU~,l.l) h I1"11,,'1.1. Taking into account that  u, u h e V 

and the definition of the standard dual norm, we can see that  II u - ,~hl la ,cn) .  -< 2 c o n s t . ~  h, 

and put '7 = 1 in (16). 

Now we will employ the facts i)-iii) to derive the estimate (12). Taking some u E Argmin(P,) ,  

by (16) we can find some u h E V h with II- - ~hllH,¢.l" < (c + 1)h". By i) we can then see that  

f , { u  h) < rain(P,) -t- (c + 1)h'Y(L q- / ' '  - "7"), where L stands for the common Lipschitz constant of f , g ,  

and p. By ii) we come to 

L 2 eLha" 
(17) rain(p:)  <__ ],~(u ~) < rain(P,) + (~ + 1)(L + T ) h "  + c ha + 

Convemely, let us take some u e Argmin(P~h). By ii) we get immediately 

(lS) min(P,) < f , ( u )  < rain(By) -t- e h t~ -t- eLh=. 

Joining (17) and (18), we come to the error est imate (12) with 

E(e ,  h) = Cons t . ( h  ~ + h a + l (h7 + ha)).  

Then by Theorem 3, for the stability criterion function r /we  can take arbitrary function 

r/(e) = e q with q > max( , =). 
"7 
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R e m a r k  2. Note that ]~ has no influence to a freedom of the choice of ~/, which is due to 

the fact that  we investigated only mere convergence of the problem (P~) to (P), not any rate of 

convergence. Note also that the optimal case is a = % particularly the case a = 2 has here the 

same efficiency as a = 1. 

R e m a r k  3. It is known that  without the compactness hypothesis (1}, the penalized problem (Pc) 

does not generally approximate the original problem (P), but some extended problem (roughly 

speaking, a "relaxed control" problem). In such case, our considerations are also well fitted to 

approach relaxed controls by solving numerically the problems ( p  h}; cf. [2] for a general treat- 

ment of this idea. 
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