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Abstract. Let X, Y be compact convex sets such that every extreme point
of X and Y is a weak peak point and both ext X and ext Y are Lindelöf

spaces. We prove that, if there exists an isomorphism T : Ac(X) → Ac(Y )
with ‖T‖ · ‖T−1‖ < 2, then ext X is homeomorphic to ext Y . This generalizes
results of H.B. Cohen and C.H. Chu.

1. Introduction

If X is a compact convex set in a real locally convex space, let A
c(X) stand

for the space of all continuous affine functions, A
b(X) for the space of all bounded

affine functions on X, and extX for the set of extreme points. The following results
are proved in [5, Theorems 7 and 12] by H. B. Cohen and C. H. Chu:

Let X and Y be compact convex sets and let T : A
c(X) → A

c(Y ) be an isomor-

phism satisfying ‖T‖ · ‖T−1‖ < 2. If

• X and Y are metrizable and each point of ext X and ext Y is a weak peak

point, or

• the sets ext X and ext Y are closed and each extreme point of X and Y is

a split face,

then the sets ext X and ext Y are homeomorphic.

We refer the reader to [5, pp. 72, 73, 75] for notions of the theory of compact con-
vex sets. We just mention that X can be embedded to (Ac(X))∗ via the evaluation
mapping φ : X → (Ac(X))∗ defined as φ(x)(f) = f(x), f ∈ A

c(X), x ∈ X. The
dual unit ball B(Ac(X))∗ equals the convex hull co (X∪−X) and (Ac(X))∗ coincides

with spanX, the linear span of X. Further, any function f ∈ A
b(X) has a unique

extension to spanX, and this provides an identification of (Ac(X))∗∗ with A
b(X).

We also recall that any weak peak point of a compact convex set X is a split
face and the converse holds if extX is closed; see [5, Proposition 1].

The aim of our paper is to show that the method of the proof of [5, Theorem 7]
is applicable in a more general setting that covers both results mentioned above.

Theorem 1.1. Let X,Y be compact convex sets such that every extreme point of

X and Y is a weak peak point and both ext X and ext Y are Lindelöf spaces. Let
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T : A
c(X) → A

c(Y ) be an isomorphism with ‖T‖ · ‖T−1‖ < 2. Then ext X is

homeomorphic to ext Y .

As in [5, Corollaries 13 and 14], this yields a corollary for function algebras: Let

A and B be function algebras with Lindelöf Choquet boundaries, and let T : reA →
reB be an isomorphism satisfying ‖T‖ · ‖T−1‖ < 2. Then the Choquet boundaries

of A and B are homeomorphic.

We recall that the construction from [3, Section VII] (see also [1, Proposi-
tion I.4.15] or [2, Theorem 3.2.4]) yields an example of a non-metrizable simplex
X such that extX is a Lindelöf non-closed subset of X and every extreme point
of X is a weak peak point. To see this, let B ⊂ [0, 1] be a Bernstein set (see [9,
Theorem 5.3]) and let

K = ([0, 1] × {0}) ∪
⋃

x∈B

({x} × [0, 1])

be endowed with the “porcupine” topology (see [3, Section VII]). Precisely, if x ∈ B

and t ∈ (0, 1], then a basis of neighborhoods of (x, t) consists of sets of the form
{x} × U , where U ⊂ [0, 1] is a neighborhood of t. If x ∈ [0, 1], then a basis of
neighborhoods of (x, 0) consists of sets of the form

(U × {0}) ∪
(
(U × [0, 1]) \

n⋃

i=1

({xi} × Fi)
)
,

where n ∈ N, U ⊂ [0, 1] is a neighborhood of x, x1, . . . , xn are points in B ∩U and
F1, . . . , Fn are compact subsets of (0, 1].

If λ stands for Lebesgue measure on [0, 1], let

H = {f ∈ C(K) : f(x, 0) =

∫

[0,1]

f(x, t) dλ(t), x ∈ B}

and

X = {s ∈ H∗ : s ≥ 0, s(1) = 1}.

Then X endowed with the weak∗ topology is a simplex and extX is homeomorphic
to (([0, 1] \B)×{0})∪ (K \ ([0, 1]×{0})). It is easy to see that ext X is a Lindelöf
non-closed set and every extreme point of X is its weak peak point.

Example 1 on [5, p. 83] shows that Theorem 1.1 need not hold even for compact
convex sets in finite dimensional spaces if we omit the assumption that extreme
points are weak peak points. An example due to H. U. Hess (see [7]) shows that for

every ε > 0 there exist metrizable simplices X, Y and an isomorphism T : A
c(X) →

A
c(Y ) such that ‖T‖ · ‖T−1‖ < 1 + ε and ext X is not homeomorphic to ext Y .

Nevertheless, it is not clear whether Theorem 1.1 remains valid if we omit the
topological assumption on the sets of extreme points.

Question 1.2. Let X,Y be compact convex sets such that every extreme point of

X and Y is a weak peak point and let T : A
c(X) → A

c(Y ) be an isomorphism with

‖T‖ · ‖T−1‖ < 2. Is it true that ext X is homeomorphic to ext Y ?

We need to recall several notions not explained in [5]. If X is a compact (Haus-
dorff) space, we write C(X) for the space of all continuous functions on X and
M1(X) for the space of all probability Radon measures on X. (By a Radon mea-
sure we mean a complete measure that is inner regular with respect to compact
sets and is defined on a σ-algebra including all Borel subsets of X. We refer the
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reader to [6, Section 416] for more information on Radon measures).) We always
consider M1(X) endowed with weak∗ topology. We say that a function f : X → R

is universally measurable if f is µ-measurable for every µ ∈ M1(X).
If X is a compact convex subset of a real locally convex space, any µ ∈ M1(X)

has its unique barycenter r(µ) ∈ X, i.e., the point x ∈ X satisfying f(x) = µ(f) for
any f ∈ A

c(X). We sometimes say that µ represents x. A function f : X → R is
strongly affine (or satisfies the barycentric formula), if f is universally measurable,
µ(f) exists and f(r(µ)) = µ(f) for any µ ∈ M1(X). We write Abf(X) for the space
of all strongly affine functions on X and recall that it is easy to see that any strongly
affine function is bounded (see the proof of [8, Satz 2.1(c)]). We also recall that any
semicontinuous affine function on X is strongly affine; see [2, Theorem 1.6.1(ix)].

2. Proof of Theorem 1.1

The proof of the main theorem follows the idea of the proof of [5, Theorems 7
and 12]. Hence we recall the main steps of their proof and point out our modifica-
tions. We start the proof with a minimum principle which is crucial for us because
then [10, Lemma 2.4] is applicable for functions T ∗∗f , f ∈ Abf(X).

Lemma 2.1. Let X be a compact convex set such that ext X is Lindelöf. If f ∈
Abf(X) satisfies |f(x)| ≤ c for all x ∈ ext X, then |f(x)| ≤ c for all x ∈ X.

Proof. Let x ∈ X be given. We find a maximal measure µ ∈ M1(X) representing
the point x (see [2, Theorem 1.6.4]) and define

A = {y ∈ X : |f(y)| ≤ c}.

Then A is a µ-measurable set and we claim that µ(A) = 1.
Indeed, let K ⊂ X be an arbitrary compact set disjoint from A. Since A ⊃ ext X,

for any y ∈ ext X we can find its closed neighborhood not intersecting K. The set
ext X is Lindelöf, and thus we can select countably many closed sets Fn ⊂ X,
n ∈ N, such that

ext X ⊂
∞⋃

n=1

Fn ⊂ X \ K.

By [4, Theorem 27.11], µ(
⋃∞

n=1 Fn) = 1, and hence µ(K) = 0. By the regularity of
µ, µ(X \ A) = 0, and hence

|f(x)| =

∣∣∣∣
∫

X

f dµ

∣∣∣∣ ≤
∫

A

|f | dµ ≤ c.

This concludes the proof. �

Proof of Theorem 1.1. Let T : A
c(X) → A

c(Y ) be an isomorphism satisfying
‖T‖ · ‖T−1‖ < 2. We assume that there exists c, c′ ∈ R such that 1 < c < c′ < 2
and ‖T‖ < 2 and ‖Tf‖ ≥ c′‖f‖ for all f ∈ A

c(X) (otherwise we would find
1 < c < c′ < 2 such that ‖T‖·‖T−1‖ < 2

c′
< 2 and consider the mapping c′‖T−1‖T ;

see [5, p. 76]).

Claim 1. For any f ∈ A
b(X) and g ∈ A

b(Y ) non-zero, ‖T ∗∗f‖ > c‖f‖ and

‖(T−1)∗∗g‖ > 1
2‖g‖.

Proof of Claim 1. The first inequality follows from

‖f‖ = ‖(T−1)∗∗T ∗∗f‖ ≤ (c′)−1‖T ∗∗f‖ < c−1‖T ∗∗f‖,

the second one is analogous. �
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If x ∈ ext X, we recall that (Ac(X))∗ = span{x} ⊕ℓ1 span{x}′ because {x} is a
split face; see [5, p. 72]. Hence, given y ∈ Y , following [5, p. 76] we can write

(1) T ∗y = λx + µ for some λ ∈ R and µ ∈ span{x}′.

It is proved in [5, p. 77] that ‖µ‖ < 2 − c whenever y ∈ Y satisfies |λ| > c.
We recall the construction of mappings ρ : Y → ext X and τ : X → ext Y . Given

x ∈ ext X, the function hx = χ∗
{x} is upper semicontinuous and affine (see [5,

p. 73]), and thus strongly affine (see [2, Theorem 1.6.1(ix)]). By [5, p. 77], for each
y ∈ ext Y there is at most one point x ∈ ext X such that |T ∗∗hx(y)| > c. Let

Y ′ = {y ∈ ext Y : there exists x ∈ ext X with |T ∗∗hx(y)| > c},

and let ρ : Y ′ → X be defined by the property that ρ(y) equals the unique point
x ∈ ext X satisfying |T ∗∗hx(y)| > c.

Analogously, if

X ′ = {x ∈ ext X : there exists y ∈ ext Y with |(T−1)∗∗hy(x)| >
1

2
},

then τ : X ′ → ext Y can be defined by the requirement that τ(x) is the unique
y ∈ ext Y satisfying |(T−1)∗∗hy(x)| > 1

2 .

Claim 2. For any x ∈ ext X, T ∗∗hx ∈ Abf(Y ).

Proof of Claim 2. Since T : A
c(X) → A

c(Y ), we have T ∗ : spanY → spanX. If

f ∈ A
b(X) and f̃ is the linear extension of f to span X, then T ∗∗f = f̃ ◦ T ∗. Since

‖T‖ < 2,

T ∗Y ⊂ 2B(Ac(X))∗ = co (2X ∪ −2X).

The sets 2X and −2X are affinely homeomorphic to X, and hence f̃ is strongly
affine on both of them. By [10, Lemma 2.4(b)],

f̃ ∈ Abf(2B(Ac(X))∗) = Abf(co (2X ∪ −2X)).

Since Y is affinely homeomorphic to T ∗Y and T ∗∗f = f̃ ◦ T ∗, we obtain that
T ∗∗f ∈ Abf(Y ). �

Claim 3. The mappings ρ : Y ′ → ext X and τ : X ′ → ext Y are surjective.

Proof of Claim 3. Let x ∈ ext X be given and assume that |T ∗∗hx(y)| ≤ c for all
y ∈ ext Y . By Claims 1, 2 and Lemma 2.1, |T ∗∗hx| ≤ c on Y . Then

c ≥ ‖T ∗∗hx‖ > c‖hx‖ = c

gives a contradiction. Hence ρ is surjective.
Analogously, using the second part of Claim 1 we obtain that τ is surjective. �

The following claim is essentially Lemma 6 of [5]. However, we recall its proof
since it uses Lemma 2.1.

Claim 4. We have X ′ = ext X and Y ′ = ext Y and, for any x ∈ ext X and

y ∈ ext Y , ρ(τ(x)) = x and τ(ρ(y)) = y.

Proof of Claim 4. We show that, for any y ∈ Y ′,

(2) |(T−1)∗∗hy(ρ(y))| >
1

2
.
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Assuming |(T−1)∗∗hy(ρ(y))| ≤ 1
2 , Claim 2 and Lemma 2.1 yield

d = sup
x∈ext X

|(T−1)∗∗hy(x)| = sup
x∈X

|(T−1)∗∗hy(x)| = ‖(T−1)∗∗hy‖.

By Lemma 2.1 and Claim 1, 1
2 < d. Since c > 1, we have d > d

c
. Let x′ ∈ ext X be

chosen such that

|(T−1)∗∗hy(x′)| > max{
d

c
,
1

2
}.

By the assumption, |(T−1)∗∗hy(ρ(y))| ≤ 1
2 , and thus ρ(y) 6= x′.

By Claim 3 we can select y′ ∈ Y ′ with ρ(y′) = x′. Then y′ ∈ {y}′, and thus
hy(y′) = 0. If T ∗y′ = λ′x′ + µ′, λ′ ∈ R and µ′ ∈ span{x′}′ (see (1)), then

(3) 0 = hy(y′) = (T−1)∗∗hy(T ∗y′) = (T−1)∗∗hy(λ′x′) + (T−1)∗∗hy(µ′).

Since λ′ = T ∗∗hx′(y′), it follows from the definition of ρ that |λ′| > c.
Using this, (3) and (1) along with the subsequent remark, we obtain

d < |λ′|
d

c
< |λ′||(T−1)∗∗hy(x′)|

= |(T−1)∗∗hy(λ′x′)|

= |(T−1)∗∗hy(µ′)|

≤ d‖µ′‖ < d(2 − c) < d.

This contradiction yields the validity of (2).
Now, let x ∈ ext X be given. We find y ∈ Y ′ with ρ(y) = x. It follows from (2)

that x ∈ X ′ and τ(x) = y. Hence X ′ = ext X and τ(ρ(y)) = y for all y ∈ Y ′.
If y ∈ ext Y is given, let x ∈ ext X be such that τ(x) = y. If y′ ∈ Y ′ satisfies

ρ(y′) = x, from the previous argument we obtain

y = τ(x) = τ(ρ(y′)) = y′.

Hence Y ′ = ext Y and it easily follows that ρ(τ(x)) = x for any x ∈ ext X. �

By the proof of Theorem 7 on p. 78 in [5], the mappings ρ and τ are continuous
(we point out that this part of the argument is valid for arbitrary compact convex
sets as mentioned in [5, p. 83]). This concludes the proof. �
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