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Abstract

The classical framework for studying the equations governing the motion of lumped
parameter systems presumes one can provide expressions for the forces in terms of
kinematical quantities for the individual constituents. This is not possible for a very
large class of problems where one can only provide implicit relations between the
forces and the kinematical quantities. In certain special cases, one can provide non-
invertible expressions for a kinematical quantity in terms of the force, which then
reduces the problem to a system of differential-algebraic equations.

We study such a system of differential-algebraic equations, describing motions of
mass-spring-dashpot oscillator. Assuming a monotone relationship between the dis-
placement, velocity and the respective forces, we prove global existence and unique-
ness of solutions. We also analyze the behavior of some simple particular models.

1 Introduction

The equations governing the vibratory motion of a spring, dashpot and mass, represented
as a lumped parameter system (see Figure 1) take the form

mẍ = F − Fs − Fd, (1.1)

where x is the displacement, m the mass, F the externally applied force on the mass
and Fs and Fd denote the forces in the spring and dashpot, respectively. The dot denotes
differentiation with respect to time. It is customarily assumed that one can provide explicit
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Figure 1: Mass-Spring-Dashpot lumped parameter system.

expression for the force in the spring, in terms of the displacement, and the force in the
dashpot, in terms of the velocity, i.e.,

Fs = f̂(x), (1.2)

Fd = ĝ(ẋ). (1.3)

Substituting (1.2) and (1.3) into (1.1) yields the equations governing the vibratory motion
of the system. The equations are completed by providing the initial conditions

x(0) = x0, (1.4)

ẋ(0) = x1. (1.5)

Recently, Rajagopal [3] has studied the vibratory motion of a class of lumped parameter
systems wherein the forces in the individual constituents that store and dissipate energy
(springs and dashpots) cannot be expressed in terms of kinematical quantities such as the
displacement, velocity, etc. Either one has the expression for the kinematics in terms of
the forces in the constituents, or worse still one has an implicit relationship between the
forces and the kinematics. In such lumped parameter systems, instead of dealing with a
differential equation we are forced to deal with a system of differential-algebraic equations.
Constituents wherein one cannot provide expressions for the forces explicitly in terms of the
kinematical quantities arise naturally in physical systems, for example the frictional force in
a dashpot consisting in a Bingham fluid cannot be expressed in terms of the velocity, rather
the velocity can be expressed in terms of the frictional force (see Figure 2). Similarly, one
cannot express the force in a system which consists in a spring and an inextensible spring
in parallel in terms of the displacement, on the contrary one can express the displacement
in terms of the force (see Figure 3). In the above mentioned examples, we note that the
constitutive expression for the spring-inextensible spring is given by

x = f(Fs), (1.6)
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ẋ

(b)

Figure 2: Frictional forces velocity relationship for a linear Bingham dashpot.
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Figure 3: A spring and an inextensible string in parallel; the relation between the applied
force and the displacement.

while the constitutive expression for the dashpot takes the form

ẋ = g(Fd). (1.7)

Thus, we cannot substitute (1.6) and (1.7) into (1.1) to obtain a single differential equation
for the displacement, and thus we need to solve the system of equations (1.1), (1.6) and
(1.7) simultaneously.

The constituents of the lumped parameter system can be much more complex in that
neither the force nor the kinematics can be expressed in terms of the other, but requiring
implicit constitutive relations between these variables. This would indeed be the case if the
individual constituents were viscoelastic or viscoplastic bodies. Thus, one might have to
deal with the vibratory motion of a lumped parameter system which comprises of several
constituents, the constitutive response of these components being given by

hi(fi, ḟi, x, ẋ) = 0, (1.8)
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where fi is the force acting in the ith constituent. In fact the problem can be even more
daunting in that one might have higher time derivatives of the forces and the displacement.
Equation (1.8) could be such that it is truly implicit, not allowing the displacement or any
of the other kinematical variables in terms of the force and its time derivatives. However,
there are components, such as a Maxwell element which will correspond to a relation of
the form

ẋ = αf + βḟ ,

where x is the displacement and f the force.
A frictional force that arises often in vibratory motions is Coulomb friction. This also

is an interesting situation wherein one cannot express the frictional force in terms of the
velocity. When the velocity is zero, the frictional force can take any value −µsN ≤ Fd ≤
µsN where µs is the coefficient of static friction and N is the normal traction acting on the
mass. Classical solutions are not possible to the system of equations governing the problem.
Even more importantly, the frictional force Fd that appears in (1.1) cannot be specified
independent of the extension of the spring whenever the force in the spring Fs ≤ µsN .
The problem can be cast as a differential inclusion and solutions can be established in the
sense of Filippov, see [1].

However, one finds that there is a large body of work, especially in engineering, where
the problem is incorrectly identified as possessing a classical solution. In fact, in such
studies (see for example Meirovitch [2]) one persists in using the governing equation (1)
to describe the vibrating system while obtaining the solution to the differential equation
by patching up the solution for negative and positive velocity, not recognizing that the
equation (1) is not meaningfully defined in that one cannot have an expression for the
force due to Coulomb friction when the velocity is zero and the initial conditions are such
that the spring force is less than the static frictional force. In this paper, we seek solutions
for Fs, Fd that are integrable functions rather than solutions such as those sought by
Filippov. We also require that the displacement and the velocity are absolutely continuous
functions.

In this short paper, we will not be considering constituent equations of the form (1.8).
We shall consider the simpler system (1.1), (1.6) and (1.7). We show there exists at least
one solution to this system satisfying (1.4), (1.5). For the autonomous problem, i.e., when
the external force F is constant, the solution is unique. We then specialize the constitutive
expression (1.6) and (1.7) to correspond to that for a linear spring and a Bingham dashpot,
respectively.

Throughout the paper, we will assume that

f, g : R → R are continuous, nondecreasing (1.9)

f(0) = g(0) = 0 (1.10)

c1|u| − c2 ≤ |f(u)| ≤ c3(|u| + 1) (1.11)

c4|u| − c5 ≤ |g(u)| ≤ c6(|u| + 1) (1.12)

Here (1.11), (1.12) are convenient technical assumptions, which together with (1.6), (1.7)
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imply that
x is bounded ⇐⇒ Fs is bounded

ẋ is bounded ⇐⇒ Fd is bounded
(1.13)

Clearly, (1.11), (1.12) are satisfied if f and g grow linearly close to infinity; they also
imply that these functions are onto, which seems necessary in order for us to prove global
existence of solutions for arbitrary initial data.

The underlying analysis does not correspond to that used in standard ODE theory;
therefore it is important to specify what we mean by a solution.

Definition 1. By a solution we mean a triple of functions (x, Fs, Fd) defined on some time
interval I, where x, ẋ are absolutely continuous functions, Fs, Fd are integrable functions,
and (1.1), (1.6), (1.7) hold almost everywhere (a.e.) in I.

2 A general existence result

In this section, we are going to prove the following theorem.

Theorem 1. For arbitrary x0, x1 ∈ R, T > 0 and F ∈ L2(0, T ), the system (1.1), (1.6),
(1.7) has at least one solution, satisfying (1.4), (1.5), and defined on the whole interval
[0, T ].

Proof. Replacing f , g by

fk(u) = f(u) + k−1u,

gk(u) = g(u) + k−1u,

we can define the following approximating problem

ẍk = F − F k
s − F k

d , (2.1)

xk = fk(F
k
s ), (2.2)

ẋk = gk(F
k
d ). (2.3)

We observe that fk, gk are invertible, hence this is equivalent to

ẍk = F − (fk)−1(x
k) − (gk)−1(ẋ

k). (2.4)

In fact, the functions (fk)−1, (gk)−1 are globally k-Lipschitz. Thus, for any k ≥ 1, we
have a global solution by virtue of the standard ODE theory; see for example Vrabie [5,
Theorem 2.4.5].

To obtain estimates that are independent of k, we multiply (2.1) by 2ẋk. Note that

F k
d ẋ

k = F k
d gk(F

k
d ) ≥ 0,

|F k
s | ≤ c(|xk| + 1);
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the second inequality follows from (1.11), with c being independent of k provided it is
sufficiently large. Hence we deduce that

d

dt
(ẋk)2 ≤ 2(|F | + c1|x

k| + c1)|ẋk| ≤ |F |2 + c2(1 + (xk)2 + (ẋk)2);

integrating over (0, t), and noting that

∫ t

0

(xk)2 ds =

∫ t

0

(
x0 +

∫ s

0

ẋk dτ
)2

ds ≤ c3
(
x2

0 +

∫ t

0

(ẋk)2 ds
)
, (2.5)

we finally deduce

(ẋk)2(t) ≤ x2
1 + c4

(
x2

0 +

∫ t

0

|F |2 + (ẋk)2 ds
)
, t ∈ [0, T ],

where the constants c3, c4 possibly depend on T . We deduce from Gronwall’s lemma
(Vrabie [5, Lemma 1.5.2]), that

sup
t∈[0,T ]

|ẋk(t)| + |xk(t)| ≤ K1, (2.6)

where K1 only depends on x0, x1, F and T > 0, but is independent of k that is sufficiently
large. Similarly, we have from (2.1)–(2.3) (invoking again (1.11), (1.12))

sup
t∈[0,T ]

|F k
s (t)| + |F k

d (t)| ≤ K2, (2.7)

∫ T

0

|ẍk|2 dt ≤ K3. (2.8)

Now, we need to take the limit k → ∞. From the above a priori estimates, there exists
a triple (x, Fs, Fd) such that, taking a subsequence (not relabelled)

xk → x

ẋk → ẋ

}

uniformly on [0, T ],

and
ẍk → ẍ

F k
s → Fs

F k
d → Fd







weakly in L2(0, T ).

This is sufficient to obtain the limit in (2.1). The proof will be finished once we handle
(2.2); the equation (2.3) is done similarly.

We employ monotonicity of f in a standard way. Observing that fk → f locally
uniformly in R, while F k

s are bounded, we have that

f(F k
s ) = f(F k

s ) − fk(F
k
s )

︸ ︷︷ ︸

⇉0

+ fk(F
k
s )

︸ ︷︷ ︸

xk

→ x uniformly on [0, T ].
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Now, we can write
∫ T

0

(f(F k
s ) − f(w))(F k

s − w) dt ≥ 0,

where w ∈ L2(0, T ) will be specified in a moment. Letting k → ∞, we deduce

∫ T

0

(x− f(w))(Fs − w) dt ≥ 0.

Taking now w = Fs ± λχ, where λ > 0 is constant and χ ∈ L2(0, T ) is arbitrary function,
we divide by λ and then let λ→ 0 to finally obtain

∫ T

0

(x− f(Fs))χ dt = 0.

By the arbitrariness of χ, it follows that x = f(Fs) almost everywhere.

3 Uniqueness for the autonomous problem

We will now impose additional structural assumptions on the function f , namely that there
exists a finite number of disjoint closed intervals Ik and real constants ξk such that

f ≡ ξk in Ik,

while f is strictly increasing outside ∪kIk. We set

φ :=
(
f |R\∪kIk

)

−1
;

our final requirement is that φ is locally Lipschitz on its domain of definition, i.e., on
R \ {ξ1, ξ2, . . .}. Note that φ is a strictly increasing function.

The subsequent analysis is closely related to problem of inverting (1.6). If x 6= ξk, this
is indeed equivalent to Fs = φ(x). On the other hand, one has

ẋ(t) = 0 for a.e. t ∈M,

where M =
{
t ∈ [0, T ]; ∃k such that x(t) = ξk}.

(3.1)

This follows from the fact the derivative of x is zero in every Lebesgue point of the set
{t ∈ [0, T ]; x(t) = ξk}. We conclude by recalling the well-known fact that Lebesgue points
are the set of full measure, see for example Rudin [4, Theorem 7.7].

Finally, we set

F(x) :=

∫ x

0

2φ(ξ)dξ.

Observe that F is locally Lipschitz, strictly convex and has a global strict minimum at
F(0) = 0. One also has

F ′(x) = 2φ(x), ∀x 6= ξk. (3.2)

An important step towards uniqueness is the energy (in)equality.
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Lemma 1. Every solution to the system (1.1), (1.6), (1.7) satisfies

d

dt

[
(ẋ)2 + F(x)

]
+ 2Fdẋ = 2F ẋ (3.3)

almost everywhere on [0, T ].

Proof. We have d

dt
(ẋ)2 = 2ẍẋ, and

d

dt
F(x) = F ′(x)ẋ = 2φ(x)ẋ

almost everywhere – this follows simply by chain rule if x 6= ξk, and it is a consequence of
(3.1) if t ∈M . Thus, (3.3) is equivalent to

(
ẍ+ Fd + φ(x)

)
2ẋ = 2F ẋ;

for x 6= ξk this follows from the equation (since Fs = φ(x)); while for t ∈ M we again
invoke (3.1).

For the sake of brevity, we will say that the solution is unique at the point (x0, x1), if
two arbitrary solutions satisfying the same initial condition

x(t0) = x0, ẋ(t0) = x1 (3.4)

coincide on [t0, t0 + δ] for some δ > 0. By the usual continuation argument, uniqueness at
every point implies global (forward) uniqueness.

Lemma 2. Let h be nondecreasing on the neighborhood V of x1, and let ψ be Lipschitz on
the neighborhood U of x0. Then the solution of the system

ẍ+ Fd + ψ(x) = F,

ẋ = h(Fd)

is unique at the point (x0, x1).

Proof. Let x1, x2 be two solutions with the initial condition (x0, x1); we can assume t0 = 0.
Let F 1

d , F 2
d , be the corresponding forces. By continuity, we can find δ > 0 such that xi and

ẋi remain in the U and V for t ∈ [0, δ], respectively.
Subtracting the equations for x1 and x2 yields

d

dt

(
ẋ1 − ẋ2

)
+ F 1

d − F 2
d = ψ(x2) − ψ(x1);

we multiply by 2(ẋ1 − ẋ2) and note that

(F 1
d − F 2

d )(ẋ1 − ẋ2) = (F 1
d − F 2

d )(g(F 1
d ) − g(F 2

d )) ≥ 0.
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Hence, introducing z = x1 − x2, we arrive at

d

dt
(ż)2 ≤ 2Lz2,

and integration yields (by the same token as in (2.5))

(ż(t))2 ≤ 2L

∫ t

0

z2ds ≤ C

∫ t

0

(ż)2ds,

for any t ∈ [0, δ]. By Gronwall’s lemma we deduce z ≡ 0.

We can now prove the main result of this section.

Theorem 2. Let F ≡ F0, and let f satisfies the structural assumptions from the beginning
of the section. Then the solution of (1.1), (1.6), (1.7) is unique at every point (x0, x1).

Proof. The proof is split into several cases.
Case 0. If x0 6= ξk, the conclusion follows from Lemma 2 (with ψ = φ).
Case 1. If (x0, x1) = (0, 0) and F0 = 0, we deduce from (3.3) (note that Fdẋ ≥ 0) that

(ẋ(t))2 + F(x(t)) ≤ 0;

for all t ≥ 0, hence x ≡ 0.
Case 2. Assume that (x0, x1) = (ξk, 0), and the force can be written as F0 = ψ + ϕ,

where g(ψ) = 0, f(ϕ) = ξk. In other words, the external force can be compensated by the
forces in the dashpot and the spring that keep the system at the equilibrium.

Replacing x by x− ξk, g by g(· + ψ) and f by f(· + ϕ) − ξk, we deduce that x ≡ ξk is
the unique solution by reduction to the argument of case 1.

It remains to handle the following situations:
Case 3i. (x0, x1) = (xk, x1) with x1 6= 0;
Case 3ii. (x0, x1) = (ξk, 0), where F0 /∈ g−1(0) + f−1(ξk).
In both the situations, we first claim that (any possible) solution is strictly monotone

on [0, δ] for some δ > 0. This is obvious if ẋ(0) = x1 6= 0, while in the case 3ii, by the
continuity argument, ẍ = F0−Fd−Fs is either positive or negative a.e. on (0, δ). Together
with the initial condition ẋ(0) = 0 this yields the desired monotonicity.

Assume that x1, x2 are two solutions that do not coincide on [0, δ] for any δ > 0.
Without loss of generality, xi are strictly increasing.

Set z := x1 − x2, and let z(t1) > 0 for some t1 ∈ (0, δ). We further define

t2 := inf
{
τ ∈ [0, t1); z > 0 on (τ, t1)

}
.

It follows that t2 ∈ [0, t1) and z > 0 on (t1, t2). By the mean value theorem, there exists
τ ∈ (t2, t1) such that ż(τ) > 0. By continuity, z, ż > 0 even on some (τ − η, τ), η > 0.

On the other hand, we have the equation

z̈ + F 1
d − F 2

d + F 1
s − F 2

s = 0;

9
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tktk+1

Figure 4: End of the proof of Theorem 2.

since z = f(F 1
s ) − f(F 2

s ) > 0, ż = g(F 1
d ) − g(F 2

d ) > 0, we deduce that z̈ < 0 a.e. on
(τ − η, τ). Hence ż(τ − η) > ż(τ) > 0.

Repeating the argument, we eventually deduce that ż(t2) > ż(t1) > 0. Since ż(0) = 0,
obviously t2 > 0, and z < 0 on some (t2 − η, t2). By the same token, there is a sequence of
points tk ց 0 such that z(tk) = 0, and (−1)kż(tk) > 0.

We will bring this to contradiction. Recall that xi are strictly increasing, and assume
that tk+1 < tk are close enough to zero so that xi 6= ξk for all t ∈ (tk+1, tk). Now, it is
possible to find c such that x1 and x̃2 = x2(· + c) have the same value and derivative at
some τ ∈ (tk+1, tk). See Figure 4; rigorous proof is obtained by application of Lagrange
theorem to inverse functions to xi and is left to the pedantic reader.

However, x̃2 solves the same autonomous equation; and hence, x̃ ≡ x1 on [τ, tk] in
virtue of the uniqueness proven in case 0. On the other hand, the construction implies
that x̃2(tk) > x1(tk) – a contradiction.

Remark 1. It is interesting to note that the forces are NOT determined uniquely. For
example, if f , g ≡ 0 on some neighborhood of zero, then x ≡ 0 is a solution, while Fs, Fd

can change arbitrarily as long as Fd + Fs ≡ 0. Nonetheless, no possible combinations of
these forces would yield any motion.

4 Construction of solutions for particular models

The aim of this section is a more detailed analysis of solutions for some simple particular
models.
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4.1 Linear spring and Bingham dashpot

Assume Hooke’s law for the spring, i.e.,

x =
Fs

k

and Bingham fluid in the dashpot; that is to say ẋ = g(Fd), where

g(u) =







0, |u| ≤ γ0,

a(u− γ0), u > γ0,

a(u+ γ0), u < −γ0,

where γ0, a are some positive constants. Our problem is reduced to the pair of equations

ẍ+ Fd + kx = F, (4.1)

ẋ = g(Fd). (4.2)

We have global existence by Theorem 1; note that we also have global (forward) uniqueness
by the argument of Lemma 2 – the proof obviously works for an arbitrary (non-constant)
right-hand side, with a globally Lipschitz function φ(u) = ku.

If ẋ 6= 0, we can invert (4.2) and our problem reduces to a single equation

ẍ+
ẋ

a
+ kx = F − γ0 sgn(ẋ). (4.3)

This is a linear ODE with constant coefficients.
On the other hand, the systems admits equilibria of the form

x ≡ xe,

Fd = F − kxe,

|Fd| ≤ γ0.

In other words: if x(t0) = xe and ẋ(t0) = 0 for some t0, then the solution remains at x = xe

as long as |F − kxe| ≤ γ0 is satisfied.

4.1.1 The case with constant right-hand side

Assume that F ≡ F0. We have a strip of equilibria

F0 − γ0

k
≤ xe ≤

F0 + γ0

k
. (4.4)

If ẋ > 0, the solutions are governed by

ẍ+ ax+ kx = F0 − γ0;
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while for ẋ < 0, we have
ẍ+ ax+ kx = F0 + γ0.

Solutions of these equations (exponentially) stabilize to (F0 − γ0)/k, (F0 + γ0)/k, respec-
tively. One deduces that any solution of the whole system is eventually (i.e., after a finite
number of oscillations) trapped by one of the equilibria (4.4).

To be more precise: if the system is overdamped (1/a2 > 4k), one can also have
solutions that are monotone and reach one of the equilibria (F0 ± γ0)/k in infinite time.

4.2 Linear dashpot and a rigid-elastic spring

We set ẋ = aFd, and x = f(Fs), where

f(u) =







0, |u| ≤ φ0

a(u− φ0), u > φ0,

a(u+ φ0), u < −φ0,

where φ0, k > 0 are constants. Our problem can be recast as

ẍ+
ẋ

a
+ Fs = F, (4.5)

x = f(Fs). (4.6)

Observe that the system fits into our general scheme; in particular, f satisfies the structural
assumptions given in Section 3. We thus have global existence and uniqueness (in case of
constant right-hand side). There is a trivial equilibrium x = 0, which can be maintained
as long as Fs = F ∈ [−φ0, φ0]. If x 6= 0, we can invert f(·), and reduce our problem to a
single (constant coefficient) equation

ẍ+
ẋ

a
+ kx = F − φ0 sgn(x).

4.2.1 The case with constant right-hand side

Let F ≡ F0. If x > 0, we have

ẍ+
ẋ

a
+ kx = F0 − φ0;

the solutions of this subproblem stabilize to x− := (F0 − φ0)/k. For x < 0, we have

ẍ+
ẋ

a
+ kx = F0 + φ0;

which implies that x tends to x+ := (F0 + φ0)/k.
Concerning the asymptotic behavior of the full system (4.5 - 4.6), we can distinguish

three cases:

12



1. If x− ≤ 0 ≤ x+, zero is a possible equilibrium and solutions infinitely oscillate closer
and closer around it.

2. If x− > 0, solutions are positive for t large enough and stabilize to x−.
3. If x+ < 0, solutions are negative for t large and stabilize to x+.

5 Concluding Remarks

In this short paper we have considered the existence of a solution for an interesting class
of problems concerning vibrating systems whose governing equations reduce to a system of
differential-algebraic equations. In such vibrating systems one cannot express the forces in
the components of the lumped parameter system as a function of kinematical quantities.
On the other hand we have the kinematics being defined as a function of the forces. We have
sought solutions under several special assumptions concerning the function that expresses
the kinematical quantity in terms of the forces such as it being monotone. A great deal of
work remains open, especially when the components of the lumped parameter system are
such that one can only provide implicit relationship between the forces and its derivatives
and the kinematical quantities.
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