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Summary.  An  extension  of  optimization  prob- 
lems on non-compact  domains is constructed  by 
means  of  methods  of  the  uniform and proximity 
space theory, the  topology  and  even  the  uni- 
formity  of  the  original  domains  being  pre- 
served.  The  solution  of  the  extended  problems 
is  considered  as a generalized  solution  of  the 
original  problem.  The  existence  and  stability 
(which  generally do not  take  place  for  the 
classical  solutions)  are  ensured  for  the  gene- 
ralized  solutions  of  various  abstract  optimi- 
zation  problems.  Moreover,  the  convergence  (in 
the  sense  of  the  extended  spaces)  of  approxi- 
mate  classical  solutions  of  perturbed o r  pe- 
nalized  problems  to  the  generalized  solutions 
is  shown. 

I. Motivations 

Let us consider a very  simple  minimiza- 
tion  problem: 

(P)  minimize  f(x) 
subject  to x€X , 

where f :X+R, X is a  topological  space, 3 
=RU{-w,+mf is  the  usual  two-point  compactifi- 
cation  of  the  real  line R. We denote  inf P= 
inf f (X), Arginf P= {xEX, f(x)=inf  Pi.  It  may 
happen  that (P) has no solutions,  i.e. 
Arginf P=B. It is, however,  only  theoretical 
drawback  because  there  is  always a minimizing 
sequence  containing  elements  which  "solve" (P) 
with  an  arbitrary  small  tolerance.  Such "solu- 
tions"  are  satisfactory  from  a  "practical" 
point  of  view  if f is  e.g. a cost  function. 
Another  theoretical  drawback,  closely  related 
with  the  previous one, consists  in  the  fact 
that  the  set  Arginf P may  not be stable  in  the 
sense that,  roughly  speaking,  small  perturba- 
tions of f may  considerably  enlarge  the  set 
Arginf P. Such  behaviour  only  indicates  that 
there  exists a minimizing  sequence  containing 
elements  from X\B, B being a neighbourhood  of 
Arginf  P.  It  again  does  not  represent  any 
ttpracticaltt difficulty. 

F o r  problems  with  certain  special  proper- 
ties  we  avoid  the  above  outlined  theoretical 
drawbacks by means of extension of  the  domain 
X and of the  problem (PI. The  extended  problem 
thus  obtained  will be called  generalized,  and 
its  solutions  will be considered  as  genera- 

lized  solutions  of (PI. We  suppose X  to be a 
uniform  space - in  practice, X will  be 
mostly a metric  space.  If  the  stability  of  the 
generalized  solutions  is  required,  there  is  an 
"optimal"  extension  of X, for  which  even  only 
a proximity  structure  of X is  essential.  Un- 
fortunately,  except  very  special  cases,  the 
extended  spaces  will  not be metrizable,  hence 
the  notion  of  sequences  is  not a  sufficiently 
powerful  tool here, and  the  generalized  solu- 
tions  will be  characterized  in  terms  of  mini- 
mizing  filters on X. 

This  paper  repre  ent a brief  survey  of 
some  author's  results  the  proofs  being 
omitted. For  another  approaches  to  the  topics 
we refer  e .g.  to  the  works  of  Polak Wadi3, 
and ~arga7. 

2. Topological  preliminaries 

We  briefly  recall  some  definitions  and 
assertions  from  general topology' 92 needed  in 
what  follows. A filter  on a set M is  a non- 
empty  collection  of  wpempty  subsets  of I with 
the  properties R,S€F=>RnScF, and RtF, S3R => 
S E f .  A uniformity Ux on X is a filter  on  XxX 
with  the  following  properties: 

a) V U ~ Y X  VXCX: (X,X)CU, 
b) V-'€Ux whenever V€Mx, 
c) VUrllx  3v€1(x : vovc u , 
where V-' = !(x ,y)aXrX;  (y  ,x)EV] and VeV= {(x ,y) 
EXrX; 3z€X, (x,z)cV,  (z,y)eV). In what  follows 
we  confine  ourselves  to  separated  uniformities 
(also  called  Hausdorff ), i.e.  xfy => SUETx: 
(x,y)PU. A filter T on X is called  UX-Cauchy 
if vU03x 3Rer: R x R C  U. If  every  lX-Cauchy  fil- 
ter  on X  converges  to  some  element  of X, the 
uniform  space  (X,Ux)  is  called  complete. For  a 
uniform  space (X,Yx) we  define  its  completion 
($,Tx) as a complete  uniform  spac_e  such  that X 
is dense  in  X  and  the  trace  of nx on  XrX  is 
just %x. There  is a one-to-one  correspondence 
between  the  points  of X and  the  minimal  (with 
respect  to  the  ordering by inclusion) ?(X- 

Cauchy  filters  on  X.  The  uniformity UX is 
called  precompact  if V V C U ~  3 a  finite  set 
S c X :  U(S)=X, where V(,S)= jxeX; ayes, (x,y> E 
U]. The  completion  (X,Ux)  is  compact  iff YX is 
precompact . 

A proximity rx on X is  a  binary  relation 
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If (SI ,S~)E~X, the  sets SI, S2 are  called  near 
to  each  other  (with  respect to TX), while in 
theopposite  case  they are called  far  to  each 
other. A uniformity U x  induces  on  X  a  proxim- 
ity ?'r(Yx)= $(R,S); S,R cX, VUez(x: (sxR)nU#0j. 
Different  uniformities  may  induce  the  same 
proximity. Besides,  for  each  proximity dx 
there  exists  exactly  one  precompact  uniform- 
ity, denot_ed  b ~ ( T x ) ,  inducing Tx. The  com- 
pletion ( x , ~ ) )  is  called  a  Smirnov 
pactification  of  the  proximity  space (X,Tx). A 
filter F on  X  is  called  TX-round  if VR43SeF: 
(X\R,S)$Tx. There is a one-to-one  correspon- 
dence  between  the  points  of X and  the  maximal 
(with  respect  to  the  ordering  by  inclusion) 
TX-round  filters  on X. For any  uniformitg Ux 
we  define  its  precompact  modification 2(x by 
1;- U ( n ( u x ) )  . The  completion (x,az) is  called 
a  Samuel  compactification  of  the  uniform  space 
( X , U x ) ,  and it is  nothing  else  than  the 
Smirnov  compactifiaction  of  the  proximity 
space (X,n(UX)). 

Any  proximity  induces  a  topology  on x 
by  declaring jxeX; fjxl,S)cTx~as  the  closure 
of S for  any SCX. The  topology  induced by 'UX 
is  defined  as  the  topology  induced  by T ( q x ) .  
An  example:  Let  (X,d) be a  metric  space. Its 
metric d induces  the  uniformity Qx= 5 Uc XXX; 
3E>O: d(x,y)<E => (x,y)EU\. Then r(('lZx)= 
{(R,S); R,SgX, v F > O  IxtR yes: d(x,y)d€?. Fur- 
thermore, %X is projectively  generated  by  the 
family  of  all  ('UX,W)-uniformly  continuous 
functions  from X to [O,?] , where  denotes  the 
unique  uniformity  on [O,?] inducing  the usual 
topology  of [o,I] ; i.e. (P:x+[o ,II is ( z ( x , ~ ) -  
uniformly  continuous  iff V f > O  3 d >  O Yx,yeX: 
d(x,y)&d => \v(x)-v(y)\4€, which  is  obviously 
of  the  usual  meaning.  The  Smirnov  compactifi- 
cation  of (X,T('ux)) is  metrizable  if  and  only 
if Ux is  precompact. 

3 .  Generalized  solutions  in  unconstrained 
optimization 

We consider  the  minimization  problem  (P) 
where (X,$ ) is  a  uniform  space  and  the  func- 
tion f:X+% is  lower  semicontinuous  (briefly 
1.s.c.)  with  respect  to  the  topology  induced 
by Xx. In  practice, ux will  by  induced  by a 
metric as  in  the  above  example.  Let 2($ be 
uniformity  on X inducing  the  same  topology  as 
%X. We  extznd  (P)  to  the  completion @,r$), 
defining ?-:X48 by 

F(Y >= 
= liminfx+y,xcx f(x) = SUPS~N(~) infx,S  f(x) 

le  

- where N(y)= {RnX; R is a neighbourhood  of y in 
Xi. Obviously N(y) is  a  minimial ff $-Cauchy 
filter  on X. Since  f  is  2.s.c.  and 'UX is  sup- 
posed  to  be separated, f(x)=f  (x) for  any xfX, 
which  justifies  the  term  extension. We define 
the  generalized  problem: 

(GP)  minimize f(x)- 
- 

subject  to =X. 

Clearly, inf T(z)= inf  <(X>_=  inf  P.  The  el- 
ements  of  Arginf GP= {xeX; f (x)= inf  Plare  to 
be considered as generalized  solutions  of (P). 
Of course, Arginf GP depends  on U $ .  

We  will  require  the  set-valued  mapping 
fHArginf  GP to be upper  semicontinuous 
(u.6.c) with  respect  to  the  topology  on  the 
set if  :X+x{defined as  follows:  We  say  that 
fn>f  iff  epi fn-+epi f (where  epi  f={(x,a)E 
XxR; f (x)<a3) in the  topology  on  the  hyper- 
space  of  all  subsets  of XxB induced  by  the so- 
called  Hausdorff  uniformity le(zCxxW), where 'rl 
is  the  uniformity  of fi. For a  uniformity V on 
a set, the  Hausdorff  uniformity X(Y4 on  its 
subsets  is  generated by  the  base {V ; VeV-1, 
where  VH= {(R,S) ;  R CV(S), S C  V(R)3. As  for 
the  topology  on x, we  take  naturally  that  in- 
duced  by Ti. We  come  to  a  fundamental  result: 
Theorem 3.1 The  set-valued  mapping f k  
Arginf  GP is U.S.C. (in  the  topologies  men- 
tioned  above)  if  and  only  if u$ is  coarser 
than  the  precompact  modification  of 'Ux, i.e. 

Thus 2; may be  considered  as  an  "optimal" 
uniformity  which  yields  stable  generalized 
solutions.  Moreover, ?AB induces  not  only  the 
same  topology as ?/X, but  also  the  same  prox- 
imity  as 'Ux. 

In what follows, *we confine  ourselves  to 
the  case  when 'U$ = UX. Then X is  the  Samuel 
compactification  of (X,'dx) for which, as  ex- 
plained in  $2, only  the  proximity  structure  of 
( X , U x )  is  essential. 

The  set  Arginf GP  can be  characterized 
among  all  closed  subsets  of X by means  of  the 
filter  K(Arginf  GP)=  flfK(x); xeArginf  GPlon 
X. The  following  theorem  shows  a  connection 
with  the  classical  notion  of  level  sets  of f, 
defined  by  lev(a)= rxeX; f(x)<g, at1 . 
Theorem 3.2 N(Arginf  GP)=  IU(lev(a)); Uftx, 
a>inf  PI. 

Note  that we have  got  the  effective 
characterization  of  Arginf GP using  the  orig- 
inal  uniformity U x ,  whereas  the  particular 
elements  of  Arginf GP  can * be desribed  only 
either bytthe uniformity 'Ux (as  f-minimizing 
minimal  'UX-Cauchy  filters  on X) or by  the 
axiom  of  choice  (as  f-minimizing  maximal 
T(UX)-round filters  on X). The  filter F on X 
is  called  f-minimizing  if  inf f(S)=inf  f(X) 
for  any SEF. 
An Let '=k' (i .e. the  Hilbert  space 
of  all  square  summable  squences)  and 3~ in- 
duced  by  its  norm.  Consider  f  defined  by 
f(x)= X T ~  2-i4 for ~x#41 and  f(x)=+cPelse- 
where  (xi  denotes  the  i-th  component  of  the 
sequence xti,). Obviously,  Arginf P={O]and f 
is  even  strictly  convex  and coercive, but 

u;cu;. 
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there  is a minimizing  sequence fxj] with 
IlxjI\kI , namely- (xJ )i=di, (ais  the  Kronecker 
symbol).  Since X  is  compact, fxj] has a cluster 
point  in x which  must  belong  to  Arginf  GP  and 
cannot be zero.  Hence  we  see  that  Arginf GP 
may be actually  larger  than  Arginf  P. 

4. Constrained  optimization  problems 

Let us consider a functionally  con- 
strained  minimization  problem: 

(PC 1 minimize f (x) 
subject  to xeX, F(x)CD, 

where  F:X+Y, D C Y, and (X,% ), (Y ,uy) are 
uniform  spaces.  Denote  inf P'= inf f ({xeX; 
F(x)ED'3) and Arginf PC= {xeX; F(x)€D, f (x)= 
inf PC 3 .  We suppose , as in $ 3 ,  that f :X+R is 
1 .s.c.,  which  again  allows us to  extend f to x. Now we meet  the  problem  how  to  extend F to x. Accordingly  to  the  agreemant  from $ 3 ,  we 
consider  only  the  "optimal"  extensions,  i.e. 
t_he Samuel  compactifications  (X,Ux)  and 
(Y,q;) .  As  the  ('UX,1.(y)-uni*for? continuity  of F 
guarantees  that F is  (~X,Uy)-uniformly  con- 
tinuous  a2 -wel_l,  there  is  a-unique  continuous 
mapping F:X+Y  such  that  F(x)=F(x) f o r  any 
xcX. We obtain  immediately  the  generalized 
problem: 

(GPc> minimize T(x)- 
subject  to XEX, F(x)cB, 

where '5 is  the closux-e of-D  in y. We  denote 
inf GPC= inf  P(1xeX;  F(x)eD ) and  Arginf GPC= 
jxez; F(x)<B,  P(x)=inf GPc3. Like  in  Thm.3.2, 
we  can  characterize  the  set  of  the  generalized 
solutions  Arginf GPC by means  of  the  level 
sets  of  the  original  problem (PC), which  are 
defined  now  as lev(a,V)= jxfX; f(x)ba, 
F(x)€V(D)\, where a<fi  and V E U y .  Note  that  we 
have  relaxed  also  the  constraint.  There is, 
however,  a  strong  difference  between  the  prob- 
lem  investigated  here and that  in $ 3 ,  because 
here  inf GPC may  be  less  than  inf PC (then  the 
generalized  solutions  are  "better"  than  the 
classical  ones and Arginf GPcnX=O ). Here  we 
have  to  characterize  also  inf GPC. 
Theorem 4.1 The  collection  ~U(lev(a,V)>;  UC'Ux, 
Very, a>d\  is a filter  on X if  and  only  if o(, inf GPC. Besides,  if d=inf GPO , then  this 
collection  is  just  the  filter  N(Arginf  GPC). 

For 0 0  and VeUy, we  investigate  also  the 
sets  ArginftP$=  IxtX; f(x)\cinf  Pf + E ,  F(x)E 
V(D)$, where  inf  P&=  inf  f(fxeX; F(x)cY(D)]). 
The  elements of ArginfePt are  obviously 
"almost"  optimal  (with a tolerance  prescribed 
by e )  "solutions"  of  the  original  problem,  the 
constraints  being  violated  only a little  (with 
atolerance  prescribed  by V ). Such  solutions 
are  of  the  same  "technical" o r  "engineering" 
applicability  as  the  classical  solutions,  i.e. 
the  elements  of  Arginf PC. However, Arginf,P$ 
generally  does  not  converge  to  Arginf  PC  when 
t-0 and V ranges  the  filter 'UY. Thus  the 
following  theorem  indicates  that  the  genera- 

lized  problem  (GPc>  may be considered  as a 
realistic  setting  of  the  classical  problem 

Theorem 4.2 If  V  ranges  the  filter QY, then 
inf  Pf /. inf  GPC  (the  convergence  is  monotone). 
Besides,  if E > inf  GPC-  inf P$ and &+O, then 
ArginfePv+Arginf GPC (with respect to the 
topology  induced  by  the  Hausdorff  uniformity 
X ( % >  on the  hyper-space  of  all  subsets  of x). 

Similar  convergence  results  can  be  proved 
for  approximate  solutions  obtained by using 
the  well-known  exterior  penalty  funtion  method 
to  the  problem  (PC)  provided f is  bounded  from 
below  and  the  penalty  function P:Y+R is  uni- 
formly  continuous, (4(y)=O whenever Y e D ,  and 
VVcUy ?ld> 0: y(Y\V(D))Pd. Of course,  the  pena- 
lized  problem  then  consits  in  minimization  of 
the  function  f+K  .?OF  over X, D O .  For some 
special  cases it can be also  shown  that 
inf  GPC  is  nothing  else  than  the  supremum  of 
the  dual  problem  when  the  classical  augmented 
Lagrangian  method  is  employed. 
An examole: We construct  an  example  for 
inf GPC< inf P C ,  considering,  like  in $ 3 ,  
X= 82, Y=E, D=iaZOl, f(x)= EIrl -2-ixi  and 
F(x)= '.I? ~ ~ ~ ~ 1 2 .  Obviously,  inf Pc=O and 
Arginf  PF=i03 . Taking  the  sequence {xJ] defined 
by  (x1 )i=22i6i. (4 is  again  the  Kronecker sym: 
boll, we  have I(X~)=-~~ and  F(xj)=2-j. Since X 
is compact, jxji has a cluster  point XCX with 
T(x)=-cn and F(x)=O. Thus  inf GPC=-co. 

(PC 1. 

5. Optimal  control  problems 

Finally  we  consider a problem  with  more 
complicated  structure,  namely an abstract  op- 
timal-control  problem: 

(POC  minimize 1 (u,x> 
subject  to udI, x=A(u),  f(u,x)eD, 

where  j:UxX+R  is a cost  function, A:U-+X is a 
state  operator,  and f :UxXdY is  a  mapping 
which forms,  together  with  a  set DCY, a con- 
straint  imposed  on  the  control u and  the  state 
x.  The  set  of  admissible  controls U, as  well 
as  the  sets X and Y, are  supposed  as  uniform 
spaces  endowed  with  uniformities 1 
respectively. We denote by (a,#!, #,?i;Tf: 
(y,!;) the  corresponding  Samuel  compactifi- 
catlons.  We  may  transform  (POc)  to a mathemat- 
ical-programming  problem  over U: 

(POct)  minimize J(u)=j(u,A(u)) 
subject  to u E U ,  P(u)=f(u,A(u))eD. 

Note  that  (POct)  has  the  form  of  (PC)  from $ 4 ,  
and thus  we-may  use  the  previous  results  pro- 
vided  J:U+R  is  1.s.c. and F:U+Y is ('U U ): 
uniformly-  c_ont_inuous.  Extending J to SI& 
and F to F:UdY like in $4, we  get  the  genera- 
lized  problem: 

(GPO'') minimize 5(u>- 
subject  to ueU, H ( u > E B ,  

D  is  again  the  closure  of D  in f .  We  define - 
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the  set  of  the  gzneralized  optimal  controls 
Arginf GPOct= {ueU; F ( u ) ~ c ,  r(u)=inf GP°Ct7, 
where  inf GPOct= inf J( {ueU; P(u)cB ). As in 
$4, we  may  see  that  the  sets  of  approximate 
solutions  of a perturbed  original  problem, 
i.e.  Arginf,Pec= luau; J(u)6inf PtC+&, F(u)< 
V(D)] with  inf Pfc= inf J(ju6U;  F(u)EV(D)I), 
V e u ~ ,  D O ,  converge  just  to  Arginf GPOCt with 
respect  to  the  topology  induced  by x(q$) .  Note 
that  ArginfePfC  contains  elements  which  are 
"almost"  optimal  (with a tolerance & ), the 
constraint  being  fulfilled  only  with  a  certain 
accuracy  (prescribed  by V), while  the  state 
equation  is  satisfied  exactly.  This  situation 
is in harmony  with  the  very  realistic  approach 
of  J.Warga7  who  distinguishes  the  state  oper- 
ator, which is supposed  as  governed  by  "abso- 
lute"  physical  laws  (thus  the  state  equation 
is to be  satisfied  exactly),  and  the  con- 
straints  given by "engineering"  requirements 
(which  fulfilment is sufficient  only  with  a 
certain acccuracy). 

On  the  other hand,  whec  iz (2(u,qX)- 
uniformly  continuous, F is (3, x#X,Uy)-uniform- 
ly continuous, and f is  l.s.c.,  we  may  extend 
directly  the  problem (POc) without  any  math- 
ematical-programming  transformation.  By a - straightforward way, we  define A :8-x and 
f :UxX+y (as continuous  mappings)  and 1 :UxX+R 
(as a 1.s.c.  function).  Thus we get  the  gene- 
ralized  problem  having  the  form  of  an  optimal- 
control  problem  like  the  original  problem 

- - -  

(POC) : 

(GPOC ) minimize j (u $ 5 )  - 
subject  to ucu, x=x(u),  P(u,x)€b. 

It  should beremarked that E x x '  generally  dif- 
fers  from  UxX  which  is  the  Samuel  compactifi- 
cation  of  the  uniform  space  (UxX,Uux~x)+.  The 
set  of  the  generalized  optimal  controls 1s now 
defined  naturally  as  Arginf  GPOC= { u e v ;  
T ( u , H ( u > ) d ,  j(u,X(u?): inf GPOCI, wkere 
inf GPoc=inf j(~(u,x)6UxX;  x=x(u),  ?(u,x)EDI). 
Theorem 5.1 in; GPOC 4 inf GPOct, If j is, in 
addition, xz( ,W)-uniformly continuous,  then 
inf GP°C=ilrUf'GP8Ct and  thus  also  Arginf GPOC= 
Arginf GPOct. 

The  problem (GPOc>  corresponds to  ap- 
proximate  problems when,  in  addition, pertur- 
bations  of  the  state  operator  are  allowed. 
More  precisely,  we  are  to  deal  with  the  sets 
ArginfgPG= i UCU; 3 xeW(A(u)): f (u,x)EV(D), 
j(u,x) < inf P G +  €1 with VeUy, Weu E > O ,  and 
inf POC= inf ~(~(U,X)EUXX;~XC~(A(~~)), f(u,x)c 
V(D)IY 
Theorem 5.2  Let V and W  range  the  filters ?l 
and UX, respectively.  Then  inf  POc  inf GPOC: 
Moreover, let e >  inf GPOC-  inf P m  and e-0. 
Then ArginftPG  -+Arginf GPOC  with  respect to 
the  topology  induced  by X ( % ) .  

Analogous  convergence  results  can  be 
stated  for  the  sets of approximate  solutions 
obtained  by  the  classical  exterior  penalty 
function  method  possibly  with an approximation 
of  the  state  operator,  which  is a typical 
situation in solving  optimal  control  problems 
numerically. 

If  the  state  operator  is  compact  in  the 
sense  that  it  maps  bounded  sets  into  precom- 
pact sets, we  can  even prove, under  certain 
conditions,  that  the  optimal  generalized 
states  belong  not  only  to  the  extended  space x, but  also  to  the  original  space  X.  This 
behaviour  is  very  similar to that  in  the  the- 
ory  of  J.Warga7,  where  the  so-called  relaxed 
controls  belongs to  an  extended space, while 
the  corresponding  states, i .e. solutions of a 
differential  equation,  are  functions  in  the 
usual  sense. 
An  example:  We  consider U=X= [-I ,11\{0] and 
Uu=Ix  as  the  restriction of  the  usual  additive 
unifomity  on  the  real  line.  Hence UU and UX 
are precozpyt and we  have  rather  trivial 
situation U=X= [-I ,I] . Taking D=Y (i .e. no  con- 
Etraints),  A(u)=u,  J(u,x)=u/x,  we  observe  that 
J(u)=l f o r  all ueg, and j ( u , I ( u ) )  is  either 1 
(if  ueU) or - m  (if  uev,U={O] ) .  Thus  we  have 
constructed a simple  example for inf GPOC=-@< 
inf  GP°Ct=l.  Note  that J is  even  continuous, 
but  not  uniformly  continuous.  We  see that, 
although  (POc)  and  (POct)  are  obviously  equiv- 
alent  to  each  other, (GPO') and  (GPOCt)  may 
not be so. 
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