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Summary . An extension of optimization prob-
lems on non-compact domains is constructed by

means of methods of the uniform and proximity

space theory, the topology and even the uni-
formity of +the original domains being pre-
served. The solution of the extended problems

is considered as a generalized solution of the
original problem. The existence and stability
{(which generally do not take place for the
classical solutions) are ensured for the gene-
ralized solutions of various abstract optimi-
zation problems. Moreover, the convergence (in
the sense of the extended spaces) of approxi-
mate classical solutions of perturbed or pe-
nalized problems to the generalized solutions
is shown.

1. Motivations

Let us consider a very simple minimiza-
tion problem:
(p) minimize f(x)
subject to x€X ,
where f:X—-R, X is a +topological space, R

=RU{-w,+m} is the usual two-point compactifi-
cation of the real line R. We denote inf P=
inf £(X), Arginf P= {xeX, f(x)=inf P}. It may
happen that (P) has no solutions, i.e.
Arginf P=@, It is, however, only theoretical
drawback Dbecause there is always a minimizing
sequence containing elements which "solve" (P)
with an arbitrary small tolerance. Such "solu-
tions" are satisfactory from a ‘'practical"
point of view if f is e.g. a cost function.
Another theoretical drawback, closely related
with +the previous one, consists in the fact
that the set Arginf P may not be stable in the
sense that, roughly speaking, small perturba-
tions of f may considerably enlarge the set
Arginf P, ©Such behaviour only indicates that
there exists a minimizing sequence containing
elements from X\B, B being a neighbourhood of
Arginf P. It again does not represent any
"practical® difficulty.

For problems with certain special proper-
ties we aveid the above outlined theoretical
drawbacks by means of extension of the domain
X and of the problem (P). The extended problem

lized solutions of (P). We suppose X to be a
uniform space — in practice, X will be
mostly a metric space. If the stability of the
generalized solutions is required, there is an
"optimal" extension of X, for which even only

a proximity structure of X is essential. Un-
fortunately, except very special cases, the
extended spaces will not be metrizable, hence

the notion of sequences is not a sufficiently
powerful tool here, and the generalized solu-
tions will be characterized in terms of mini-
mizing filters on X.

This paper reprezentg a brief survey of
some author’s results the proofs being
omitted. For another approaches to the topics
we refer e.g. to the works of Polak, Wardi3,
and Warga'’.

2. Topological preliminaries

We Dbriefly recall some definitions and
assertions from general topology1’ needed in
what follows. A filter on a set M is a non-
empty collection of nonempty subsets of M with
the properties R,S€f=)RNSef, and REF, SOR =)
Se€f. A uniformity Uy on X is a filter on XxX
with the following properties:

a) VUiﬂx YxeX: (x,x)eU,
b) V'1EMX whenever VeUy,
c) VYUely 3velky : VOVCU ,

where V1= = §{(x,y)eXxX; (y,x)eV} and VeV= $(x,y)
€XxX; 3zeX, (x,z)eV, (z,y)eV}. In what follows
we confine ourselves to separated uniformities
(also called Hausdorff), i.e. x#y = 3Vely
(x,y)#U A filter F on X is called ¥ -Gauchy
if YUely JRe¥: RxR<U. If every ’lX-Cauchy £il-
ter on X converges to some element of X, the
uniform space (X, Uy ) is called complete. For a
uniform space (X ﬂx) we define its completion
(X, Wx) as a complete uniform space such that X
is dense in X and the trace of "X on XxX 1is
just «X' There is a one-to-one correspondence
between the points of X and the minimal (with
respect to the ordering by inclusion) MX-

Cauchy filters on X. The uniformity Uy 1is

called precompact if YVelUy 3Ia finite set
S<X: U(S)=X, where U(S)= §xeX 1yesS, (x,y) e

Ul. The completion (X UX) is compact iff Wy is

thus obtained will be called generalized, and

X precompact.
its solutions will be considered as genera- A roximity WX on X is a binary relation
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on the collection of all subsets of X with the
following properties:

) (84,55)€Ty =>(S,,5 )€Ty,

b) S,n SQ#Q = (31 ,Sg)é'n'x,

C) (é1 ’SQ)E“X s S1CR1, SQCRZ = (R1,R2)GIX,
) (@0 ¢ Ty,

e) (5,,R)eNy, (s2yR>¢TX = (S1USQ,R)¢'TX

£) ,Sp => 3Ry ,Rp:

R1nR2=¢, %31,){\31 )ﬁ"fx, (52,X\R2)¢Wx.

If (S4,5,)€Ty, the sets 54, S, are called near
to each other (with respect to Ty), while in
the opposite case they are called far to each
other. A uniformity Uy induces on X a proxim-
ity 7w(@y)=4{(R,S); S,RcX, VUely: (SxR)AU#@I.
Different uniformities may induce the same
proximity. Besides, for each proximity Ty
there exists exactly one precompact uniform-
ity, denoted by U(Ty), inducing Ty. The com-
pletion (X,U(wy)) is called a Smirnov com—
pactification of the proximity space (X,Ty). A
filter # on X is called Ty-round if YRef 35¢F:
(X\R,S)iﬂx. There is a one-to-one correspon-
dence between the points of X and the maximal
(with respect to the ordering by inclusion)
Wy-round filters on X. For any uniformit ‘b(x
we define its precompact modification Uy by
Uz= U WUy)) . The completion (X,Uy) is called
a Samuel compactification of the uniform space
(X,4y), and it is nothing else than the
Smirnov compactifiaction of the proximity
space (X,TUy)).

Any proximity Wy induces a topology on X
by declaring §{xe€X; %{x},S)e\TX}as the closure
of § for any SCX. The topology induced by Uy
is defined as the topology induced by TW(Uy).
An example: Let (X,d) be a metric space. Its
metric 4 induces the uniformity Uy= § Uc XxX;
3¢>0: d(x,y)se=> (x,y)e€UY. Then w(Uy)=
$(R,S); R,5cX, Ve>0 dxeR yeS: d(x,y)st:. Fur-
thermore, 'UX is projectively generated by the
family of all (Uy W)-uniformly continuous
functions from X to [0,1], where denotes the
unique uniformity on [0,1] inducing the usual
topology of [0,1]; i.e. ¢:X—{0,1]1is (Ux,W)-
uniformly continuous iff VE>0 3é>0 Vx,yeX:
d(x,y)¢8 => 1¢(x)-9¢(y)I€€, which is obviously
of the usual meaning. The Smirnov compactifi-
cation of (X,TW(Uy)) is metrizable if and only
if Uy is precompact.

3. Generalized solutions in unconstrained
optimization

We consider the minimization problem (P)
where (X,Uy) is a uniform space and the func-
tion f£:X—K is lower semicontinuous (briefly
l.s.c.) with respect to the topology induced
by %y. In practice, Uy will by ind1-1‘_ced by a
metric as in the above example. Let UY be some

uniformity on X inducing the same topology as
Uy. We extend (P) to the completion (X,UY),
defining f:X—R by

f(y)=
= liminfy_,y xeX £f(x) = suPseN(y) infxes £(x)

where N(y)= {Rnx; R is a neighbourhood of y in
Xi. Obviously N(y) is a minimial Y3-Cauchy
filter on X. Since f is l.s.c. and %y is sup-
posed to be separated, f(x)=f(x) for any x€X,

which justifies the term extension. We define
the generalized problem:
(GP) minimize 'f(x)__
subject to =xeX.
Clearly, inf f(X)= inf f£(X)= inf P. The el-

ements of Arginf GP= {xeX; f(x)= inf Plare to
be considered as generalized solutions of (P).
0f course, Arginf GP depends on u;;.

We will require the set-valued mapping
fi>Arginf GP to be upper semicontinuous
(u.s.c) with respect to the topology on the
set {f:X—Rjdefined as follows: We say that
f,—f iff epi f,—epi f (where epi f={(x,a)e
XxR; f(x)€a}) in the topology on the hyper-
space of all subsets of XxR induced by the so-
called Hausdorff uniformity ¥(UyxW), where W
is the uniformity of R. For a uniformity ¥ on

a set, the Hausdorff uniformity (V) on its
subsets is generated by the base {V i Vevl,
where VH= §{(R,S); RcV(S), ScV(R)}. As for

the topology on X, we take naturally that in-
duced by ’a_i'('. We come to a fundamental result:
Theorem 3.1 The set-valued mapping fi-
Arginf GP is u.s.c. (in the tcpclogies men-
tioned above) if and only if ’Ni is coarser
than the precompact modification of Uy, i.e.
UFcUy.

Thus u; may be considered as an "optimal'
uniformity which yields stable generalized
solutions. Moreover, 'U;E induces not only the
same topology as Uy, but also the same prox-
imity as ux.

In what follows, we confine ourselves to
the case when 'u;g = 'll;. Then X is the Samuel
compactification of (X,Uy) for which, as ex-
plained in §2, only the proximity structure of
(X,Ux) is essential.

The set Arginf GP can be characterized
among all closed subsets of X by means of the
filter N(Arginf GP)= ﬂ{)/(x); xeéArginf GPlon
X. The following theorem shows a connection
with the classical notion of level sets of f,
defined by lev(a)= §xeX; f(x)$a} aeR .
Theorem 3.2 N(Arginf GP)= {U(Ilev(a));
a>inf P}.

Note that we have got the effective
characterization of Arginf GP using the orig-
inal uniformity '!lx, whereas the particular
elements of Arginf GP can be desribed only
either by *the uniformity 'U;E (as f-minimizing
minimal Uy-Cauchy filters on X) or by the
axiom of choice (as f-minimizing maximal
T(Uy)-round filters on X). The filter ¥ on X
is called f-minimizing if inf £(8)=inf £(X)
for any SE€F.

An example: Let X=/p (i.e. the Hilbert space

of all square summable squences) and Uy in-
duced by its norm. Consider f defined by
f(x)=§;_'=°?1 2'1x§ for Ixfg1 and f(x)=+welse-
where (xi denotes the i-th component of the
sequence xel,). Obviously, Arginf P=§0}and f
is even strictly convex and coercive, Dbut

Uely,
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there is a minimizing sequence {xJ} with
Ix3121, namely (xd);=6;5; (Fis_the Kronecker
symbol). Since X is compact, {szhas a cluster
point in X which must belong to Arginf GP and
cannot be zero. Hence we see that Arginf GP
may be actually larger than Arginf P.

4, Constrained optimization problems

Let us consider a functionally con-
strained minimization problem:

(P%) minimize £(x)

subject to =xeX, F(x)eD,
where F:X—Y, DcY, and (X,U%), (Y,Uy) are
uniform spaces. Denote inf P®= inf f({xeX;
F(x)€DY) and Arginf P®= {xeX; F(x)e€D, f(x)=

inf P®}. We suppose, as in §3, that f:X—R is
l.s.c., which again allows us to extend f to
X. Now we meet the problem how to extend F to
X. Accordingly to the agreemant from §3, we
consider only the "optimal" extensions, 1i.e.
the_ Samuel compactifications (X,%y) and
(Y,M;). As the (Uy,Uy)-uniform continuity of F
guarantees that F 1is (u§,u;)—uniformly con-
tinuous as well, there is a unique continuous
mapping F:X—Y such that F(x)=F(x) for any

x€X, We obtain immediately the generalized
problem:
(GP®) minimize f(x)_ _ _

subject to xeX, F(x)eD,

where D is the closure of D in Y. We denote
inf GP®= inf F({xeX; F(x)eD ) and Arginf GPC=
§xeX; F(x)eD, F(x)=infG@°}. Like in Thm.3.2,
we can characterize the set of the generalized
solutions Arginf GP® by means of the level
sets of the original problem (P®), which are
defined now as lev(a,V)= §x€X; f(x)€a,
F(x)eV(D)Y, where a<R and Vely. Note that we
have relaxed also the constraint. There is,
however, a strong difference between the prob-
lem investigated here and that in §3, because
here inf GP® may be less than inf P® (then the
generalized solutions are ‘“better" than the
classical ones and Arginf GP°nNX=¢ ). Here we
have to characterize also inf GPC.
Theorem 4.1 The collection {U(lev(a,V)); Uely,
Ve¥y, a>is a filter on X if and only if
42 inf GP®, Besides, if «=inf GP°, then this
collection is just the filter N(Arginf GP®),.
For &¢>0 and Vely, we investigate also the
sets Arginf,P{= {xeX; f(x)€inf P§ +8& TF(x)€
V(D)}, where inf P$= inf £(f{xeX; F(x)eV(DI}).
Theelements of ArginfeP% areobviously
"almost" optimal (with a tolerance prescribed
by &) "solutions" of the original problem, the
constraints being violated only a little (with
atolerance prescribed by V ). Such solutions
are of the same "technical" or "engineering"
applicability as the classical solutions, i.e.
the elements of Arginf P®. However, Arginf,P§
generally does not converge to Arginf P® when
¢~—0 and V ranges the filter 'uy. Thus the
following theorem indicates that the genera-

lized problem (GP®) may be considered as a
reg%istic setting of the classical problem
(P°).
Theorem 4.2 If V ranges the filter %y, then
inf P§~inf GP® (the convergence is monotone).
Besides, if &>inf GP- inf P§ and ¢£¢—0, then
Arginf P{—Arginf GP® (with respect to the
topology induced by the Hausdorff uniformity
¥(Uy) on the hyper-space of all subsets of X).
Similar convergence results can be proved
for approximate solutions obtained by using
the well-known exterior penalty funtion method
to the problem (P®) provided f is bounded from
below and the penalty function ¢:Y—R is uni-
formly continuous, Y(y)=0 whenever V€D, and
VVCUY35>O: ¢(Y~V(D))?d. 0f course, the pena-
lized problem then consits in minimization of
the function f+K.9eF over X, K>0. For some
special cases it can be also shown that
inf GP® is nothing else than the supremum of
the dual problem when the classical augmented
Lagrangian method is employed.

An example: We construct an example for
inf GP®<inf P®, considering, like in §3,
X= L5, Y=R, _D={a»0}, f£(x)= i3 -27ix, and

F(x)= 273 Q"Sixg. Obviously, inf P®=0 and
Arginf P%=10}. Taking the sequence jx9}defined
by (xj)i=22161. (§is again the Kronecker sym-
bol), we have #(x3)=—27 ang F(x3)=2"3. Since X
is compact, $xJlhas a cluster point xeX with
f(x)=-o and F(x)=0. Thus inf GP°=-w.

5. Optimal control problems

Finally we consider a problem with more
complicated structure, namely an abstract op-
timal-control problem:

(p°°) iCu,x)
uelU, x=A(u), f(u,x)eDd,

minimize
subject to

where j:UxX—R is a cost function, A:U—X is a
state operator, and f:UxX—Y 1s a mapping
which forms, together with a set DCY, a con-
straint imposed on the control u and the state
x. The set of admissible controls U, as well
as the sets X and Y, are supposed as uniform
spaces endowed with uniformities Uy, Uy, Vv,
respectively. We denote by (U,ﬁn), éf,iig,
(T,ﬂ;) the corresponding Samuel compactifi-
cations. We may transform (P°C) to a mathemat-
ical-programming problem over U:
(po°t) J(u)=3(u,A(u))
uel, Flu)=f(u,A(u))ed.

minimize
subject to

Note that (P°°%) has the form of (P®) from §4,
and thus we may use the previous results pro-
vided J:U—R is l.s.c. and F:U—Y is (Ug,Uy)-
uniformly continuous. Extending J to }:U-eﬂ
and F to F:T—-Y like in §4, we get the genera-~
lized problem:

J(u)

(G_Poc‘t) o
uel, F(u)el,

minimize
subject to

D is again the closure of D in Y. We define
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the set of the generalized optimal controls
Arginf GPOCt= {uel; F(u)eD, J(u)=inf GPOCF},

where inf GPOCt= inf E(SuEﬁ; F(u)eD ). As in
§4, we may see that the sets of approximate
solutions of a perturbed original problem,
i.e. ArginfgP(®= {ueU; J(u)¢inf P{C+e, F(u)e
V(D)} with inf P$°— inf J({ueU; F(u)eV(D)})

VeUy, €0, converge just to Arginf GP°°" with
respect to the topology induced by XKTU) Note
that Arglnngv contains elements which are
"almost" optimal (with a tolerance &), the
constraint being fulfilled only with a certain
accuracy (prescribed by V), while the state
equation is satisfied exactly. This situation
is in harmony with the very realistic approach
of J.Warga7 who distinguishes the state oper-
ator, which is supposed as governed by "abso-
lute" physical laws (thus the state egquation
is to be satisfied exactly), and the con-
straints given by "engineering" requirements
(which fulfilment is sufficient only with a
certain acccuracy).

On the other hand, when A is (Ug,Ux0-
uniformly continuous, F is (W xﬂ;,ﬂy)—uniform-
ly continuous, and f is 1l.s. c., we may extend
directly the problem (P°%) without any math-
ematical-programming transformation. By a
straightforward way, we define A:U—X _and
F:5xX—Y (as continuous mappings) and J:UxX—R
(as a 1l.s.c. function). Thus we get the gene-
ralized problem having the form of an optimal-

control problem 1like the original problem
(Po€):

(GPO¢) J(u,x)

uel, x=A(u), F(u,x)eD.

minimize
subject to

It should be remarked that UxX generally dif-
fers from UxX which is the Samuel compactifi-
cation of the uniform space (UxX,UyxUy). The
set of the generalized optimal controls is now

defined naturally as Arginf GP°%= {ueT;
F(u,E(w))eDd, J(u, E(u))= inf GP°°§ where
inf GPOCiinf j(%(u x)eTUxX; x=A(u), f(u x)eD1).

Theorem 5.1 inf GP°°'<inf Gpoct, If 35 is, in
addition, (U xﬂg ,W)-uniformly continuous, then
inf GP°°—inf GP%¢t and thus also Arginf GPOC=
Arginf GPOCt,

The problem (GP°€)
proximate problems when, in addition, pertur-
bations of the state operator are allowed.
More precisely, we are to deal with the sets
ArginfgP{f= Suel; 2 xeW(A(u)): £(u,x)ev(D),
iCu, x)sinf P{f+ e} with Velly, Wely, £€>0, and
inf PQ8= inf j({(u,x)eUxX; Ser(A(X)) f(u X )€
vcn)ﬂw
Theorem 5.2 Let V and W range the filters Uy
and Uy, respectively. Then inf P%%z'inf GPpec,
Moreover, 1let &£>inf GP°C- inf Pyy and £-»0.
Then Arginf Py§ —> Arginf GPO° with respect to
the topology induced by X(Ug).

Analogous convergence results can be
stated for the sets of approximate solutions
obtained by the classical exterior penalty
function method possibly with an approximation
of the state operator, which is a typical
situation in solving optimal control problems
numerically.

corresponds to ap-

If the state operator is compact in the
sense that it maps bounded sets into precom-
pact sets, we can even prove, under certain
conditions, that the optimal generalized
states belong not only to the extended space
X, but also to the original space X. This
behaviour is very similar to that in the the-
ory of J.Warga7, where the so-called relaxed
controls belongs to an extended space, while
the corresponding states, i.e. solutions of a
differential equation, are functions in the
usual sense.

An_example: We consider UsX=[-1,11~{0}and
U=y as the restriction of the usual additive
unifomity on the real line. Hence MU and Uy
are precompact and we have rather +{rivial
situation U=X={-1,1] . Taking D=Y (i.e. no con-

stralnts) A(u)=u, J(u x)=u/x, we observe that
J(u)=1 for all uel, and j(u,A(u)) is either 1
(if uelU) or -« (if uel U= {01) Thus we have
constructed a simple example for inf GP%®=_g<«
inf GP9Ct=1, Note that J is even continuous,
but not uniformly contlnuous. We see that,
although (P°¢) and (P°t) are obviously equlv—
alent to each other, (GP°C) and (GP°°Y) nmay
not be so.

References
{11 A.Csaszar: General Topology. Akademiai
Kiadé, Budapest, 1978.
[2] S.A.Naimpally and B.D.Warrack: Proximity
Spaces. Cambridge Univ. Press, Cambridge,

1970.

[3] E.Polak and Y.Y.Wardi: A study of minimiz-
ing sequences, SIAM J. Control Optim. 22
(1984), 539-609.

f4] T.RoubiZek: A generalized solution of a
nonconvex minimization problem and its
stability. Kybernetika 22 (1986), 289-298.

[5] T.RoubiZek: Generalized solutions of con-
strained optimization problems. SIAM J.
Control Optim. 24 (1986) (in print)

[6] T.Roubidek: The generalized-solution ap-
proach in optimal control. (submitted to
SIAM J. Control Optim.)

[7] J.Warga: Optimal Control of Differential
and TFunctional Equations. Acad. Press,
New York, 1972.

1835



